forked from jshiffer/matterbridge
08779c2909
* Update dependencies
899 lines
23 KiB
Go
899 lines
23 KiB
Go
// Copyright 2019+ Klaus Post. All rights reserved.
|
|
// License information can be found in the LICENSE file.
|
|
// Based on work by Yann Collet, released under BSD License.
|
|
|
|
package zstd
|
|
|
|
import (
|
|
"fmt"
|
|
)
|
|
|
|
const (
|
|
tableBits = 15 // Bits used in the table
|
|
tableSize = 1 << tableBits // Size of the table
|
|
tableShardCnt = 1 << (tableBits - dictShardBits) // Number of shards in the table
|
|
tableShardSize = tableSize / tableShardCnt // Size of an individual shard
|
|
tableFastHashLen = 6
|
|
tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
|
|
maxMatchLength = 131074
|
|
)
|
|
|
|
type tableEntry struct {
|
|
val uint32
|
|
offset int32
|
|
}
|
|
|
|
type fastEncoder struct {
|
|
fastBase
|
|
table [tableSize]tableEntry
|
|
}
|
|
|
|
type fastEncoderDict struct {
|
|
fastEncoder
|
|
dictTable []tableEntry
|
|
tableShardDirty [tableShardCnt]bool
|
|
allDirty bool
|
|
}
|
|
|
|
// Encode mimmics functionality in zstd_fast.c
|
|
func (e *fastEncoder) Encode(blk *blockEnc, src []byte) {
|
|
const (
|
|
inputMargin = 8
|
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
|
)
|
|
|
|
// Protect against e.cur wraparound.
|
|
for e.cur >= e.bufferReset-int32(len(e.hist)) {
|
|
if len(e.hist) == 0 {
|
|
for i := range e.table[:] {
|
|
e.table[i] = tableEntry{}
|
|
}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
// Shift down everything in the table that isn't already too far away.
|
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
|
|
for i := range e.table[:] {
|
|
v := e.table[i].offset
|
|
if v < minOff {
|
|
v = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
}
|
|
e.table[i].offset = v
|
|
}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
|
|
s := e.addBlock(src)
|
|
blk.size = len(src)
|
|
if len(src) < minNonLiteralBlockSize {
|
|
blk.extraLits = len(src)
|
|
blk.literals = blk.literals[:len(src)]
|
|
copy(blk.literals, src)
|
|
return
|
|
}
|
|
|
|
// Override src
|
|
src = e.hist
|
|
sLimit := int32(len(src)) - inputMargin
|
|
// stepSize is the number of bytes to skip on every main loop iteration.
|
|
// It should be >= 2.
|
|
const stepSize = 2
|
|
|
|
// TEMPLATE
|
|
const hashLog = tableBits
|
|
// seems global, but would be nice to tweak.
|
|
const kSearchStrength = 6
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
nextEmit := s
|
|
cv := load6432(src, s)
|
|
|
|
// Relative offsets
|
|
offset1 := int32(blk.recentOffsets[0])
|
|
offset2 := int32(blk.recentOffsets[1])
|
|
|
|
addLiterals := func(s *seq, until int32) {
|
|
if until == nextEmit {
|
|
return
|
|
}
|
|
blk.literals = append(blk.literals, src[nextEmit:until]...)
|
|
s.litLen = uint32(until - nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("recent offsets:", blk.recentOffsets)
|
|
}
|
|
|
|
encodeLoop:
|
|
for {
|
|
// t will contain the match offset when we find one.
|
|
// When existing the search loop, we have already checked 4 bytes.
|
|
var t int32
|
|
|
|
// We will not use repeat offsets across blocks.
|
|
// By not using them for the first 3 matches
|
|
canRepeat := len(blk.sequences) > 2
|
|
|
|
for {
|
|
if debugAsserts && canRepeat && offset1 == 0 {
|
|
panic("offset0 was 0")
|
|
}
|
|
|
|
nextHash := hashLen(cv, hashLog, tableFastHashLen)
|
|
nextHash2 := hashLen(cv>>8, hashLog, tableFastHashLen)
|
|
candidate := e.table[nextHash]
|
|
candidate2 := e.table[nextHash2]
|
|
repIndex := s - offset1 + 2
|
|
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.table[nextHash2] = tableEntry{offset: s + e.cur + 1, val: uint32(cv >> 8)}
|
|
|
|
if canRepeat && repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>16) {
|
|
// Consider history as well.
|
|
var seq seq
|
|
var length int32
|
|
length = 4 + e.matchlen(s+6, repIndex+4, src)
|
|
seq.matchLen = uint32(length - zstdMinMatch)
|
|
|
|
// We might be able to match backwards.
|
|
// Extend as long as we can.
|
|
start := s + 2
|
|
// We end the search early, so we don't risk 0 literals
|
|
// and have to do special offset treatment.
|
|
startLimit := nextEmit + 1
|
|
|
|
sMin := s - e.maxMatchOff
|
|
if sMin < 0 {
|
|
sMin = 0
|
|
}
|
|
for repIndex > sMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch {
|
|
repIndex--
|
|
start--
|
|
seq.matchLen++
|
|
}
|
|
addLiterals(&seq, start)
|
|
|
|
// rep 0
|
|
seq.offset = 1
|
|
if debugSequences {
|
|
println("repeat sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
s += length + 2
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
if debugEncoder {
|
|
println("repeat ended", s, length)
|
|
|
|
}
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
continue
|
|
}
|
|
coffset0 := s - (candidate.offset - e.cur)
|
|
coffset1 := s - (candidate2.offset - e.cur) + 1
|
|
if coffset0 < e.maxMatchOff && uint32(cv) == candidate.val {
|
|
// found a regular match
|
|
t = candidate.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
break
|
|
}
|
|
|
|
if coffset1 < e.maxMatchOff && uint32(cv>>8) == candidate2.val {
|
|
// found a regular match
|
|
t = candidate2.offset - e.cur
|
|
s++
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugAsserts && t < 0 {
|
|
panic("t<0")
|
|
}
|
|
break
|
|
}
|
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
// A 4-byte match has been found. We'll later see if more than 4 bytes.
|
|
offset2 = offset1
|
|
offset1 = s - t
|
|
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
|
|
if debugAsserts && canRepeat && int(offset1) > len(src) {
|
|
panic("invalid offset")
|
|
}
|
|
|
|
// Extend the 4-byte match as long as possible.
|
|
l := e.matchlen(s+4, t+4, src) + 4
|
|
|
|
// Extend backwards
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
|
|
s--
|
|
t--
|
|
l++
|
|
}
|
|
|
|
// Write our sequence.
|
|
var seq seq
|
|
seq.litLen = uint32(s - nextEmit)
|
|
seq.matchLen = uint32(l - zstdMinMatch)
|
|
if seq.litLen > 0 {
|
|
blk.literals = append(blk.literals, src[nextEmit:s]...)
|
|
}
|
|
// Don't use repeat offsets
|
|
seq.offset = uint32(s-t) + 3
|
|
s += l
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
|
|
// Check offset 2
|
|
if o2 := s - offset2; canRepeat && load3232(src, o2) == uint32(cv) {
|
|
// We have at least 4 byte match.
|
|
// No need to check backwards. We come straight from a match
|
|
l := 4 + e.matchlen(s+4, o2+4, src)
|
|
|
|
// Store this, since we have it.
|
|
nextHash := hashLen(cv, hashLog, tableFastHashLen)
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
seq.matchLen = uint32(l) - zstdMinMatch
|
|
seq.litLen = 0
|
|
// Since litlen is always 0, this is offset 1.
|
|
seq.offset = 1
|
|
s += l
|
|
nextEmit = s
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
|
|
// Swap offset 1 and 2.
|
|
offset1, offset2 = offset2, offset1
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
// Prepare next loop.
|
|
cv = load6432(src, s)
|
|
}
|
|
}
|
|
|
|
if int(nextEmit) < len(src) {
|
|
blk.literals = append(blk.literals, src[nextEmit:]...)
|
|
blk.extraLits = len(src) - int(nextEmit)
|
|
}
|
|
blk.recentOffsets[0] = uint32(offset1)
|
|
blk.recentOffsets[1] = uint32(offset2)
|
|
if debugEncoder {
|
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
|
|
}
|
|
}
|
|
|
|
// EncodeNoHist will encode a block with no history and no following blocks.
|
|
// Most notable difference is that src will not be copied for history and
|
|
// we do not need to check for max match length.
|
|
func (e *fastEncoder) EncodeNoHist(blk *blockEnc, src []byte) {
|
|
const (
|
|
inputMargin = 8
|
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
|
)
|
|
if debugEncoder {
|
|
if len(src) > maxCompressedBlockSize {
|
|
panic("src too big")
|
|
}
|
|
}
|
|
|
|
// Protect against e.cur wraparound.
|
|
if e.cur >= e.bufferReset {
|
|
for i := range e.table[:] {
|
|
e.table[i] = tableEntry{}
|
|
}
|
|
e.cur = e.maxMatchOff
|
|
}
|
|
|
|
s := int32(0)
|
|
blk.size = len(src)
|
|
if len(src) < minNonLiteralBlockSize {
|
|
blk.extraLits = len(src)
|
|
blk.literals = blk.literals[:len(src)]
|
|
copy(blk.literals, src)
|
|
return
|
|
}
|
|
|
|
sLimit := int32(len(src)) - inputMargin
|
|
// stepSize is the number of bytes to skip on every main loop iteration.
|
|
// It should be >= 2.
|
|
const stepSize = 2
|
|
|
|
// TEMPLATE
|
|
const hashLog = tableBits
|
|
// seems global, but would be nice to tweak.
|
|
const kSearchStrength = 6
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
nextEmit := s
|
|
cv := load6432(src, s)
|
|
|
|
// Relative offsets
|
|
offset1 := int32(blk.recentOffsets[0])
|
|
offset2 := int32(blk.recentOffsets[1])
|
|
|
|
addLiterals := func(s *seq, until int32) {
|
|
if until == nextEmit {
|
|
return
|
|
}
|
|
blk.literals = append(blk.literals, src[nextEmit:until]...)
|
|
s.litLen = uint32(until - nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("recent offsets:", blk.recentOffsets)
|
|
}
|
|
|
|
encodeLoop:
|
|
for {
|
|
// t will contain the match offset when we find one.
|
|
// When existing the search loop, we have already checked 4 bytes.
|
|
var t int32
|
|
|
|
// We will not use repeat offsets across blocks.
|
|
// By not using them for the first 3 matches
|
|
|
|
for {
|
|
nextHash := hashLen(cv, hashLog, tableFastHashLen)
|
|
nextHash2 := hashLen(cv>>8, hashLog, tableFastHashLen)
|
|
candidate := e.table[nextHash]
|
|
candidate2 := e.table[nextHash2]
|
|
repIndex := s - offset1 + 2
|
|
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.table[nextHash2] = tableEntry{offset: s + e.cur + 1, val: uint32(cv >> 8)}
|
|
|
|
if len(blk.sequences) > 2 && load3232(src, repIndex) == uint32(cv>>16) {
|
|
// Consider history as well.
|
|
var seq seq
|
|
length := 4 + e.matchlen(s+6, repIndex+4, src)
|
|
|
|
seq.matchLen = uint32(length - zstdMinMatch)
|
|
|
|
// We might be able to match backwards.
|
|
// Extend as long as we can.
|
|
start := s + 2
|
|
// We end the search early, so we don't risk 0 literals
|
|
// and have to do special offset treatment.
|
|
startLimit := nextEmit + 1
|
|
|
|
sMin := s - e.maxMatchOff
|
|
if sMin < 0 {
|
|
sMin = 0
|
|
}
|
|
for repIndex > sMin && start > startLimit && src[repIndex-1] == src[start-1] {
|
|
repIndex--
|
|
start--
|
|
seq.matchLen++
|
|
}
|
|
addLiterals(&seq, start)
|
|
|
|
// rep 0
|
|
seq.offset = 1
|
|
if debugSequences {
|
|
println("repeat sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
s += length + 2
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
if debugEncoder {
|
|
println("repeat ended", s, length)
|
|
|
|
}
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
continue
|
|
}
|
|
coffset0 := s - (candidate.offset - e.cur)
|
|
coffset1 := s - (candidate2.offset - e.cur) + 1
|
|
if coffset0 < e.maxMatchOff && uint32(cv) == candidate.val {
|
|
// found a regular match
|
|
t = candidate.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugAsserts && t < 0 {
|
|
panic(fmt.Sprintf("t (%d) < 0, candidate.offset: %d, e.cur: %d, coffset0: %d, e.maxMatchOff: %d", t, candidate.offset, e.cur, coffset0, e.maxMatchOff))
|
|
}
|
|
break
|
|
}
|
|
|
|
if coffset1 < e.maxMatchOff && uint32(cv>>8) == candidate2.val {
|
|
// found a regular match
|
|
t = candidate2.offset - e.cur
|
|
s++
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugAsserts && t < 0 {
|
|
panic("t<0")
|
|
}
|
|
break
|
|
}
|
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
// A 4-byte match has been found. We'll later see if more than 4 bytes.
|
|
offset2 = offset1
|
|
offset1 = s - t
|
|
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
|
|
if debugAsserts && t < 0 {
|
|
panic(fmt.Sprintf("t (%d) < 0 ", t))
|
|
}
|
|
// Extend the 4-byte match as long as possible.
|
|
l := e.matchlen(s+4, t+4, src) + 4
|
|
|
|
// Extend backwards
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] {
|
|
s--
|
|
t--
|
|
l++
|
|
}
|
|
|
|
// Write our sequence.
|
|
var seq seq
|
|
seq.litLen = uint32(s - nextEmit)
|
|
seq.matchLen = uint32(l - zstdMinMatch)
|
|
if seq.litLen > 0 {
|
|
blk.literals = append(blk.literals, src[nextEmit:s]...)
|
|
}
|
|
// Don't use repeat offsets
|
|
seq.offset = uint32(s-t) + 3
|
|
s += l
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
|
|
// Check offset 2
|
|
if o2 := s - offset2; len(blk.sequences) > 2 && load3232(src, o2) == uint32(cv) {
|
|
// We have at least 4 byte match.
|
|
// No need to check backwards. We come straight from a match
|
|
l := 4 + e.matchlen(s+4, o2+4, src)
|
|
|
|
// Store this, since we have it.
|
|
nextHash := hashLen(cv, hashLog, tableFastHashLen)
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
seq.matchLen = uint32(l) - zstdMinMatch
|
|
seq.litLen = 0
|
|
// Since litlen is always 0, this is offset 1.
|
|
seq.offset = 1
|
|
s += l
|
|
nextEmit = s
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
|
|
// Swap offset 1 and 2.
|
|
offset1, offset2 = offset2, offset1
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
// Prepare next loop.
|
|
cv = load6432(src, s)
|
|
}
|
|
}
|
|
|
|
if int(nextEmit) < len(src) {
|
|
blk.literals = append(blk.literals, src[nextEmit:]...)
|
|
blk.extraLits = len(src) - int(nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
|
|
}
|
|
// We do not store history, so we must offset e.cur to avoid false matches for next user.
|
|
if e.cur < e.bufferReset {
|
|
e.cur += int32(len(src))
|
|
}
|
|
}
|
|
|
|
// Encode will encode the content, with a dictionary if initialized for it.
|
|
func (e *fastEncoderDict) Encode(blk *blockEnc, src []byte) {
|
|
const (
|
|
inputMargin = 8
|
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
|
)
|
|
if e.allDirty || len(src) > 32<<10 {
|
|
e.fastEncoder.Encode(blk, src)
|
|
e.allDirty = true
|
|
return
|
|
}
|
|
// Protect against e.cur wraparound.
|
|
for e.cur >= e.bufferReset-int32(len(e.hist)) {
|
|
if len(e.hist) == 0 {
|
|
e.table = [tableSize]tableEntry{}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
// Shift down everything in the table that isn't already too far away.
|
|
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
|
|
for i := range e.table[:] {
|
|
v := e.table[i].offset
|
|
if v < minOff {
|
|
v = 0
|
|
} else {
|
|
v = v - e.cur + e.maxMatchOff
|
|
}
|
|
e.table[i].offset = v
|
|
}
|
|
e.cur = e.maxMatchOff
|
|
break
|
|
}
|
|
|
|
s := e.addBlock(src)
|
|
blk.size = len(src)
|
|
if len(src) < minNonLiteralBlockSize {
|
|
blk.extraLits = len(src)
|
|
blk.literals = blk.literals[:len(src)]
|
|
copy(blk.literals, src)
|
|
return
|
|
}
|
|
|
|
// Override src
|
|
src = e.hist
|
|
sLimit := int32(len(src)) - inputMargin
|
|
// stepSize is the number of bytes to skip on every main loop iteration.
|
|
// It should be >= 2.
|
|
const stepSize = 2
|
|
|
|
// TEMPLATE
|
|
const hashLog = tableBits
|
|
// seems global, but would be nice to tweak.
|
|
const kSearchStrength = 7
|
|
|
|
// nextEmit is where in src the next emitLiteral should start from.
|
|
nextEmit := s
|
|
cv := load6432(src, s)
|
|
|
|
// Relative offsets
|
|
offset1 := int32(blk.recentOffsets[0])
|
|
offset2 := int32(blk.recentOffsets[1])
|
|
|
|
addLiterals := func(s *seq, until int32) {
|
|
if until == nextEmit {
|
|
return
|
|
}
|
|
blk.literals = append(blk.literals, src[nextEmit:until]...)
|
|
s.litLen = uint32(until - nextEmit)
|
|
}
|
|
if debugEncoder {
|
|
println("recent offsets:", blk.recentOffsets)
|
|
}
|
|
|
|
encodeLoop:
|
|
for {
|
|
// t will contain the match offset when we find one.
|
|
// When existing the search loop, we have already checked 4 bytes.
|
|
var t int32
|
|
|
|
// We will not use repeat offsets across blocks.
|
|
// By not using them for the first 3 matches
|
|
canRepeat := len(blk.sequences) > 2
|
|
|
|
for {
|
|
if debugAsserts && canRepeat && offset1 == 0 {
|
|
panic("offset0 was 0")
|
|
}
|
|
|
|
nextHash := hashLen(cv, hashLog, tableFastHashLen)
|
|
nextHash2 := hashLen(cv>>8, hashLog, tableFastHashLen)
|
|
candidate := e.table[nextHash]
|
|
candidate2 := e.table[nextHash2]
|
|
repIndex := s - offset1 + 2
|
|
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.markShardDirty(nextHash)
|
|
e.table[nextHash2] = tableEntry{offset: s + e.cur + 1, val: uint32(cv >> 8)}
|
|
e.markShardDirty(nextHash2)
|
|
|
|
if canRepeat && repIndex >= 0 && load3232(src, repIndex) == uint32(cv>>16) {
|
|
// Consider history as well.
|
|
var seq seq
|
|
var length int32
|
|
length = 4 + e.matchlen(s+6, repIndex+4, src)
|
|
|
|
seq.matchLen = uint32(length - zstdMinMatch)
|
|
|
|
// We might be able to match backwards.
|
|
// Extend as long as we can.
|
|
start := s + 2
|
|
// We end the search early, so we don't risk 0 literals
|
|
// and have to do special offset treatment.
|
|
startLimit := nextEmit + 1
|
|
|
|
sMin := s - e.maxMatchOff
|
|
if sMin < 0 {
|
|
sMin = 0
|
|
}
|
|
for repIndex > sMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch {
|
|
repIndex--
|
|
start--
|
|
seq.matchLen++
|
|
}
|
|
addLiterals(&seq, start)
|
|
|
|
// rep 0
|
|
seq.offset = 1
|
|
if debugSequences {
|
|
println("repeat sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
s += length + 2
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
if debugEncoder {
|
|
println("repeat ended", s, length)
|
|
|
|
}
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
continue
|
|
}
|
|
coffset0 := s - (candidate.offset - e.cur)
|
|
coffset1 := s - (candidate2.offset - e.cur) + 1
|
|
if coffset0 < e.maxMatchOff && uint32(cv) == candidate.val {
|
|
// found a regular match
|
|
t = candidate.offset - e.cur
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
break
|
|
}
|
|
|
|
if coffset1 < e.maxMatchOff && uint32(cv>>8) == candidate2.val {
|
|
// found a regular match
|
|
t = candidate2.offset - e.cur
|
|
s++
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
if debugAsserts && s-t > e.maxMatchOff {
|
|
panic("s - t >e.maxMatchOff")
|
|
}
|
|
if debugAsserts && t < 0 {
|
|
panic("t<0")
|
|
}
|
|
break
|
|
}
|
|
s += stepSize + ((s - nextEmit) >> (kSearchStrength - 1))
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
}
|
|
// A 4-byte match has been found. We'll later see if more than 4 bytes.
|
|
offset2 = offset1
|
|
offset1 = s - t
|
|
|
|
if debugAsserts && s <= t {
|
|
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
|
|
}
|
|
|
|
if debugAsserts && canRepeat && int(offset1) > len(src) {
|
|
panic("invalid offset")
|
|
}
|
|
|
|
// Extend the 4-byte match as long as possible.
|
|
l := e.matchlen(s+4, t+4, src) + 4
|
|
|
|
// Extend backwards
|
|
tMin := s - e.maxMatchOff
|
|
if tMin < 0 {
|
|
tMin = 0
|
|
}
|
|
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
|
|
s--
|
|
t--
|
|
l++
|
|
}
|
|
|
|
// Write our sequence.
|
|
var seq seq
|
|
seq.litLen = uint32(s - nextEmit)
|
|
seq.matchLen = uint32(l - zstdMinMatch)
|
|
if seq.litLen > 0 {
|
|
blk.literals = append(blk.literals, src[nextEmit:s]...)
|
|
}
|
|
// Don't use repeat offsets
|
|
seq.offset = uint32(s-t) + 3
|
|
s += l
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
nextEmit = s
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
cv = load6432(src, s)
|
|
|
|
// Check offset 2
|
|
if o2 := s - offset2; canRepeat && load3232(src, o2) == uint32(cv) {
|
|
// We have at least 4 byte match.
|
|
// No need to check backwards. We come straight from a match
|
|
l := 4 + e.matchlen(s+4, o2+4, src)
|
|
|
|
// Store this, since we have it.
|
|
nextHash := hashLen(cv, hashLog, tableFastHashLen)
|
|
e.table[nextHash] = tableEntry{offset: s + e.cur, val: uint32(cv)}
|
|
e.markShardDirty(nextHash)
|
|
seq.matchLen = uint32(l) - zstdMinMatch
|
|
seq.litLen = 0
|
|
// Since litlen is always 0, this is offset 1.
|
|
seq.offset = 1
|
|
s += l
|
|
nextEmit = s
|
|
if debugSequences {
|
|
println("sequence", seq, "next s:", s)
|
|
}
|
|
blk.sequences = append(blk.sequences, seq)
|
|
|
|
// Swap offset 1 and 2.
|
|
offset1, offset2 = offset2, offset1
|
|
if s >= sLimit {
|
|
break encodeLoop
|
|
}
|
|
// Prepare next loop.
|
|
cv = load6432(src, s)
|
|
}
|
|
}
|
|
|
|
if int(nextEmit) < len(src) {
|
|
blk.literals = append(blk.literals, src[nextEmit:]...)
|
|
blk.extraLits = len(src) - int(nextEmit)
|
|
}
|
|
blk.recentOffsets[0] = uint32(offset1)
|
|
blk.recentOffsets[1] = uint32(offset2)
|
|
if debugEncoder {
|
|
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
|
|
}
|
|
}
|
|
|
|
// ResetDict will reset and set a dictionary if not nil
|
|
func (e *fastEncoder) Reset(d *dict, singleBlock bool) {
|
|
e.resetBase(d, singleBlock)
|
|
if d != nil {
|
|
panic("fastEncoder: Reset with dict")
|
|
}
|
|
}
|
|
|
|
// ResetDict will reset and set a dictionary if not nil
|
|
func (e *fastEncoderDict) Reset(d *dict, singleBlock bool) {
|
|
e.resetBase(d, singleBlock)
|
|
if d == nil {
|
|
return
|
|
}
|
|
|
|
// Init or copy dict table
|
|
if len(e.dictTable) != len(e.table) || d.id != e.lastDictID {
|
|
if len(e.dictTable) != len(e.table) {
|
|
e.dictTable = make([]tableEntry, len(e.table))
|
|
}
|
|
if true {
|
|
end := e.maxMatchOff + int32(len(d.content)) - 8
|
|
for i := e.maxMatchOff; i < end; i += 3 {
|
|
const hashLog = tableBits
|
|
|
|
cv := load6432(d.content, i-e.maxMatchOff)
|
|
nextHash := hashLen(cv, hashLog, tableFastHashLen) // 0 -> 5
|
|
nextHash1 := hashLen(cv>>8, hashLog, tableFastHashLen) // 1 -> 6
|
|
nextHash2 := hashLen(cv>>16, hashLog, tableFastHashLen) // 2 -> 7
|
|
e.dictTable[nextHash] = tableEntry{
|
|
val: uint32(cv),
|
|
offset: i,
|
|
}
|
|
e.dictTable[nextHash1] = tableEntry{
|
|
val: uint32(cv >> 8),
|
|
offset: i + 1,
|
|
}
|
|
e.dictTable[nextHash2] = tableEntry{
|
|
val: uint32(cv >> 16),
|
|
offset: i + 2,
|
|
}
|
|
}
|
|
}
|
|
e.lastDictID = d.id
|
|
e.allDirty = true
|
|
}
|
|
|
|
e.cur = e.maxMatchOff
|
|
dirtyShardCnt := 0
|
|
if !e.allDirty {
|
|
for i := range e.tableShardDirty {
|
|
if e.tableShardDirty[i] {
|
|
dirtyShardCnt++
|
|
}
|
|
}
|
|
}
|
|
|
|
const shardCnt = tableShardCnt
|
|
const shardSize = tableShardSize
|
|
if e.allDirty || dirtyShardCnt > shardCnt*4/6 {
|
|
//copy(e.table[:], e.dictTable)
|
|
e.table = *(*[tableSize]tableEntry)(e.dictTable)
|
|
for i := range e.tableShardDirty {
|
|
e.tableShardDirty[i] = false
|
|
}
|
|
e.allDirty = false
|
|
return
|
|
}
|
|
for i := range e.tableShardDirty {
|
|
if !e.tableShardDirty[i] {
|
|
continue
|
|
}
|
|
|
|
//copy(e.table[i*shardSize:(i+1)*shardSize], e.dictTable[i*shardSize:(i+1)*shardSize])
|
|
*(*[shardSize]tableEntry)(e.table[i*shardSize:]) = *(*[shardSize]tableEntry)(e.dictTable[i*shardSize:])
|
|
e.tableShardDirty[i] = false
|
|
}
|
|
e.allDirty = false
|
|
}
|
|
|
|
func (e *fastEncoderDict) markAllShardsDirty() {
|
|
e.allDirty = true
|
|
}
|
|
|
|
func (e *fastEncoderDict) markShardDirty(entryNum uint32) {
|
|
e.tableShardDirty[entryNum/tableShardSize] = true
|
|
}
|