matterbridge/vendor/github.com/lrstanley/girc/conn.go
Wim 2f33fe86f5
Update dependencies and build to go1.22 (#2113)
* Update dependencies and build to go1.22

* Fix api changes wrt to dependencies

* Update golangci config
2024-05-23 23:44:31 +02:00

651 lines
16 KiB
Go

// Copyright (c) Liam Stanley <me@liamstanley.io>. All rights reserved. Use
// of this source code is governed by the MIT license that can be found in
// the LICENSE file.
package girc
import (
"bufio"
"context"
"crypto/tls"
"fmt"
"net"
"sync"
"time"
"github.com/lrstanley/girc/internal/ctxgroup"
)
// Messages are delimited with CR and LF line endings, we're using the last
// one to split the stream. Both are removed during parsing of the message.
const delim byte = '\n'
var endline = []byte("\r\n")
// ircConn represents an IRC network protocol connection, it consists of an
// Encoder and Decoder to manage i/o.
type ircConn struct {
io *bufio.ReadWriter
sock net.Conn
mu sync.RWMutex
// lastWrite is used to keep track of when we last wrote to the server.
lastWrite time.Time
// lastActive is the last time the client was interacting with the server,
// excluding a few background commands (PING, PONG, WHO, etc).
lastActive time.Time
// writeDelay is used to keep track of rate limiting of events sent to
// the server.
writeDelay time.Duration
// connected is true if we're actively connected to a server.
connected bool
// connTime is the time at which the client has connected to a server.
connTime *time.Time
// lastPing is the last time that we pinged the server.
lastPing time.Time
// lastPong is the last successful time that we pinged the server and
// received a successful pong back.
lastPong time.Time
}
// Dialer is an interface implementation of net.Dialer. Use this if you would
// like to implement your own dialer which the client will use when connecting.
type Dialer interface {
// Dial takes two arguments. Network, which should be similar to "tcp",
// "tdp6", "udp", etc -- as well as address, which is the hostname or ip
// of the network. Note that network can be ignored if your transport
// doesn't take advantage of network types.
Dial(network, address string) (net.Conn, error)
}
// newConn sets up and returns a new connection to the server.
func newConn(conf Config, dialer Dialer, addr string, sts *strictTransport) (*ircConn, error) {
if err := conf.isValid(); err != nil {
return nil, err
}
var conn net.Conn
var err error
if dialer == nil {
netDialer := &net.Dialer{Timeout: 5 * time.Second}
if conf.Bind != "" {
var local *net.TCPAddr
local, err = net.ResolveTCPAddr("tcp", conf.Bind+":0")
if err != nil {
return nil, err
}
netDialer.LocalAddr = local
}
dialer = netDialer
}
if conn, err = dialer.Dial("tcp", addr); err != nil {
if sts.enabled() {
err = &ErrSTSUpgradeFailed{Err: err}
}
if sts.expired() && !conf.DisableSTSFallback {
sts.lastFailed = time.Now()
sts.reset()
}
return nil, err
}
if conf.SSL || sts.enabled() {
var tlsConn net.Conn
tlsConn, err = tlsHandshake(conn, conf.TLSConfig, conf.Server, true)
if err != nil {
if sts.enabled() {
err = &ErrSTSUpgradeFailed{Err: err}
}
if sts.expired() && !conf.DisableSTSFallback {
sts.lastFailed = time.Now()
sts.reset()
}
return nil, err
}
conn = tlsConn
}
ctime := time.Now()
c := &ircConn{
sock: conn,
connTime: &ctime,
connected: true,
}
c.newReadWriter()
return c, nil
}
func newMockConn(conn net.Conn) *ircConn {
ctime := time.Now()
c := &ircConn{
sock: conn,
connTime: &ctime,
connected: true,
}
c.newReadWriter()
return c
}
// ErrParseEvent is returned when an event cannot be parsed with ParseEvent().
type ErrParseEvent struct {
Line string
}
func (e ErrParseEvent) Error() string { return "unable to parse event: " + e.Line }
type decodedEvent struct {
event *Event
err error
}
func (c *ircConn) decode() <-chan decodedEvent {
ch := make(chan decodedEvent, 1)
go func() {
defer close(ch)
line, err := c.io.ReadString(delim)
if err != nil {
ch <- decodedEvent{err: err}
return
}
event := ParseEvent(line)
if event == nil {
ch <- decodedEvent{err: ErrParseEvent{Line: line}}
return
}
ch <- decodedEvent{event: event}
}()
return ch
}
func (c *ircConn) encode(event *Event) error {
if _, err := c.io.Write(event.Bytes()); err != nil {
return err
}
if _, err := c.io.Write(endline); err != nil {
return err
}
return c.io.Flush()
}
func (c *ircConn) newReadWriter() {
c.io = bufio.NewReadWriter(bufio.NewReader(c.sock), bufio.NewWriter(c.sock))
}
func tlsHandshake(conn net.Conn, conf *tls.Config, server string, validate bool) (net.Conn, error) {
if conf == nil {
conf = &tls.Config{ServerName: server, InsecureSkipVerify: !validate}
}
tlsConn := tls.Client(conn, conf)
return net.Conn(tlsConn), nil
}
// Close closes the underlying socket.
func (c *ircConn) Close() error {
return c.sock.Close()
}
// Connect attempts to connect to the given IRC server. Returns only when
// an error has occurred, or a disconnect was requested with Close(). Connect
// will only return once all client-based goroutines have been closed to
// ensure there are no long-running routines becoming backed up.
//
// Connect will wait for all non-goroutine handlers to complete on error/quit,
// however it will not wait for goroutine-based handlers.
//
// If this returns nil, this means that the client requested to be closed
// (e.g. Client.Close()). Connect will panic if called when the last call has
// not completed.
func (c *Client) Connect() error {
return c.internalConnect(nil, nil)
}
// DialerConnect allows you to specify your own custom dialer which implements
// the Dialer interface.
//
// An example of using this library would be to take advantage of the
// golang.org/x/net/proxy library:
//
// proxyUrl, _ := proxyURI, err = url.Parse("socks5://1.2.3.4:8888")
// dialer, _ := proxy.FromURL(proxyURI, &net.Dialer{Timeout: 5 * time.Second})
// _ := girc.DialerConnect(dialer)
func (c *Client) DialerConnect(dialer Dialer) error {
return c.internalConnect(nil, dialer)
}
// MockConnect is used to implement mocking with an IRC server. Supply a net.Conn
// that will be used to spoof the server. A useful way to do this is to so
// net.Pipe(), pass one end into MockConnect(), and the other end into
// bufio.NewReader().
//
// For example:
//
// client := girc.New(girc.Config{
// Server: "dummy.int",
// Port: 6667,
// Nick: "test",
// User: "test",
// Name: "Testing123",
// })
//
// in, out := net.Pipe()
// defer in.Close()
// defer out.Close()
// b := bufio.NewReader(in)
//
// go func() {
// if err := client.MockConnect(out); err != nil {
// panic(err)
// }
// }()
//
// defer client.Close(false)
//
// for {
// in.SetReadDeadline(time.Now().Add(300 * time.Second))
// line, err := b.ReadString(byte('\n'))
// if err != nil {
// panic(err)
// }
//
// event := girc.ParseEvent(line)
//
// if event == nil {
// continue
// }
//
// // Do stuff with event here.
// }
func (c *Client) MockConnect(conn net.Conn) error {
return c.internalConnect(conn, nil)
}
func (c *Client) internalConnect(mock net.Conn, dialer Dialer) error {
startConn:
// We want to be the only one handling connects/disconnects right now.
c.mu.Lock()
if c.conn != nil {
panic("use of connect more than once")
}
// Reset the state.
c.state.reset(false)
addr := c.server()
if mock == nil {
// Validate info, and actually make the connection.
c.debug.Printf("connecting to %s... (sts: %v, config-ssl: %v)", addr, c.state.sts.enabled(), c.Config.SSL)
conn, err := newConn(c.Config, dialer, addr, &c.state.sts)
if err != nil {
if _, ok := err.(*ErrSTSUpgradeFailed); ok {
if !c.state.sts.enabled() {
c.RunHandlers(&Event{Command: STS_ERR_FALLBACK})
}
}
c.mu.Unlock()
return err
}
c.conn = conn
} else {
c.conn = newMockConn(mock)
}
c.mu.Unlock()
var ctx context.Context
ctx, c.stop = context.WithCancel(context.Background())
group := ctxgroup.New(ctx)
group.Go(c.execLoop)
group.Go(c.readLoop)
group.Go(c.sendLoop)
group.Go(c.pingLoop)
// Passwords first.
if c.Config.WebIRC.Password != "" {
c.write(&Event{Command: WEBIRC, Params: c.Config.WebIRC.Params(), Sensitive: true})
}
if c.Config.ServerPass != "" {
c.write(&Event{Command: PASS, Params: []string{c.Config.ServerPass}, Sensitive: true})
}
// List the IRCv3 capabilities, specifically with the max protocol we
// support. The IRCv3 specification doesn't directly state if this should
// be called directly before registration, or if it should be called
// after NICK/USER requests. It looks like non-supporting networks
// should ignore this, and some IRCv3 capable networks require this to
// occur before NICK/USER registration.
c.listCAP()
// Then nickname.
c.write(&Event{Command: NICK, Params: []string{c.Config.Nick}})
// Then username and realname.
if c.Config.Name == "" {
c.Config.Name = c.Config.User
}
c.write(&Event{Command: USER, Params: []string{c.Config.User, "*", "*", c.Config.Name}})
// Send a virtual event allowing hooks for successful socket connection.
c.RunHandlers(&Event{Command: INITIALIZED, Params: []string{addr}})
// Wait for the first error.
err := group.Wait()
if err != nil {
c.debug.Printf("received error, beginning cleanup: %v", err)
} else {
if !c.state.sts.beginUpgrade {
c.debug.Print("received request to close, beginning clean up")
}
c.RunHandlers(&Event{Command: CLOSED, Params: []string{addr}})
}
// Make sure that the connection is closed if not already.
c.mu.RLock()
if c.stop != nil {
c.stop()
}
c.conn.mu.Lock()
c.conn.connected = false
_ = c.conn.Close()
c.conn.mu.Unlock()
c.mu.RUnlock()
c.RunHandlers(&Event{Command: DISCONNECTED, Params: []string{addr}})
// This helps ensure that the end user isn't improperly using the client
// more than once. If they want to do this, they should be using multiple
// clients, not multiple instances of Connect().
c.mu.Lock()
c.conn = nil
if err == nil {
if c.state.sts.beginUpgrade {
c.state.sts.beginUpgrade = false
c.mu.Unlock()
goto startConn
}
if c.state.sts.enabled() {
c.state.sts.persistenceReceived = time.Now()
}
}
c.mu.Unlock()
return err
}
// readLoop sets a timeout of 300 seconds, and then attempts to read from the
// IRC server. If there is an error, it calls Reconnect.
func (c *Client) readLoop(ctx context.Context) error {
c.debug.Print("starting readLoop")
defer c.debug.Print("closing readLoop")
var de decodedEvent
for {
select {
case <-ctx.Done():
return nil
default:
_ = c.conn.sock.SetReadDeadline(time.Now().Add(300 * time.Second))
select {
case <-ctx.Done():
return nil
case de = <-c.conn.decode():
}
if de.err != nil {
return de.err
}
// Check if it's an echo-message.
if !c.Config.disableTracking {
de.event.Echo = (de.event.Command == PRIVMSG || de.event.Command == NOTICE) &&
de.event.Source != nil && de.event.Source.ID() == c.GetID()
}
c.receive(de.event)
}
}
}
// Send sends an event to the server. Send will split events if the event is longer
// than what the server supports, and is an event that supports splitting. Use
// Client.RunHandlers() if you are simply looking to trigger handlers with an event.
func (c *Client) Send(event *Event) {
var delay time.Duration
if c.Config.GlobalFormat && len(event.Params) > 0 && event.Params[len(event.Params)-1] != "" &&
(event.Command == PRIVMSG || event.Command == TOPIC || event.Command == NOTICE) {
event.Params[len(event.Params)-1] = Fmt(event.Params[len(event.Params)-1])
}
var events []*Event
events = event.split(c.MaxEventLength())
for _, e := range events {
if !c.Config.AllowFlood {
c.mu.RLock()
// Drop the event early as we're disconnected, this way we don't have to wait
// the (potentially long) rate limit delay before dropping.
if c.conn == nil {
c.debugLogEvent(e, true)
c.mu.RUnlock()
return
}
c.conn.mu.Lock()
delay = c.conn.rate(e.Len())
c.conn.mu.Unlock()
c.mu.RUnlock()
}
<-time.After(delay)
c.write(e)
}
}
// write is the lower level function to write an event. It does not have a
// write-delay when sending events. write will timeout after 30s if the event
// can't be sent.
func (c *Client) write(event *Event) {
c.mu.RLock()
defer c.mu.RUnlock()
if c.conn == nil {
// Drop the event if disconnected.
c.debugLogEvent(event, true)
return
}
t := time.NewTimer(30 * time.Second)
defer t.Stop()
select {
case c.tx <- event:
case <-t.C:
c.debugLogEvent(event, true)
}
}
// rate allows limiting events based on how frequent the event is being sent,
// as well as how many characters each event has.
func (c *ircConn) rate(chars int) time.Duration {
_time := time.Second + ((time.Duration(chars) * time.Second) / 100)
if c.writeDelay += _time - time.Since(c.lastWrite); c.writeDelay < 0 {
c.writeDelay = 0
}
if c.writeDelay > (8 * time.Second) {
return _time
}
return 0
}
func (c *Client) sendLoop(ctx context.Context) error {
c.debug.Print("starting sendLoop")
defer c.debug.Print("closing sendLoop")
var err error
for {
select {
case event := <-c.tx:
// Check if tags exist on the event. If they do, and message-tags
// isn't a supported capability, remove them from the event.
if event.Tags != nil {
c.state.RLock()
var in bool
for i := 0; i < len(c.state.enabledCap); i++ {
if _, ok := c.state.enabledCap["message-tags"]; ok {
in = true
break
}
}
c.state.RUnlock()
if !in {
event.Tags = Tags{}
}
}
c.debugLogEvent(event, false)
c.conn.mu.Lock()
c.conn.lastWrite = time.Now()
if event.Command != PING && event.Command != PONG && event.Command != WHO {
c.conn.lastActive = c.conn.lastWrite
}
c.conn.mu.Unlock()
// Write the raw line.
_, err = c.conn.io.Write(event.Bytes())
if err == nil {
// And the \r\n.
_, err = c.conn.io.Write(endline)
if err == nil {
// Lastly, flush everything to the socket.
err = c.conn.io.Flush()
}
}
if event.Command == QUIT {
c.Close()
return nil
}
if err != nil {
return err
}
case <-ctx.Done():
return nil
}
}
}
// ErrTimedOut is returned when we attempt to ping the server, and timed out
// before receiving a PONG back.
type ErrTimedOut struct {
// TimeSinceSuccess is how long ago we received a successful pong.
TimeSinceSuccess time.Duration
// LastPong is the time we received our last successful pong.
LastPong time.Time
// LastPong is the last time we sent a pong request.
LastPing time.Time
// Delay is the configured delay between how often we send a ping request.
Delay time.Duration
}
func (ErrTimedOut) Error() string { return "timed out waiting for a requested PING response" }
func (c *Client) pingLoop(ctx context.Context) error {
// Don't run the pingLoop if they want to disable it.
if c.Config.PingDelay <= 0 {
return nil
}
c.debug.Print("starting pingLoop")
defer c.debug.Print("closing pingLoop")
c.conn.mu.Lock()
c.conn.lastPing = time.Now()
c.conn.lastPong = time.Now()
c.conn.mu.Unlock()
tick := time.NewTicker(c.Config.PingDelay)
defer tick.Stop()
started := time.Now()
past := false
pingSent := false
for {
select {
case <-tick.C:
// Delay during connect to wait for the client to register, otherwise
// some ircd's will not respond (e.g. during SASL negotiation).
if !past {
if time.Since(started) < 30*time.Second {
continue
}
past = true
}
c.conn.mu.RLock()
if pingSent && time.Since(c.conn.lastPong) > c.Config.PingDelay+c.Config.PingTimeout {
// PingTimeout exceeded, connection has probably dropped.
err := ErrTimedOut{
TimeSinceSuccess: time.Since(c.conn.lastPong),
LastPong: c.conn.lastPong,
LastPing: c.conn.lastPing,
Delay: c.Config.PingDelay,
}
c.conn.mu.RUnlock()
return err
}
c.conn.mu.RUnlock()
c.conn.mu.Lock()
c.conn.lastPing = time.Now()
c.conn.mu.Unlock()
c.Cmd.Ping(fmt.Sprintf("%d", time.Now().UnixNano()))
pingSent = true
case <-ctx.Done():
return nil
}
}
}