from transformers import AutoModelForCausalLM, AutoTokenizer import torch def load_tokenizer_and_model(model="microsoft/DialoGPT-large"): """ Load tokenizer and model instance for some specific DialoGPT model. """ # Initialize tokenizer and model print("Loading model...") tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained(model) # Return tokenizer and model return tokenizer, model def generate_response(tokenizer, model, chat_round, chat_history_ids): """ Generate a response to some user input. """ # Encode user input and End-of-String (EOS) token new_input_ids = tokenizer.encode(input(">> You:") + tokenizer.eos_token, return_tensors='pt') # Append tokens to chat history bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1) if chat_round > 0 else new_input_ids # Generate response given maximum chat length history of 1250 tokens chat_history_ids = model.generate(bot_input_ids, max_length=1250, pad_token_id=tokenizer.eos_token_id) # Print response print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) # Return the chat history ids return chat_history_ids def chat_for_n_rounds(n=5): """ Chat with chatbot for n rounds (n = 5 by default) """ # Initialize tokenizer and model tokenizer, model = load_tokenizer_and_model() # Initialize history variable chat_history_ids = None # Chat for n rounds for chat_round in range(n): chat_history_ids = generate_response(tokenizer, model, chat_round, chat_history_ids) if __name__ == '__main__': chat_for_n_rounds(5)