55 lines
1.7 KiB
Python
55 lines
1.7 KiB
Python
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def load_tokenizer_and_model(model="microsoft/DialoGPT-large"):
|
||
|
"""
|
||
|
Load tokenizer and model instance for some specific DialoGPT model.
|
||
|
"""
|
||
|
# Initialize tokenizer and model
|
||
|
print("Loading model...")
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
||
|
model = AutoModelForCausalLM.from_pretrained(model)
|
||
|
|
||
|
# Return tokenizer and model
|
||
|
return tokenizer, model
|
||
|
|
||
|
|
||
|
def generate_response(tokenizer, model, chat_round, chat_history_ids):
|
||
|
"""
|
||
|
Generate a response to some user input.
|
||
|
"""
|
||
|
# Encode user input and End-of-String (EOS) token
|
||
|
new_input_ids = tokenizer.encode(input(">> You:") + tokenizer.eos_token, return_tensors='pt')
|
||
|
|
||
|
# Append tokens to chat history
|
||
|
bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1) if chat_round > 0 else new_input_ids
|
||
|
|
||
|
# Generate response given maximum chat length history of 1250 tokens
|
||
|
chat_history_ids = model.generate(bot_input_ids, max_length=1250, pad_token_id=tokenizer.eos_token_id)
|
||
|
|
||
|
# Print response
|
||
|
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))
|
||
|
|
||
|
# Return the chat history ids
|
||
|
return chat_history_ids
|
||
|
|
||
|
|
||
|
def chat_for_n_rounds(n=5):
|
||
|
"""
|
||
|
Chat with chatbot for n rounds (n = 5 by default)
|
||
|
"""
|
||
|
|
||
|
# Initialize tokenizer and model
|
||
|
tokenizer, model = load_tokenizer_and_model()
|
||
|
|
||
|
# Initialize history variable
|
||
|
chat_history_ids = None
|
||
|
|
||
|
# Chat for n rounds
|
||
|
for chat_round in range(n):
|
||
|
chat_history_ids = generate_response(tokenizer, model, chat_round, chat_history_ids)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
chat_for_n_rounds(5)
|