forked from lug/matterbridge
		
	Update vendor
This commit is contained in:
		
							
								
								
									
										7
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/README
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/README
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,7 @@ | ||||
| This package is kept in sync with crypto/ed25519/internal/edwards25519/field in | ||||
| the standard library. | ||||
|  | ||||
| If there are any changes in the standard library that need to be synced to this | ||||
| package, run sync.sh. It will not overwrite any local changes made since the | ||||
| previous sync, so it's ok to land changes in this package first, and then sync | ||||
| to the standard library later. | ||||
							
								
								
									
										416
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										416
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,416 @@ | ||||
| // Copyright (c) 2017 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| // Package field implements fast arithmetic modulo 2^255-19. | ||||
| package field | ||||
|  | ||||
| import ( | ||||
| 	"crypto/subtle" | ||||
| 	"encoding/binary" | ||||
| 	"math/bits" | ||||
| ) | ||||
|  | ||||
| // Element represents an element of the field GF(2^255-19). Note that this | ||||
| // is not a cryptographically secure group, and should only be used to interact | ||||
| // with edwards25519.Point coordinates. | ||||
| // | ||||
| // This type works similarly to math/big.Int, and all arguments and receivers | ||||
| // are allowed to alias. | ||||
| // | ||||
| // The zero value is a valid zero element. | ||||
| type Element struct { | ||||
| 	// An element t represents the integer | ||||
| 	//     t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204 | ||||
| 	// | ||||
| 	// Between operations, all limbs are expected to be lower than 2^52. | ||||
| 	l0 uint64 | ||||
| 	l1 uint64 | ||||
| 	l2 uint64 | ||||
| 	l3 uint64 | ||||
| 	l4 uint64 | ||||
| } | ||||
|  | ||||
| const maskLow51Bits uint64 = (1 << 51) - 1 | ||||
|  | ||||
| var feZero = &Element{0, 0, 0, 0, 0} | ||||
|  | ||||
| // Zero sets v = 0, and returns v. | ||||
| func (v *Element) Zero() *Element { | ||||
| 	*v = *feZero | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| var feOne = &Element{1, 0, 0, 0, 0} | ||||
|  | ||||
| // One sets v = 1, and returns v. | ||||
| func (v *Element) One() *Element { | ||||
| 	*v = *feOne | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // reduce reduces v modulo 2^255 - 19 and returns it. | ||||
| func (v *Element) reduce() *Element { | ||||
| 	v.carryPropagate() | ||||
|  | ||||
| 	// After the light reduction we now have a field element representation | ||||
| 	// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19. | ||||
|  | ||||
| 	// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1, | ||||
| 	// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise. | ||||
| 	c := (v.l0 + 19) >> 51 | ||||
| 	c = (v.l1 + c) >> 51 | ||||
| 	c = (v.l2 + c) >> 51 | ||||
| 	c = (v.l3 + c) >> 51 | ||||
| 	c = (v.l4 + c) >> 51 | ||||
|  | ||||
| 	// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's | ||||
| 	// effectively applying the reduction identity to the carry. | ||||
| 	v.l0 += 19 * c | ||||
|  | ||||
| 	v.l1 += v.l0 >> 51 | ||||
| 	v.l0 = v.l0 & maskLow51Bits | ||||
| 	v.l2 += v.l1 >> 51 | ||||
| 	v.l1 = v.l1 & maskLow51Bits | ||||
| 	v.l3 += v.l2 >> 51 | ||||
| 	v.l2 = v.l2 & maskLow51Bits | ||||
| 	v.l4 += v.l3 >> 51 | ||||
| 	v.l3 = v.l3 & maskLow51Bits | ||||
| 	// no additional carry | ||||
| 	v.l4 = v.l4 & maskLow51Bits | ||||
|  | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // Add sets v = a + b, and returns v. | ||||
| func (v *Element) Add(a, b *Element) *Element { | ||||
| 	v.l0 = a.l0 + b.l0 | ||||
| 	v.l1 = a.l1 + b.l1 | ||||
| 	v.l2 = a.l2 + b.l2 | ||||
| 	v.l3 = a.l3 + b.l3 | ||||
| 	v.l4 = a.l4 + b.l4 | ||||
| 	// Using the generic implementation here is actually faster than the | ||||
| 	// assembly. Probably because the body of this function is so simple that | ||||
| 	// the compiler can figure out better optimizations by inlining the carry | ||||
| 	// propagation. TODO | ||||
| 	return v.carryPropagateGeneric() | ||||
| } | ||||
|  | ||||
| // Subtract sets v = a - b, and returns v. | ||||
| func (v *Element) Subtract(a, b *Element) *Element { | ||||
| 	// We first add 2 * p, to guarantee the subtraction won't underflow, and | ||||
| 	// then subtract b (which can be up to 2^255 + 2^13 * 19). | ||||
| 	v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0 | ||||
| 	v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1 | ||||
| 	v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2 | ||||
| 	v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3 | ||||
| 	v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4 | ||||
| 	return v.carryPropagate() | ||||
| } | ||||
|  | ||||
| // Negate sets v = -a, and returns v. | ||||
| func (v *Element) Negate(a *Element) *Element { | ||||
| 	return v.Subtract(feZero, a) | ||||
| } | ||||
|  | ||||
| // Invert sets v = 1/z mod p, and returns v. | ||||
| // | ||||
| // If z == 0, Invert returns v = 0. | ||||
| func (v *Element) Invert(z *Element) *Element { | ||||
| 	// Inversion is implemented as exponentiation with exponent p − 2. It uses the | ||||
| 	// same sequence of 255 squarings and 11 multiplications as [Curve25519]. | ||||
| 	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element | ||||
|  | ||||
| 	z2.Square(z)             // 2 | ||||
| 	t.Square(&z2)            // 4 | ||||
| 	t.Square(&t)             // 8 | ||||
| 	z9.Multiply(&t, z)       // 9 | ||||
| 	z11.Multiply(&z9, &z2)   // 11 | ||||
| 	t.Square(&z11)           // 22 | ||||
| 	z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0 | ||||
|  | ||||
| 	t.Square(&z2_5_0) // 2^6 - 2^1 | ||||
| 	for i := 0; i < 4; i++ { | ||||
| 		t.Square(&t) // 2^10 - 2^5 | ||||
| 	} | ||||
| 	z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0 | ||||
|  | ||||
| 	t.Square(&z2_10_0) // 2^11 - 2^1 | ||||
| 	for i := 0; i < 9; i++ { | ||||
| 		t.Square(&t) // 2^20 - 2^10 | ||||
| 	} | ||||
| 	z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0 | ||||
|  | ||||
| 	t.Square(&z2_20_0) // 2^21 - 2^1 | ||||
| 	for i := 0; i < 19; i++ { | ||||
| 		t.Square(&t) // 2^40 - 2^20 | ||||
| 	} | ||||
| 	t.Multiply(&t, &z2_20_0) // 2^40 - 2^0 | ||||
|  | ||||
| 	t.Square(&t) // 2^41 - 2^1 | ||||
| 	for i := 0; i < 9; i++ { | ||||
| 		t.Square(&t) // 2^50 - 2^10 | ||||
| 	} | ||||
| 	z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0 | ||||
|  | ||||
| 	t.Square(&z2_50_0) // 2^51 - 2^1 | ||||
| 	for i := 0; i < 49; i++ { | ||||
| 		t.Square(&t) // 2^100 - 2^50 | ||||
| 	} | ||||
| 	z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0 | ||||
|  | ||||
| 	t.Square(&z2_100_0) // 2^101 - 2^1 | ||||
| 	for i := 0; i < 99; i++ { | ||||
| 		t.Square(&t) // 2^200 - 2^100 | ||||
| 	} | ||||
| 	t.Multiply(&t, &z2_100_0) // 2^200 - 2^0 | ||||
|  | ||||
| 	t.Square(&t) // 2^201 - 2^1 | ||||
| 	for i := 0; i < 49; i++ { | ||||
| 		t.Square(&t) // 2^250 - 2^50 | ||||
| 	} | ||||
| 	t.Multiply(&t, &z2_50_0) // 2^250 - 2^0 | ||||
|  | ||||
| 	t.Square(&t) // 2^251 - 2^1 | ||||
| 	t.Square(&t) // 2^252 - 2^2 | ||||
| 	t.Square(&t) // 2^253 - 2^3 | ||||
| 	t.Square(&t) // 2^254 - 2^4 | ||||
| 	t.Square(&t) // 2^255 - 2^5 | ||||
|  | ||||
| 	return v.Multiply(&t, &z11) // 2^255 - 21 | ||||
| } | ||||
|  | ||||
| // Set sets v = a, and returns v. | ||||
| func (v *Element) Set(a *Element) *Element { | ||||
| 	*v = *a | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // SetBytes sets v to x, which must be a 32-byte little-endian encoding. | ||||
| // | ||||
| // Consistent with RFC 7748, the most significant bit (the high bit of the | ||||
| // last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1) | ||||
| // are accepted. Note that this is laxer than specified by RFC 8032. | ||||
| func (v *Element) SetBytes(x []byte) *Element { | ||||
| 	if len(x) != 32 { | ||||
| 		panic("edwards25519: invalid field element input size") | ||||
| 	} | ||||
|  | ||||
| 	// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51). | ||||
| 	v.l0 = binary.LittleEndian.Uint64(x[0:8]) | ||||
| 	v.l0 &= maskLow51Bits | ||||
| 	// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51). | ||||
| 	v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3 | ||||
| 	v.l1 &= maskLow51Bits | ||||
| 	// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51). | ||||
| 	v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6 | ||||
| 	v.l2 &= maskLow51Bits | ||||
| 	// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51). | ||||
| 	v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1 | ||||
| 	v.l3 &= maskLow51Bits | ||||
| 	// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51). | ||||
| 	// Note: not bytes 25:33, shift 4, to avoid overread. | ||||
| 	v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12 | ||||
| 	v.l4 &= maskLow51Bits | ||||
|  | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // Bytes returns the canonical 32-byte little-endian encoding of v. | ||||
| func (v *Element) Bytes() []byte { | ||||
| 	// This function is outlined to make the allocations inline in the caller | ||||
| 	// rather than happen on the heap. | ||||
| 	var out [32]byte | ||||
| 	return v.bytes(&out) | ||||
| } | ||||
|  | ||||
| func (v *Element) bytes(out *[32]byte) []byte { | ||||
| 	t := *v | ||||
| 	t.reduce() | ||||
|  | ||||
| 	var buf [8]byte | ||||
| 	for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} { | ||||
| 		bitsOffset := i * 51 | ||||
| 		binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8)) | ||||
| 		for i, bb := range buf { | ||||
| 			off := bitsOffset/8 + i | ||||
| 			if off >= len(out) { | ||||
| 				break | ||||
| 			} | ||||
| 			out[off] |= bb | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return out[:] | ||||
| } | ||||
|  | ||||
| // Equal returns 1 if v and u are equal, and 0 otherwise. | ||||
| func (v *Element) Equal(u *Element) int { | ||||
| 	sa, sv := u.Bytes(), v.Bytes() | ||||
| 	return subtle.ConstantTimeCompare(sa, sv) | ||||
| } | ||||
|  | ||||
| // mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise. | ||||
| func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) } | ||||
|  | ||||
| // Select sets v to a if cond == 1, and to b if cond == 0. | ||||
| func (v *Element) Select(a, b *Element, cond int) *Element { | ||||
| 	m := mask64Bits(cond) | ||||
| 	v.l0 = (m & a.l0) | (^m & b.l0) | ||||
| 	v.l1 = (m & a.l1) | (^m & b.l1) | ||||
| 	v.l2 = (m & a.l2) | (^m & b.l2) | ||||
| 	v.l3 = (m & a.l3) | (^m & b.l3) | ||||
| 	v.l4 = (m & a.l4) | (^m & b.l4) | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v. | ||||
| func (v *Element) Swap(u *Element, cond int) { | ||||
| 	m := mask64Bits(cond) | ||||
| 	t := m & (v.l0 ^ u.l0) | ||||
| 	v.l0 ^= t | ||||
| 	u.l0 ^= t | ||||
| 	t = m & (v.l1 ^ u.l1) | ||||
| 	v.l1 ^= t | ||||
| 	u.l1 ^= t | ||||
| 	t = m & (v.l2 ^ u.l2) | ||||
| 	v.l2 ^= t | ||||
| 	u.l2 ^= t | ||||
| 	t = m & (v.l3 ^ u.l3) | ||||
| 	v.l3 ^= t | ||||
| 	u.l3 ^= t | ||||
| 	t = m & (v.l4 ^ u.l4) | ||||
| 	v.l4 ^= t | ||||
| 	u.l4 ^= t | ||||
| } | ||||
|  | ||||
| // IsNegative returns 1 if v is negative, and 0 otherwise. | ||||
| func (v *Element) IsNegative() int { | ||||
| 	return int(v.Bytes()[0] & 1) | ||||
| } | ||||
|  | ||||
| // Absolute sets v to |u|, and returns v. | ||||
| func (v *Element) Absolute(u *Element) *Element { | ||||
| 	return v.Select(new(Element).Negate(u), u, u.IsNegative()) | ||||
| } | ||||
|  | ||||
| // Multiply sets v = x * y, and returns v. | ||||
| func (v *Element) Multiply(x, y *Element) *Element { | ||||
| 	feMul(v, x, y) | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // Square sets v = x * x, and returns v. | ||||
| func (v *Element) Square(x *Element) *Element { | ||||
| 	feSquare(v, x) | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // Mult32 sets v = x * y, and returns v. | ||||
| func (v *Element) Mult32(x *Element, y uint32) *Element { | ||||
| 	x0lo, x0hi := mul51(x.l0, y) | ||||
| 	x1lo, x1hi := mul51(x.l1, y) | ||||
| 	x2lo, x2hi := mul51(x.l2, y) | ||||
| 	x3lo, x3hi := mul51(x.l3, y) | ||||
| 	x4lo, x4hi := mul51(x.l4, y) | ||||
| 	v.l0 = x0lo + 19*x4hi // carried over per the reduction identity | ||||
| 	v.l1 = x1lo + x0hi | ||||
| 	v.l2 = x2lo + x1hi | ||||
| 	v.l3 = x3lo + x2hi | ||||
| 	v.l4 = x4lo + x3hi | ||||
| 	// The hi portions are going to be only 32 bits, plus any previous excess, | ||||
| 	// so we can skip the carry propagation. | ||||
| 	return v | ||||
| } | ||||
|  | ||||
| // mul51 returns lo + hi * 2⁵¹ = a * b. | ||||
| func mul51(a uint64, b uint32) (lo uint64, hi uint64) { | ||||
| 	mh, ml := bits.Mul64(a, uint64(b)) | ||||
| 	lo = ml & maskLow51Bits | ||||
| 	hi = (mh << 13) | (ml >> 51) | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3. | ||||
| func (v *Element) Pow22523(x *Element) *Element { | ||||
| 	var t0, t1, t2 Element | ||||
|  | ||||
| 	t0.Square(x)             // x^2 | ||||
| 	t1.Square(&t0)           // x^4 | ||||
| 	t1.Square(&t1)           // x^8 | ||||
| 	t1.Multiply(x, &t1)      // x^9 | ||||
| 	t0.Multiply(&t0, &t1)    // x^11 | ||||
| 	t0.Square(&t0)           // x^22 | ||||
| 	t0.Multiply(&t1, &t0)    // x^31 | ||||
| 	t1.Square(&t0)           // x^62 | ||||
| 	for i := 1; i < 5; i++ { // x^992 | ||||
| 		t1.Square(&t1) | ||||
| 	} | ||||
| 	t0.Multiply(&t1, &t0)     // x^1023 -> 1023 = 2^10 - 1 | ||||
| 	t1.Square(&t0)            // 2^11 - 2 | ||||
| 	for i := 1; i < 10; i++ { // 2^20 - 2^10 | ||||
| 		t1.Square(&t1) | ||||
| 	} | ||||
| 	t1.Multiply(&t1, &t0)     // 2^20 - 1 | ||||
| 	t2.Square(&t1)            // 2^21 - 2 | ||||
| 	for i := 1; i < 20; i++ { // 2^40 - 2^20 | ||||
| 		t2.Square(&t2) | ||||
| 	} | ||||
| 	t1.Multiply(&t2, &t1)     // 2^40 - 1 | ||||
| 	t1.Square(&t1)            // 2^41 - 2 | ||||
| 	for i := 1; i < 10; i++ { // 2^50 - 2^10 | ||||
| 		t1.Square(&t1) | ||||
| 	} | ||||
| 	t0.Multiply(&t1, &t0)     // 2^50 - 1 | ||||
| 	t1.Square(&t0)            // 2^51 - 2 | ||||
| 	for i := 1; i < 50; i++ { // 2^100 - 2^50 | ||||
| 		t1.Square(&t1) | ||||
| 	} | ||||
| 	t1.Multiply(&t1, &t0)      // 2^100 - 1 | ||||
| 	t2.Square(&t1)             // 2^101 - 2 | ||||
| 	for i := 1; i < 100; i++ { // 2^200 - 2^100 | ||||
| 		t2.Square(&t2) | ||||
| 	} | ||||
| 	t1.Multiply(&t2, &t1)     // 2^200 - 1 | ||||
| 	t1.Square(&t1)            // 2^201 - 2 | ||||
| 	for i := 1; i < 50; i++ { // 2^250 - 2^50 | ||||
| 		t1.Square(&t1) | ||||
| 	} | ||||
| 	t0.Multiply(&t1, &t0)     // 2^250 - 1 | ||||
| 	t0.Square(&t0)            // 2^251 - 2 | ||||
| 	t0.Square(&t0)            // 2^252 - 4 | ||||
| 	return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3) | ||||
| } | ||||
|  | ||||
| // sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion. | ||||
| var sqrtM1 = &Element{1718705420411056, 234908883556509, | ||||
| 	2233514472574048, 2117202627021982, 765476049583133} | ||||
|  | ||||
| // SqrtRatio sets r to the non-negative square root of the ratio of u and v. | ||||
| // | ||||
| // If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio | ||||
| // sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00, | ||||
| // and returns r and 0. | ||||
| func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) { | ||||
| 	var a, b Element | ||||
|  | ||||
| 	// r = (u * v3) * (u * v7)^((p-5)/8) | ||||
| 	v2 := a.Square(v) | ||||
| 	uv3 := b.Multiply(u, b.Multiply(v2, v)) | ||||
| 	uv7 := a.Multiply(uv3, a.Square(v2)) | ||||
| 	r.Multiply(uv3, r.Pow22523(uv7)) | ||||
|  | ||||
| 	check := a.Multiply(v, a.Square(r)) // check = v * r^2 | ||||
|  | ||||
| 	uNeg := b.Negate(u) | ||||
| 	correctSignSqrt := check.Equal(u) | ||||
| 	flippedSignSqrt := check.Equal(uNeg) | ||||
| 	flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1)) | ||||
|  | ||||
| 	rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r | ||||
| 	// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r) | ||||
| 	r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI) | ||||
|  | ||||
| 	r.Absolute(r) // Choose the nonnegative square root. | ||||
| 	return r, correctSignSqrt | flippedSignSqrt | ||||
| } | ||||
							
								
								
									
										13
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| // Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT. | ||||
|  | ||||
| // +build amd64,gc,!purego | ||||
|  | ||||
| package field | ||||
|  | ||||
| // feMul sets out = a * b. It works like feMulGeneric. | ||||
| //go:noescape | ||||
| func feMul(out *Element, a *Element, b *Element) | ||||
|  | ||||
| // feSquare sets out = a * a. It works like feSquareGeneric. | ||||
| //go:noescape | ||||
| func feSquare(out *Element, a *Element) | ||||
							
								
								
									
										379
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										379
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,379 @@ | ||||
| // Code generated by command: go run fe_amd64_asm.go -out ../fe_amd64.s -stubs ../fe_amd64.go -pkg field. DO NOT EDIT. | ||||
|  | ||||
| //go:build amd64 && gc && !purego | ||||
| // +build amd64,gc,!purego | ||||
|  | ||||
| #include "textflag.h" | ||||
|  | ||||
| // func feMul(out *Element, a *Element, b *Element) | ||||
| TEXT ·feMul(SB), NOSPLIT, $0-24 | ||||
| 	MOVQ a+8(FP), CX | ||||
| 	MOVQ b+16(FP), BX | ||||
|  | ||||
| 	// r0 = a0×b0 | ||||
| 	MOVQ (CX), AX | ||||
| 	MULQ (BX) | ||||
| 	MOVQ AX, DI | ||||
| 	MOVQ DX, SI | ||||
|  | ||||
| 	// r0 += 19×a1×b4 | ||||
| 	MOVQ   8(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   32(BX) | ||||
| 	ADDQ   AX, DI | ||||
| 	ADCQ   DX, SI | ||||
|  | ||||
| 	// r0 += 19×a2×b3 | ||||
| 	MOVQ   16(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   24(BX) | ||||
| 	ADDQ   AX, DI | ||||
| 	ADCQ   DX, SI | ||||
|  | ||||
| 	// r0 += 19×a3×b2 | ||||
| 	MOVQ   24(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   16(BX) | ||||
| 	ADDQ   AX, DI | ||||
| 	ADCQ   DX, SI | ||||
|  | ||||
| 	// r0 += 19×a4×b1 | ||||
| 	MOVQ   32(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   8(BX) | ||||
| 	ADDQ   AX, DI | ||||
| 	ADCQ   DX, SI | ||||
|  | ||||
| 	// r1 = a0×b1 | ||||
| 	MOVQ (CX), AX | ||||
| 	MULQ 8(BX) | ||||
| 	MOVQ AX, R9 | ||||
| 	MOVQ DX, R8 | ||||
|  | ||||
| 	// r1 += a1×b0 | ||||
| 	MOVQ 8(CX), AX | ||||
| 	MULQ (BX) | ||||
| 	ADDQ AX, R9 | ||||
| 	ADCQ DX, R8 | ||||
|  | ||||
| 	// r1 += 19×a2×b4 | ||||
| 	MOVQ   16(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   32(BX) | ||||
| 	ADDQ   AX, R9 | ||||
| 	ADCQ   DX, R8 | ||||
|  | ||||
| 	// r1 += 19×a3×b3 | ||||
| 	MOVQ   24(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   24(BX) | ||||
| 	ADDQ   AX, R9 | ||||
| 	ADCQ   DX, R8 | ||||
|  | ||||
| 	// r1 += 19×a4×b2 | ||||
| 	MOVQ   32(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   16(BX) | ||||
| 	ADDQ   AX, R9 | ||||
| 	ADCQ   DX, R8 | ||||
|  | ||||
| 	// r2 = a0×b2 | ||||
| 	MOVQ (CX), AX | ||||
| 	MULQ 16(BX) | ||||
| 	MOVQ AX, R11 | ||||
| 	MOVQ DX, R10 | ||||
|  | ||||
| 	// r2 += a1×b1 | ||||
| 	MOVQ 8(CX), AX | ||||
| 	MULQ 8(BX) | ||||
| 	ADDQ AX, R11 | ||||
| 	ADCQ DX, R10 | ||||
|  | ||||
| 	// r2 += a2×b0 | ||||
| 	MOVQ 16(CX), AX | ||||
| 	MULQ (BX) | ||||
| 	ADDQ AX, R11 | ||||
| 	ADCQ DX, R10 | ||||
|  | ||||
| 	// r2 += 19×a3×b4 | ||||
| 	MOVQ   24(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   32(BX) | ||||
| 	ADDQ   AX, R11 | ||||
| 	ADCQ   DX, R10 | ||||
|  | ||||
| 	// r2 += 19×a4×b3 | ||||
| 	MOVQ   32(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   24(BX) | ||||
| 	ADDQ   AX, R11 | ||||
| 	ADCQ   DX, R10 | ||||
|  | ||||
| 	// r3 = a0×b3 | ||||
| 	MOVQ (CX), AX | ||||
| 	MULQ 24(BX) | ||||
| 	MOVQ AX, R13 | ||||
| 	MOVQ DX, R12 | ||||
|  | ||||
| 	// r3 += a1×b2 | ||||
| 	MOVQ 8(CX), AX | ||||
| 	MULQ 16(BX) | ||||
| 	ADDQ AX, R13 | ||||
| 	ADCQ DX, R12 | ||||
|  | ||||
| 	// r3 += a2×b1 | ||||
| 	MOVQ 16(CX), AX | ||||
| 	MULQ 8(BX) | ||||
| 	ADDQ AX, R13 | ||||
| 	ADCQ DX, R12 | ||||
|  | ||||
| 	// r3 += a3×b0 | ||||
| 	MOVQ 24(CX), AX | ||||
| 	MULQ (BX) | ||||
| 	ADDQ AX, R13 | ||||
| 	ADCQ DX, R12 | ||||
|  | ||||
| 	// r3 += 19×a4×b4 | ||||
| 	MOVQ   32(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   32(BX) | ||||
| 	ADDQ   AX, R13 | ||||
| 	ADCQ   DX, R12 | ||||
|  | ||||
| 	// r4 = a0×b4 | ||||
| 	MOVQ (CX), AX | ||||
| 	MULQ 32(BX) | ||||
| 	MOVQ AX, R15 | ||||
| 	MOVQ DX, R14 | ||||
|  | ||||
| 	// r4 += a1×b3 | ||||
| 	MOVQ 8(CX), AX | ||||
| 	MULQ 24(BX) | ||||
| 	ADDQ AX, R15 | ||||
| 	ADCQ DX, R14 | ||||
|  | ||||
| 	// r4 += a2×b2 | ||||
| 	MOVQ 16(CX), AX | ||||
| 	MULQ 16(BX) | ||||
| 	ADDQ AX, R15 | ||||
| 	ADCQ DX, R14 | ||||
|  | ||||
| 	// r4 += a3×b1 | ||||
| 	MOVQ 24(CX), AX | ||||
| 	MULQ 8(BX) | ||||
| 	ADDQ AX, R15 | ||||
| 	ADCQ DX, R14 | ||||
|  | ||||
| 	// r4 += a4×b0 | ||||
| 	MOVQ 32(CX), AX | ||||
| 	MULQ (BX) | ||||
| 	ADDQ AX, R15 | ||||
| 	ADCQ DX, R14 | ||||
|  | ||||
| 	// First reduction chain | ||||
| 	MOVQ   $0x0007ffffffffffff, AX | ||||
| 	SHLQ   $0x0d, DI, SI | ||||
| 	SHLQ   $0x0d, R9, R8 | ||||
| 	SHLQ   $0x0d, R11, R10 | ||||
| 	SHLQ   $0x0d, R13, R12 | ||||
| 	SHLQ   $0x0d, R15, R14 | ||||
| 	ANDQ   AX, DI | ||||
| 	IMUL3Q $0x13, R14, R14 | ||||
| 	ADDQ   R14, DI | ||||
| 	ANDQ   AX, R9 | ||||
| 	ADDQ   SI, R9 | ||||
| 	ANDQ   AX, R11 | ||||
| 	ADDQ   R8, R11 | ||||
| 	ANDQ   AX, R13 | ||||
| 	ADDQ   R10, R13 | ||||
| 	ANDQ   AX, R15 | ||||
| 	ADDQ   R12, R15 | ||||
|  | ||||
| 	// Second reduction chain (carryPropagate) | ||||
| 	MOVQ   DI, SI | ||||
| 	SHRQ   $0x33, SI | ||||
| 	MOVQ   R9, R8 | ||||
| 	SHRQ   $0x33, R8 | ||||
| 	MOVQ   R11, R10 | ||||
| 	SHRQ   $0x33, R10 | ||||
| 	MOVQ   R13, R12 | ||||
| 	SHRQ   $0x33, R12 | ||||
| 	MOVQ   R15, R14 | ||||
| 	SHRQ   $0x33, R14 | ||||
| 	ANDQ   AX, DI | ||||
| 	IMUL3Q $0x13, R14, R14 | ||||
| 	ADDQ   R14, DI | ||||
| 	ANDQ   AX, R9 | ||||
| 	ADDQ   SI, R9 | ||||
| 	ANDQ   AX, R11 | ||||
| 	ADDQ   R8, R11 | ||||
| 	ANDQ   AX, R13 | ||||
| 	ADDQ   R10, R13 | ||||
| 	ANDQ   AX, R15 | ||||
| 	ADDQ   R12, R15 | ||||
|  | ||||
| 	// Store output | ||||
| 	MOVQ out+0(FP), AX | ||||
| 	MOVQ DI, (AX) | ||||
| 	MOVQ R9, 8(AX) | ||||
| 	MOVQ R11, 16(AX) | ||||
| 	MOVQ R13, 24(AX) | ||||
| 	MOVQ R15, 32(AX) | ||||
| 	RET | ||||
|  | ||||
| // func feSquare(out *Element, a *Element) | ||||
| TEXT ·feSquare(SB), NOSPLIT, $0-16 | ||||
| 	MOVQ a+8(FP), CX | ||||
|  | ||||
| 	// r0 = l0×l0 | ||||
| 	MOVQ (CX), AX | ||||
| 	MULQ (CX) | ||||
| 	MOVQ AX, SI | ||||
| 	MOVQ DX, BX | ||||
|  | ||||
| 	// r0 += 38×l1×l4 | ||||
| 	MOVQ   8(CX), AX | ||||
| 	IMUL3Q $0x26, AX, AX | ||||
| 	MULQ   32(CX) | ||||
| 	ADDQ   AX, SI | ||||
| 	ADCQ   DX, BX | ||||
|  | ||||
| 	// r0 += 38×l2×l3 | ||||
| 	MOVQ   16(CX), AX | ||||
| 	IMUL3Q $0x26, AX, AX | ||||
| 	MULQ   24(CX) | ||||
| 	ADDQ   AX, SI | ||||
| 	ADCQ   DX, BX | ||||
|  | ||||
| 	// r1 = 2×l0×l1 | ||||
| 	MOVQ (CX), AX | ||||
| 	SHLQ $0x01, AX | ||||
| 	MULQ 8(CX) | ||||
| 	MOVQ AX, R8 | ||||
| 	MOVQ DX, DI | ||||
|  | ||||
| 	// r1 += 38×l2×l4 | ||||
| 	MOVQ   16(CX), AX | ||||
| 	IMUL3Q $0x26, AX, AX | ||||
| 	MULQ   32(CX) | ||||
| 	ADDQ   AX, R8 | ||||
| 	ADCQ   DX, DI | ||||
|  | ||||
| 	// r1 += 19×l3×l3 | ||||
| 	MOVQ   24(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   24(CX) | ||||
| 	ADDQ   AX, R8 | ||||
| 	ADCQ   DX, DI | ||||
|  | ||||
| 	// r2 = 2×l0×l2 | ||||
| 	MOVQ (CX), AX | ||||
| 	SHLQ $0x01, AX | ||||
| 	MULQ 16(CX) | ||||
| 	MOVQ AX, R10 | ||||
| 	MOVQ DX, R9 | ||||
|  | ||||
| 	// r2 += l1×l1 | ||||
| 	MOVQ 8(CX), AX | ||||
| 	MULQ 8(CX) | ||||
| 	ADDQ AX, R10 | ||||
| 	ADCQ DX, R9 | ||||
|  | ||||
| 	// r2 += 38×l3×l4 | ||||
| 	MOVQ   24(CX), AX | ||||
| 	IMUL3Q $0x26, AX, AX | ||||
| 	MULQ   32(CX) | ||||
| 	ADDQ   AX, R10 | ||||
| 	ADCQ   DX, R9 | ||||
|  | ||||
| 	// r3 = 2×l0×l3 | ||||
| 	MOVQ (CX), AX | ||||
| 	SHLQ $0x01, AX | ||||
| 	MULQ 24(CX) | ||||
| 	MOVQ AX, R12 | ||||
| 	MOVQ DX, R11 | ||||
|  | ||||
| 	// r3 += 2×l1×l2 | ||||
| 	MOVQ   8(CX), AX | ||||
| 	IMUL3Q $0x02, AX, AX | ||||
| 	MULQ   16(CX) | ||||
| 	ADDQ   AX, R12 | ||||
| 	ADCQ   DX, R11 | ||||
|  | ||||
| 	// r3 += 19×l4×l4 | ||||
| 	MOVQ   32(CX), AX | ||||
| 	IMUL3Q $0x13, AX, AX | ||||
| 	MULQ   32(CX) | ||||
| 	ADDQ   AX, R12 | ||||
| 	ADCQ   DX, R11 | ||||
|  | ||||
| 	// r4 = 2×l0×l4 | ||||
| 	MOVQ (CX), AX | ||||
| 	SHLQ $0x01, AX | ||||
| 	MULQ 32(CX) | ||||
| 	MOVQ AX, R14 | ||||
| 	MOVQ DX, R13 | ||||
|  | ||||
| 	// r4 += 2×l1×l3 | ||||
| 	MOVQ   8(CX), AX | ||||
| 	IMUL3Q $0x02, AX, AX | ||||
| 	MULQ   24(CX) | ||||
| 	ADDQ   AX, R14 | ||||
| 	ADCQ   DX, R13 | ||||
|  | ||||
| 	// r4 += l2×l2 | ||||
| 	MOVQ 16(CX), AX | ||||
| 	MULQ 16(CX) | ||||
| 	ADDQ AX, R14 | ||||
| 	ADCQ DX, R13 | ||||
|  | ||||
| 	// First reduction chain | ||||
| 	MOVQ   $0x0007ffffffffffff, AX | ||||
| 	SHLQ   $0x0d, SI, BX | ||||
| 	SHLQ   $0x0d, R8, DI | ||||
| 	SHLQ   $0x0d, R10, R9 | ||||
| 	SHLQ   $0x0d, R12, R11 | ||||
| 	SHLQ   $0x0d, R14, R13 | ||||
| 	ANDQ   AX, SI | ||||
| 	IMUL3Q $0x13, R13, R13 | ||||
| 	ADDQ   R13, SI | ||||
| 	ANDQ   AX, R8 | ||||
| 	ADDQ   BX, R8 | ||||
| 	ANDQ   AX, R10 | ||||
| 	ADDQ   DI, R10 | ||||
| 	ANDQ   AX, R12 | ||||
| 	ADDQ   R9, R12 | ||||
| 	ANDQ   AX, R14 | ||||
| 	ADDQ   R11, R14 | ||||
|  | ||||
| 	// Second reduction chain (carryPropagate) | ||||
| 	MOVQ   SI, BX | ||||
| 	SHRQ   $0x33, BX | ||||
| 	MOVQ   R8, DI | ||||
| 	SHRQ   $0x33, DI | ||||
| 	MOVQ   R10, R9 | ||||
| 	SHRQ   $0x33, R9 | ||||
| 	MOVQ   R12, R11 | ||||
| 	SHRQ   $0x33, R11 | ||||
| 	MOVQ   R14, R13 | ||||
| 	SHRQ   $0x33, R13 | ||||
| 	ANDQ   AX, SI | ||||
| 	IMUL3Q $0x13, R13, R13 | ||||
| 	ADDQ   R13, SI | ||||
| 	ANDQ   AX, R8 | ||||
| 	ADDQ   BX, R8 | ||||
| 	ANDQ   AX, R10 | ||||
| 	ADDQ   DI, R10 | ||||
| 	ANDQ   AX, R12 | ||||
| 	ADDQ   R9, R12 | ||||
| 	ANDQ   AX, R14 | ||||
| 	ADDQ   R11, R14 | ||||
|  | ||||
| 	// Store output | ||||
| 	MOVQ out+0(FP), AX | ||||
| 	MOVQ SI, (AX) | ||||
| 	MOVQ R8, 8(AX) | ||||
| 	MOVQ R10, 16(AX) | ||||
| 	MOVQ R12, 24(AX) | ||||
| 	MOVQ R14, 32(AX) | ||||
| 	RET | ||||
							
								
								
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_amd64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,12 @@ | ||||
| // Copyright (c) 2019 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| //go:build !amd64 || !gc || purego | ||||
| // +build !amd64 !gc purego | ||||
|  | ||||
| package field | ||||
|  | ||||
| func feMul(v, x, y *Element) { feMulGeneric(v, x, y) } | ||||
|  | ||||
| func feSquare(v, x *Element) { feSquareGeneric(v, x) } | ||||
							
								
								
									
										16
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| // Copyright (c) 2020 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| //go:build arm64 && gc && !purego | ||||
| // +build arm64,gc,!purego | ||||
|  | ||||
| package field | ||||
|  | ||||
| //go:noescape | ||||
| func carryPropagate(v *Element) | ||||
|  | ||||
| func (v *Element) carryPropagate() *Element { | ||||
| 	carryPropagate(v) | ||||
| 	return v | ||||
| } | ||||
							
								
								
									
										43
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										43
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64.s
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,43 @@ | ||||
| // Copyright (c) 2020 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| //go:build arm64 && gc && !purego | ||||
| // +build arm64,gc,!purego | ||||
|  | ||||
| #include "textflag.h" | ||||
|  | ||||
| // carryPropagate works exactly like carryPropagateGeneric and uses the | ||||
| // same AND, ADD, and LSR+MADD instructions emitted by the compiler, but | ||||
| // avoids loading R0-R4 twice and uses LDP and STP. | ||||
| // | ||||
| // See https://golang.org/issues/43145 for the main compiler issue. | ||||
| // | ||||
| // func carryPropagate(v *Element) | ||||
| TEXT ·carryPropagate(SB),NOFRAME|NOSPLIT,$0-8 | ||||
| 	MOVD v+0(FP), R20 | ||||
|  | ||||
| 	LDP 0(R20), (R0, R1) | ||||
| 	LDP 16(R20), (R2, R3) | ||||
| 	MOVD 32(R20), R4 | ||||
|  | ||||
| 	AND $0x7ffffffffffff, R0, R10 | ||||
| 	AND $0x7ffffffffffff, R1, R11 | ||||
| 	AND $0x7ffffffffffff, R2, R12 | ||||
| 	AND $0x7ffffffffffff, R3, R13 | ||||
| 	AND $0x7ffffffffffff, R4, R14 | ||||
|  | ||||
| 	ADD R0>>51, R11, R11 | ||||
| 	ADD R1>>51, R12, R12 | ||||
| 	ADD R2>>51, R13, R13 | ||||
| 	ADD R3>>51, R14, R14 | ||||
| 	// R4>>51 * 19 + R10 -> R10 | ||||
| 	LSR $51, R4, R21 | ||||
| 	MOVD $19, R22 | ||||
| 	MADD R22, R10, R21, R10 | ||||
|  | ||||
| 	STP (R10, R11), 0(R20) | ||||
| 	STP (R12, R13), 16(R20) | ||||
| 	MOVD R14, 32(R20) | ||||
|  | ||||
| 	RET | ||||
							
								
								
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_arm64_noasm.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,12 @@ | ||||
| // Copyright (c) 2021 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| //go:build !arm64 || !gc || purego | ||||
| // +build !arm64 !gc purego | ||||
|  | ||||
| package field | ||||
|  | ||||
| func (v *Element) carryPropagate() *Element { | ||||
| 	return v.carryPropagateGeneric() | ||||
| } | ||||
							
								
								
									
										264
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										264
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/fe_generic.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,264 @@ | ||||
| // Copyright (c) 2017 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| package field | ||||
|  | ||||
| import "math/bits" | ||||
|  | ||||
| // uint128 holds a 128-bit number as two 64-bit limbs, for use with the | ||||
| // bits.Mul64 and bits.Add64 intrinsics. | ||||
| type uint128 struct { | ||||
| 	lo, hi uint64 | ||||
| } | ||||
|  | ||||
| // mul64 returns a * b. | ||||
| func mul64(a, b uint64) uint128 { | ||||
| 	hi, lo := bits.Mul64(a, b) | ||||
| 	return uint128{lo, hi} | ||||
| } | ||||
|  | ||||
| // addMul64 returns v + a * b. | ||||
| func addMul64(v uint128, a, b uint64) uint128 { | ||||
| 	hi, lo := bits.Mul64(a, b) | ||||
| 	lo, c := bits.Add64(lo, v.lo, 0) | ||||
| 	hi, _ = bits.Add64(hi, v.hi, c) | ||||
| 	return uint128{lo, hi} | ||||
| } | ||||
|  | ||||
| // shiftRightBy51 returns a >> 51. a is assumed to be at most 115 bits. | ||||
| func shiftRightBy51(a uint128) uint64 { | ||||
| 	return (a.hi << (64 - 51)) | (a.lo >> 51) | ||||
| } | ||||
|  | ||||
| func feMulGeneric(v, a, b *Element) { | ||||
| 	a0 := a.l0 | ||||
| 	a1 := a.l1 | ||||
| 	a2 := a.l2 | ||||
| 	a3 := a.l3 | ||||
| 	a4 := a.l4 | ||||
|  | ||||
| 	b0 := b.l0 | ||||
| 	b1 := b.l1 | ||||
| 	b2 := b.l2 | ||||
| 	b3 := b.l3 | ||||
| 	b4 := b.l4 | ||||
|  | ||||
| 	// Limb multiplication works like pen-and-paper columnar multiplication, but | ||||
| 	// with 51-bit limbs instead of digits. | ||||
| 	// | ||||
| 	//                          a4   a3   a2   a1   a0  x | ||||
| 	//                          b4   b3   b2   b1   b0  = | ||||
| 	//                         ------------------------ | ||||
| 	//                        a4b0 a3b0 a2b0 a1b0 a0b0  + | ||||
| 	//                   a4b1 a3b1 a2b1 a1b1 a0b1       + | ||||
| 	//              a4b2 a3b2 a2b2 a1b2 a0b2            + | ||||
| 	//         a4b3 a3b3 a2b3 a1b3 a0b3                 + | ||||
| 	//    a4b4 a3b4 a2b4 a1b4 a0b4                      = | ||||
| 	//   ---------------------------------------------- | ||||
| 	//      r8   r7   r6   r5   r4   r3   r2   r1   r0 | ||||
| 	// | ||||
| 	// We can then use the reduction identity (a * 2²⁵⁵ + b = a * 19 + b) to | ||||
| 	// reduce the limbs that would overflow 255 bits. r5 * 2²⁵⁵ becomes 19 * r5, | ||||
| 	// r6 * 2³⁰⁶ becomes 19 * r6 * 2⁵¹, etc. | ||||
| 	// | ||||
| 	// Reduction can be carried out simultaneously to multiplication. For | ||||
| 	// example, we do not compute r5: whenever the result of a multiplication | ||||
| 	// belongs to r5, like a1b4, we multiply it by 19 and add the result to r0. | ||||
| 	// | ||||
| 	//            a4b0    a3b0    a2b0    a1b0    a0b0  + | ||||
| 	//            a3b1    a2b1    a1b1    a0b1 19×a4b1  + | ||||
| 	//            a2b2    a1b2    a0b2 19×a4b2 19×a3b2  + | ||||
| 	//            a1b3    a0b3 19×a4b3 19×a3b3 19×a2b3  + | ||||
| 	//            a0b4 19×a4b4 19×a3b4 19×a2b4 19×a1b4  = | ||||
| 	//           -------------------------------------- | ||||
| 	//              r4      r3      r2      r1      r0 | ||||
| 	// | ||||
| 	// Finally we add up the columns into wide, overlapping limbs. | ||||
|  | ||||
| 	a1_19 := a1 * 19 | ||||
| 	a2_19 := a2 * 19 | ||||
| 	a3_19 := a3 * 19 | ||||
| 	a4_19 := a4 * 19 | ||||
|  | ||||
| 	// r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1) | ||||
| 	r0 := mul64(a0, b0) | ||||
| 	r0 = addMul64(r0, a1_19, b4) | ||||
| 	r0 = addMul64(r0, a2_19, b3) | ||||
| 	r0 = addMul64(r0, a3_19, b2) | ||||
| 	r0 = addMul64(r0, a4_19, b1) | ||||
|  | ||||
| 	// r1 = a0×b1 + a1×b0 + 19×(a2×b4 + a3×b3 + a4×b2) | ||||
| 	r1 := mul64(a0, b1) | ||||
| 	r1 = addMul64(r1, a1, b0) | ||||
| 	r1 = addMul64(r1, a2_19, b4) | ||||
| 	r1 = addMul64(r1, a3_19, b3) | ||||
| 	r1 = addMul64(r1, a4_19, b2) | ||||
|  | ||||
| 	// r2 = a0×b2 + a1×b1 + a2×b0 + 19×(a3×b4 + a4×b3) | ||||
| 	r2 := mul64(a0, b2) | ||||
| 	r2 = addMul64(r2, a1, b1) | ||||
| 	r2 = addMul64(r2, a2, b0) | ||||
| 	r2 = addMul64(r2, a3_19, b4) | ||||
| 	r2 = addMul64(r2, a4_19, b3) | ||||
|  | ||||
| 	// r3 = a0×b3 + a1×b2 + a2×b1 + a3×b0 + 19×a4×b4 | ||||
| 	r3 := mul64(a0, b3) | ||||
| 	r3 = addMul64(r3, a1, b2) | ||||
| 	r3 = addMul64(r3, a2, b1) | ||||
| 	r3 = addMul64(r3, a3, b0) | ||||
| 	r3 = addMul64(r3, a4_19, b4) | ||||
|  | ||||
| 	// r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0 | ||||
| 	r4 := mul64(a0, b4) | ||||
| 	r4 = addMul64(r4, a1, b3) | ||||
| 	r4 = addMul64(r4, a2, b2) | ||||
| 	r4 = addMul64(r4, a3, b1) | ||||
| 	r4 = addMul64(r4, a4, b0) | ||||
|  | ||||
| 	// After the multiplication, we need to reduce (carry) the five coefficients | ||||
| 	// to obtain a result with limbs that are at most slightly larger than 2⁵¹, | ||||
| 	// to respect the Element invariant. | ||||
| 	// | ||||
| 	// Overall, the reduction works the same as carryPropagate, except with | ||||
| 	// wider inputs: we take the carry for each coefficient by shifting it right | ||||
| 	// by 51, and add it to the limb above it. The top carry is multiplied by 19 | ||||
| 	// according to the reduction identity and added to the lowest limb. | ||||
| 	// | ||||
| 	// The largest coefficient (r0) will be at most 111 bits, which guarantees | ||||
| 	// that all carries are at most 111 - 51 = 60 bits, which fits in a uint64. | ||||
| 	// | ||||
| 	//     r0 = a0×b0 + 19×(a1×b4 + a2×b3 + a3×b2 + a4×b1) | ||||
| 	//     r0 < 2⁵²×2⁵² + 19×(2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵² + 2⁵²×2⁵²) | ||||
| 	//     r0 < (1 + 19 × 4) × 2⁵² × 2⁵² | ||||
| 	//     r0 < 2⁷ × 2⁵² × 2⁵² | ||||
| 	//     r0 < 2¹¹¹ | ||||
| 	// | ||||
| 	// Moreover, the top coefficient (r4) is at most 107 bits, so c4 is at most | ||||
| 	// 56 bits, and c4 * 19 is at most 61 bits, which again fits in a uint64 and | ||||
| 	// allows us to easily apply the reduction identity. | ||||
| 	// | ||||
| 	//     r4 = a0×b4 + a1×b3 + a2×b2 + a3×b1 + a4×b0 | ||||
| 	//     r4 < 5 × 2⁵² × 2⁵² | ||||
| 	//     r4 < 2¹⁰⁷ | ||||
| 	// | ||||
|  | ||||
| 	c0 := shiftRightBy51(r0) | ||||
| 	c1 := shiftRightBy51(r1) | ||||
| 	c2 := shiftRightBy51(r2) | ||||
| 	c3 := shiftRightBy51(r3) | ||||
| 	c4 := shiftRightBy51(r4) | ||||
|  | ||||
| 	rr0 := r0.lo&maskLow51Bits + c4*19 | ||||
| 	rr1 := r1.lo&maskLow51Bits + c0 | ||||
| 	rr2 := r2.lo&maskLow51Bits + c1 | ||||
| 	rr3 := r3.lo&maskLow51Bits + c2 | ||||
| 	rr4 := r4.lo&maskLow51Bits + c3 | ||||
|  | ||||
| 	// Now all coefficients fit into 64-bit registers but are still too large to | ||||
| 	// be passed around as a Element. We therefore do one last carry chain, | ||||
| 	// where the carries will be small enough to fit in the wiggle room above 2⁵¹. | ||||
| 	*v = Element{rr0, rr1, rr2, rr3, rr4} | ||||
| 	v.carryPropagate() | ||||
| } | ||||
|  | ||||
| func feSquareGeneric(v, a *Element) { | ||||
| 	l0 := a.l0 | ||||
| 	l1 := a.l1 | ||||
| 	l2 := a.l2 | ||||
| 	l3 := a.l3 | ||||
| 	l4 := a.l4 | ||||
|  | ||||
| 	// Squaring works precisely like multiplication above, but thanks to its | ||||
| 	// symmetry we get to group a few terms together. | ||||
| 	// | ||||
| 	//                          l4   l3   l2   l1   l0  x | ||||
| 	//                          l4   l3   l2   l1   l0  = | ||||
| 	//                         ------------------------ | ||||
| 	//                        l4l0 l3l0 l2l0 l1l0 l0l0  + | ||||
| 	//                   l4l1 l3l1 l2l1 l1l1 l0l1       + | ||||
| 	//              l4l2 l3l2 l2l2 l1l2 l0l2            + | ||||
| 	//         l4l3 l3l3 l2l3 l1l3 l0l3                 + | ||||
| 	//    l4l4 l3l4 l2l4 l1l4 l0l4                      = | ||||
| 	//   ---------------------------------------------- | ||||
| 	//      r8   r7   r6   r5   r4   r3   r2   r1   r0 | ||||
| 	// | ||||
| 	//            l4l0    l3l0    l2l0    l1l0    l0l0  + | ||||
| 	//            l3l1    l2l1    l1l1    l0l1 19×l4l1  + | ||||
| 	//            l2l2    l1l2    l0l2 19×l4l2 19×l3l2  + | ||||
| 	//            l1l3    l0l3 19×l4l3 19×l3l3 19×l2l3  + | ||||
| 	//            l0l4 19×l4l4 19×l3l4 19×l2l4 19×l1l4  = | ||||
| 	//           -------------------------------------- | ||||
| 	//              r4      r3      r2      r1      r0 | ||||
| 	// | ||||
| 	// With precomputed 2×, 19×, and 2×19× terms, we can compute each limb with | ||||
| 	// only three Mul64 and four Add64, instead of five and eight. | ||||
|  | ||||
| 	l0_2 := l0 * 2 | ||||
| 	l1_2 := l1 * 2 | ||||
|  | ||||
| 	l1_38 := l1 * 38 | ||||
| 	l2_38 := l2 * 38 | ||||
| 	l3_38 := l3 * 38 | ||||
|  | ||||
| 	l3_19 := l3 * 19 | ||||
| 	l4_19 := l4 * 19 | ||||
|  | ||||
| 	// r0 = l0×l0 + 19×(l1×l4 + l2×l3 + l3×l2 + l4×l1) = l0×l0 + 19×2×(l1×l4 + l2×l3) | ||||
| 	r0 := mul64(l0, l0) | ||||
| 	r0 = addMul64(r0, l1_38, l4) | ||||
| 	r0 = addMul64(r0, l2_38, l3) | ||||
|  | ||||
| 	// r1 = l0×l1 + l1×l0 + 19×(l2×l4 + l3×l3 + l4×l2) = 2×l0×l1 + 19×2×l2×l4 + 19×l3×l3 | ||||
| 	r1 := mul64(l0_2, l1) | ||||
| 	r1 = addMul64(r1, l2_38, l4) | ||||
| 	r1 = addMul64(r1, l3_19, l3) | ||||
|  | ||||
| 	// r2 = l0×l2 + l1×l1 + l2×l0 + 19×(l3×l4 + l4×l3) = 2×l0×l2 + l1×l1 + 19×2×l3×l4 | ||||
| 	r2 := mul64(l0_2, l2) | ||||
| 	r2 = addMul64(r2, l1, l1) | ||||
| 	r2 = addMul64(r2, l3_38, l4) | ||||
|  | ||||
| 	// r3 = l0×l3 + l1×l2 + l2×l1 + l3×l0 + 19×l4×l4 = 2×l0×l3 + 2×l1×l2 + 19×l4×l4 | ||||
| 	r3 := mul64(l0_2, l3) | ||||
| 	r3 = addMul64(r3, l1_2, l2) | ||||
| 	r3 = addMul64(r3, l4_19, l4) | ||||
|  | ||||
| 	// r4 = l0×l4 + l1×l3 + l2×l2 + l3×l1 + l4×l0 = 2×l0×l4 + 2×l1×l3 + l2×l2 | ||||
| 	r4 := mul64(l0_2, l4) | ||||
| 	r4 = addMul64(r4, l1_2, l3) | ||||
| 	r4 = addMul64(r4, l2, l2) | ||||
|  | ||||
| 	c0 := shiftRightBy51(r0) | ||||
| 	c1 := shiftRightBy51(r1) | ||||
| 	c2 := shiftRightBy51(r2) | ||||
| 	c3 := shiftRightBy51(r3) | ||||
| 	c4 := shiftRightBy51(r4) | ||||
|  | ||||
| 	rr0 := r0.lo&maskLow51Bits + c4*19 | ||||
| 	rr1 := r1.lo&maskLow51Bits + c0 | ||||
| 	rr2 := r2.lo&maskLow51Bits + c1 | ||||
| 	rr3 := r3.lo&maskLow51Bits + c2 | ||||
| 	rr4 := r4.lo&maskLow51Bits + c3 | ||||
|  | ||||
| 	*v = Element{rr0, rr1, rr2, rr3, rr4} | ||||
| 	v.carryPropagate() | ||||
| } | ||||
|  | ||||
| // carryPropagate brings the limbs below 52 bits by applying the reduction | ||||
| // identity (a * 2²⁵⁵ + b = a * 19 + b) to the l4 carry. TODO inline | ||||
| func (v *Element) carryPropagateGeneric() *Element { | ||||
| 	c0 := v.l0 >> 51 | ||||
| 	c1 := v.l1 >> 51 | ||||
| 	c2 := v.l2 >> 51 | ||||
| 	c3 := v.l3 >> 51 | ||||
| 	c4 := v.l4 >> 51 | ||||
|  | ||||
| 	v.l0 = v.l0&maskLow51Bits + c4*19 | ||||
| 	v.l1 = v.l1&maskLow51Bits + c0 | ||||
| 	v.l2 = v.l2&maskLow51Bits + c1 | ||||
| 	v.l3 = v.l3&maskLow51Bits + c2 | ||||
| 	v.l4 = v.l4&maskLow51Bits + c3 | ||||
|  | ||||
| 	return v | ||||
| } | ||||
							
								
								
									
										1
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.checkpoint
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
| b0c49ae9f59d233526f8934262c5bbbe14d4358d | ||||
							
								
								
									
										19
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								vendor/golang.org/x/crypto/curve25519/internal/field/sync.sh
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,19 @@ | ||||
| #! /bin/bash | ||||
| set -euo pipefail | ||||
|  | ||||
| cd "$(git rev-parse --show-toplevel)" | ||||
|  | ||||
| STD_PATH=src/crypto/ed25519/internal/edwards25519/field | ||||
| LOCAL_PATH=curve25519/internal/field | ||||
| LAST_SYNC_REF=$(cat $LOCAL_PATH/sync.checkpoint) | ||||
|  | ||||
| git fetch https://go.googlesource.com/go master | ||||
|  | ||||
| if git diff --quiet $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH; then | ||||
|     echo "No changes." | ||||
| else | ||||
|     NEW_REF=$(git rev-parse FETCH_HEAD | tee $LOCAL_PATH/sync.checkpoint) | ||||
|     echo "Applying changes from $LAST_SYNC_REF to $NEW_REF..." | ||||
|     git diff $LAST_SYNC_REF:$STD_PATH FETCH_HEAD:$STD_PATH | \ | ||||
|         git apply -3 --directory=$LOCAL_PATH | ||||
| fi | ||||
		Reference in New Issue
	
	Block a user
	 Wim
					Wim