2020-05-23 15:06:21 -07:00
|
|
|
// Copyright 2014 The Go Authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style
|
|
|
|
// license that can be found in the LICENSE file.
|
|
|
|
|
|
|
|
package hpack
|
|
|
|
|
|
|
|
import (
|
|
|
|
"bytes"
|
|
|
|
"errors"
|
|
|
|
"io"
|
|
|
|
"sync"
|
|
|
|
)
|
|
|
|
|
|
|
|
var bufPool = sync.Pool{
|
|
|
|
New: func() interface{} { return new(bytes.Buffer) },
|
|
|
|
}
|
|
|
|
|
|
|
|
// HuffmanDecode decodes the string in v and writes the expanded
|
|
|
|
// result to w, returning the number of bytes written to w and the
|
|
|
|
// Write call's return value. At most one Write call is made.
|
|
|
|
func HuffmanDecode(w io.Writer, v []byte) (int, error) {
|
|
|
|
buf := bufPool.Get().(*bytes.Buffer)
|
|
|
|
buf.Reset()
|
|
|
|
defer bufPool.Put(buf)
|
|
|
|
if err := huffmanDecode(buf, 0, v); err != nil {
|
|
|
|
return 0, err
|
|
|
|
}
|
|
|
|
return w.Write(buf.Bytes())
|
|
|
|
}
|
|
|
|
|
|
|
|
// HuffmanDecodeToString decodes the string in v.
|
|
|
|
func HuffmanDecodeToString(v []byte) (string, error) {
|
|
|
|
buf := bufPool.Get().(*bytes.Buffer)
|
|
|
|
buf.Reset()
|
|
|
|
defer bufPool.Put(buf)
|
|
|
|
if err := huffmanDecode(buf, 0, v); err != nil {
|
|
|
|
return "", err
|
|
|
|
}
|
|
|
|
return buf.String(), nil
|
|
|
|
}
|
|
|
|
|
|
|
|
// ErrInvalidHuffman is returned for errors found decoding
|
|
|
|
// Huffman-encoded strings.
|
|
|
|
var ErrInvalidHuffman = errors.New("hpack: invalid Huffman-encoded data")
|
|
|
|
|
|
|
|
// huffmanDecode decodes v to buf.
|
|
|
|
// If maxLen is greater than 0, attempts to write more to buf than
|
|
|
|
// maxLen bytes will return ErrStringLength.
|
|
|
|
func huffmanDecode(buf *bytes.Buffer, maxLen int, v []byte) error {
|
|
|
|
rootHuffmanNode := getRootHuffmanNode()
|
|
|
|
n := rootHuffmanNode
|
|
|
|
// cur is the bit buffer that has not been fed into n.
|
|
|
|
// cbits is the number of low order bits in cur that are valid.
|
|
|
|
// sbits is the number of bits of the symbol prefix being decoded.
|
|
|
|
cur, cbits, sbits := uint(0), uint8(0), uint8(0)
|
|
|
|
for _, b := range v {
|
|
|
|
cur = cur<<8 | uint(b)
|
|
|
|
cbits += 8
|
|
|
|
sbits += 8
|
|
|
|
for cbits >= 8 {
|
|
|
|
idx := byte(cur >> (cbits - 8))
|
|
|
|
n = n.children[idx]
|
|
|
|
if n == nil {
|
|
|
|
return ErrInvalidHuffman
|
|
|
|
}
|
|
|
|
if n.children == nil {
|
|
|
|
if maxLen != 0 && buf.Len() == maxLen {
|
|
|
|
return ErrStringLength
|
|
|
|
}
|
|
|
|
buf.WriteByte(n.sym)
|
|
|
|
cbits -= n.codeLen
|
|
|
|
n = rootHuffmanNode
|
|
|
|
sbits = cbits
|
|
|
|
} else {
|
|
|
|
cbits -= 8
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for cbits > 0 {
|
|
|
|
n = n.children[byte(cur<<(8-cbits))]
|
|
|
|
if n == nil {
|
|
|
|
return ErrInvalidHuffman
|
|
|
|
}
|
|
|
|
if n.children != nil || n.codeLen > cbits {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
if maxLen != 0 && buf.Len() == maxLen {
|
|
|
|
return ErrStringLength
|
|
|
|
}
|
|
|
|
buf.WriteByte(n.sym)
|
|
|
|
cbits -= n.codeLen
|
|
|
|
n = rootHuffmanNode
|
|
|
|
sbits = cbits
|
|
|
|
}
|
|
|
|
if sbits > 7 {
|
|
|
|
// Either there was an incomplete symbol, or overlong padding.
|
|
|
|
// Both are decoding errors per RFC 7541 section 5.2.
|
|
|
|
return ErrInvalidHuffman
|
|
|
|
}
|
|
|
|
if mask := uint(1<<cbits - 1); cur&mask != mask {
|
|
|
|
// Trailing bits must be a prefix of EOS per RFC 7541 section 5.2.
|
|
|
|
return ErrInvalidHuffman
|
|
|
|
}
|
|
|
|
|
|
|
|
return nil
|
|
|
|
}
|
|
|
|
|
2020-08-09 15:29:54 -07:00
|
|
|
// incomparable is a zero-width, non-comparable type. Adding it to a struct
|
|
|
|
// makes that struct also non-comparable, and generally doesn't add
|
|
|
|
// any size (as long as it's first).
|
|
|
|
type incomparable [0]func()
|
|
|
|
|
2020-05-23 15:06:21 -07:00
|
|
|
type node struct {
|
2020-08-09 15:29:54 -07:00
|
|
|
_ incomparable
|
|
|
|
|
2020-05-23 15:06:21 -07:00
|
|
|
// children is non-nil for internal nodes
|
|
|
|
children *[256]*node
|
|
|
|
|
|
|
|
// The following are only valid if children is nil:
|
|
|
|
codeLen uint8 // number of bits that led to the output of sym
|
|
|
|
sym byte // output symbol
|
|
|
|
}
|
|
|
|
|
|
|
|
func newInternalNode() *node {
|
|
|
|
return &node{children: new([256]*node)}
|
|
|
|
}
|
|
|
|
|
|
|
|
var (
|
|
|
|
buildRootOnce sync.Once
|
|
|
|
lazyRootHuffmanNode *node
|
|
|
|
)
|
|
|
|
|
|
|
|
func getRootHuffmanNode() *node {
|
|
|
|
buildRootOnce.Do(buildRootHuffmanNode)
|
|
|
|
return lazyRootHuffmanNode
|
|
|
|
}
|
|
|
|
|
|
|
|
func buildRootHuffmanNode() {
|
|
|
|
if len(huffmanCodes) != 256 {
|
|
|
|
panic("unexpected size")
|
|
|
|
}
|
|
|
|
lazyRootHuffmanNode = newInternalNode()
|
2022-01-18 11:24:14 -08:00
|
|
|
// allocate a leaf node for each of the 256 symbols
|
|
|
|
leaves := new([256]node)
|
|
|
|
|
|
|
|
for sym, code := range huffmanCodes {
|
|
|
|
codeLen := huffmanCodeLen[sym]
|
|
|
|
|
|
|
|
cur := lazyRootHuffmanNode
|
|
|
|
for codeLen > 8 {
|
|
|
|
codeLen -= 8
|
|
|
|
i := uint8(code >> codeLen)
|
|
|
|
if cur.children[i] == nil {
|
|
|
|
cur.children[i] = newInternalNode()
|
|
|
|
}
|
|
|
|
cur = cur.children[i]
|
|
|
|
}
|
|
|
|
shift := 8 - codeLen
|
|
|
|
start, end := int(uint8(code<<shift)), int(1<<shift)
|
2020-05-23 15:06:21 -07:00
|
|
|
|
2022-01-18 11:24:14 -08:00
|
|
|
leaves[sym].sym = byte(sym)
|
|
|
|
leaves[sym].codeLen = codeLen
|
|
|
|
for i := start; i < start+end; i++ {
|
|
|
|
cur.children[i] = &leaves[sym]
|
2020-05-23 15:06:21 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// AppendHuffmanString appends s, as encoded in Huffman codes, to dst
|
|
|
|
// and returns the extended buffer.
|
|
|
|
func AppendHuffmanString(dst []byte, s string) []byte {
|
|
|
|
rembits := uint8(8)
|
|
|
|
|
|
|
|
for i := 0; i < len(s); i++ {
|
|
|
|
if rembits == 8 {
|
|
|
|
dst = append(dst, 0)
|
|
|
|
}
|
|
|
|
dst, rembits = appendByteToHuffmanCode(dst, rembits, s[i])
|
|
|
|
}
|
|
|
|
|
|
|
|
if rembits < 8 {
|
|
|
|
// special EOS symbol
|
|
|
|
code := uint32(0x3fffffff)
|
|
|
|
nbits := uint8(30)
|
|
|
|
|
|
|
|
t := uint8(code >> (nbits - rembits))
|
|
|
|
dst[len(dst)-1] |= t
|
|
|
|
}
|
|
|
|
|
|
|
|
return dst
|
|
|
|
}
|
|
|
|
|
|
|
|
// HuffmanEncodeLength returns the number of bytes required to encode
|
|
|
|
// s in Huffman codes. The result is round up to byte boundary.
|
|
|
|
func HuffmanEncodeLength(s string) uint64 {
|
|
|
|
n := uint64(0)
|
|
|
|
for i := 0; i < len(s); i++ {
|
|
|
|
n += uint64(huffmanCodeLen[s[i]])
|
|
|
|
}
|
|
|
|
return (n + 7) / 8
|
|
|
|
}
|
|
|
|
|
|
|
|
// appendByteToHuffmanCode appends Huffman code for c to dst and
|
|
|
|
// returns the extended buffer and the remaining bits in the last
|
|
|
|
// element. The appending is not byte aligned and the remaining bits
|
|
|
|
// in the last element of dst is given in rembits.
|
|
|
|
func appendByteToHuffmanCode(dst []byte, rembits uint8, c byte) ([]byte, uint8) {
|
|
|
|
code := huffmanCodes[c]
|
|
|
|
nbits := huffmanCodeLen[c]
|
|
|
|
|
|
|
|
for {
|
|
|
|
if rembits > nbits {
|
|
|
|
t := uint8(code << (rembits - nbits))
|
|
|
|
dst[len(dst)-1] |= t
|
|
|
|
rembits -= nbits
|
|
|
|
break
|
|
|
|
}
|
|
|
|
|
|
|
|
t := uint8(code >> (nbits - rembits))
|
|
|
|
dst[len(dst)-1] |= t
|
|
|
|
|
|
|
|
nbits -= rembits
|
|
|
|
rembits = 8
|
|
|
|
|
|
|
|
if nbits == 0 {
|
|
|
|
break
|
|
|
|
}
|
|
|
|
|
|
|
|
dst = append(dst, 0)
|
|
|
|
}
|
|
|
|
|
|
|
|
return dst, rembits
|
|
|
|
}
|