matterbridge/vendor/modernc.org/gc/v3/value.go

717 lines
16 KiB
Go
Raw Permalink Normal View History

// Copyright 2022 The Gc Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc // modernc.org/gc/v3
import (
"go/constant"
"math"
)
var (
_ Expression = (*BasicLitNode)(nil)
_ Expression = (*BinaryExpressionNode)(nil)
_ Expression = (*CompositeLitNode)(nil)
_ Expression = (*ConversionNode)(nil)
_ Expression = (*FunctionLitNode)(nil)
_ Expression = (*KeyedElementNode)(nil)
_ Expression = (*LiteralValueNode)(nil)
_ Expression = (*MethodExprNode)(nil)
_ Expression = (*OperandNameNode)(nil)
_ Expression = (*OperandNode)(nil)
_ Expression = (*OperandQualifiedNameNode)(nil)
_ Expression = (*ParenthesizedExpressionNode)(nil)
_ Expression = (*PrimaryExprNode)(nil)
_ Expression = (*UnaryExprNode)(nil)
_ Expression = (*ValueExpression)(nil)
falseVal = constant.MakeBool(false)
trueVal = constant.MakeBool(true)
unknown = constant.MakeUnknown()
)
func known(v constant.Value) bool { return v != nil && v.Kind() != constant.Unknown }
type valueCache struct {
v constant.Value
}
func (n *valueCache) Value() constant.Value {
if n.v != nil {
return n.v
}
return unknown
}
func (n *valueCache) setValue(v constant.Value) constant.Value {
n.v = v
return v
}
type valuer interface {
Value() constant.Value
}
type Expression interface {
Node
checkExpr(c *ctx) Expression
clone() Expression
typer
valuer
}
type ValueExpression struct {
Node
typeCache
valueCache
}
func (n *ValueExpression) checkExpr(c *ctx) Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *ValueExpression) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *BasicLitNode) Type() Type {
switch n.Ch() {
case CHAR:
return n.ctx.int32
case INT:
return n.ctx.untypedInt
case FLOAT:
return n.ctx.untypedFloat
case STRING:
return n.ctx.untypedString
default:
panic(todo("%v: %T %s %v", n.Position(), n, n.Source(false), n.Ch()))
}
}
func (n *BasicLitNode) Value() constant.Value {
return constant.MakeFromLiteral(n.Src(), n.Ch(), 0)
}
func (n *BasicLitNode) checkExpr(c *ctx) Expression {
n.ctx = c
if !known(n.Value()) {
c.err(n, "invalid literal: %s", n.Source(false))
}
return n
}
func (n *BasicLitNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandNameNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandNameNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandNameNode) checkExpr(c *ctx) Expression {
in, named := n.LexicalScope().lookup(n.Name)
switch x := named.n.(type) {
case *ConstSpecNode:
switch in.kind {
case UniverseScope:
switch n.Name.Src() {
case "iota":
if c.iota < 0 {
panic(todo("%v: %T %s", n.Position(), x, n.Source(false)))
}
r := &ValueExpression{Node: x}
r.t = c.untypedInt
r.v = constant.MakeInt64(c.iota)
return r
default:
panic(todo("%v: %T %s", n.Position(), x, n.Source(false)))
}
default:
return x.Expression
}
default:
panic(todo("%v: %T %s", n.Position(), x, n.Source(false)))
}
}
func (n *OperandNameNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *ParenthesizedExpressionNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *ParenthesizedExpressionNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *ParenthesizedExpressionNode) checkExpr(c *ctx) Expression {
return n.Expression.checkExpr(c)
}
func (n *ParenthesizedExpressionNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *LiteralValueNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *LiteralValueNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *LiteralValueNode) checkExpr(c *ctx) Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *LiteralValueNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *KeyedElementNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *KeyedElementNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *KeyedElementNode) checkExpr(c *ctx) Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *KeyedElementNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *CompositeLitNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *CompositeLitNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *CompositeLitNode) checkExpr(c *ctx) Expression {
if n == nil {
return nil
}
if !n.enter(c, n) {
return n
}
t := n.setType(c.checkType(n.LiteralType))
n.LiteralValue.check(c, t)
return n
}
func (n *CompositeLitNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *LiteralValueNode) check(c *ctx, t Type) {
if n == nil {
return
}
switch t.Kind() {
case Array:
n.checkArray(c, t.(*ArrayTypeNode))
default:
panic(todo("%v: %T %s %v", n.Position(), n, n.Source(false), t.Kind()))
}
}
func (n *LiteralValueNode) checkArray(c *ctx, t *ArrayTypeNode) {
panic(todo("%v: %T %s %s", n.Position(), n, t, n.Source(false)))
}
func (n *FunctionLitNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *FunctionLitNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *FunctionLitNode) checkExpr(c *ctx) Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *FunctionLitNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandNode) checkExpr(c *ctx) Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandQualifiedNameNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandQualifiedNameNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandQualifiedNameNode) checkExpr(c *ctx) Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *OperandQualifiedNameNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *ConversionNode) Type() Type {
return n.TypeNode
}
func (n *ConversionNode) checkExpr(c *ctx) Expression {
t := n.TypeNode.check(c)
n.Expression = n.Expression.checkExpr(c)
v := n.Expression.Value()
n.v = c.convertValue(n.Expression, v, t)
return n
}
func (n *ConversionNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *MethodExprNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *MethodExprNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *MethodExprNode) checkExpr(c *ctx) Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *MethodExprNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *PrimaryExprNode) Type() Type {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *PrimaryExprNode) Value() constant.Value {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *PrimaryExprNode) checkExpr(c *ctx) Expression {
switch x := n.PrimaryExpr.(type) {
case *OperandNameNode:
_, named := x.LexicalScope().lookup(x.Name)
switch y := named.n.(type) {
case *TypeDefNode:
switch z := n.Postfix.(type) {
case *ArgumentsNode:
cnv := &ConversionNode{
TypeNode: &TypeNameNode{
Name: x.Name,
lexicalScoper: x.lexicalScoper,
},
LPAREN: z.LPAREN,
Expression: z.Expression,
RPAREN: z.RPAREN,
}
return cnv.checkExpr(c)
default:
panic(todo("%v: %T %s", n.Position(), z, n.Source(false)))
}
default:
panic(todo("%v: %T %s", n.Position(), y, n.Source(false)))
}
default:
panic(todo("%v: %T %s", n.Position(), x, n.Source(false)))
}
n.PrimaryExpr = n.PrimaryExpr.checkExpr(c)
switch x := n.Postfix.(type) {
default:
panic(todo("%v: %T %s", n.Position(), x, n.Source(false)))
}
}
func (n *PrimaryExprNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *BinaryExpressionNode) checkExpr(c *ctx) (r Expression) {
if n == nil {
return nil
}
if n.typeCache.Type() != Invalid {
return n
}
n.LHS = n.LHS.checkExpr(c)
n.RHS = n.RHS.checkExpr(c)
lv := n.LHS.Value()
lt := n.LHS.Type()
rv := n.RHS.Value()
rt := n.RHS.Type()
defer func() {
if known(lv) && known(rv) && r != nil && !known(r.Value()) {
c.err(n.Op, "operation value not determined: %v %s %v", lv, n.Op.Src(), rv)
}
}()
switch n.Op.Ch() {
case SHL, SHR:
var u uint64
var uOk bool
n.t = lt
// The right operand in a shift expression must have integer type or be an
// untyped constant representable by a value of type uint.
switch {
case isIntegerType(rt):
// ok
case known(rv):
if isAnyArithmeticType(rt) {
rv = c.convertValue(n.RHS, rv, c.cfg.uint)
if known(rv) {
u, uOk = constant.Uint64Val(rv)
}
break
}
c.err(n.Op, "TODO %v", n.Op.Src())
return n
default:
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
return n
}
// If the left operand of a non-constant shift expression is an untyped
// constant, it is first implicitly converted to the type it would assume if
// the shift expression were replaced by its left operand alone.
switch {
case known(lv) && !known(rv):
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
// c.err(n.Op, "TODO %v", n.Op.Ch.str())
// return n
case known(lv) && known(rv):
if !uOk {
panic(todo(""))
}
n.t = lt
n.v = constant.Shift(lv, n.Op.Ch(), uint(u))
default:
trc("", known(lv), known(rv), u, uOk)
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
// n.t = lt
// n.v = constant.BinaryOp(lv, n.Op.Ch(), rv)
}
case ADD, SUB, MUL, QUO, REM:
if !isAnyArithmeticType(lt) || !isAnyArithmeticType(rt) {
c.err(n.Op, "TODO %v %v", lt, rt)
break
}
// For other binary operators, the operand types must be identical unless the
// operation involves shifts or untyped constants.
//
// Except for shift operations, if one operand is an untyped constant and the
// other operand is not, the constant is implicitly converted to the type of
// the other operand.
switch {
case isAnyUntypedType(lt) && isAnyUntypedType(rt):
n.v = constant.BinaryOp(lv, n.Op.Ch(), rv)
switch n.v.Kind() {
case constant.Int:
n.t = c.untypedInt
case constant.Float:
n.t = c.untypedFloat
default:
c.err(n.Op, "TODO %v %v %q %v %v -> %v %v", lv, lt, n.Op.Src(), rv, rt, n.v, n.v.Kind())
}
case isAnyUntypedType(lt) && !isAnyUntypedType(rt):
c.err(n.Op, "TODO %v %v %q %v %v", lv, lt, n.Op.Src(), rv, rt)
case !isAnyUntypedType(lt) && isAnyUntypedType(rt):
c.err(n.Op, "TODO %v %v %q %v %v", lv, lt, n.Op.Src(), rv, rt)
default: // case !isAnyUntypedType(lt) && !isAnyUntypedType(rt):
c.err(n.Op, "TODO %v %v %q %v %v", lv, lt, n.Op.Src(), rv, rt)
}
default:
c.err(n.Op, "TODO %v %v %q %v %v", lv, lt, n.Op.Src(), rv, rt)
}
return n
}
func (n *BinaryExpressionNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (n *UnaryExprNode) checkExpr(c *ctx) Expression {
if n == nil {
return nil
}
if n.typeCache.Type() != Invalid {
return n
}
n.UnaryExpr = n.UnaryExpr.checkExpr(c)
v := n.UnaryExpr.Value()
t := n.UnaryExpr.Type()
switch n.Op.Ch() {
default:
trc("", v, t)
panic(todo("%v: %T %s", n.Op.Position(), n, n.Source(false)))
}
}
func (n *UnaryExprNode) clone() Expression {
panic(todo("%v: %T %s", n.Position(), n, n.Source(false)))
}
func (c *ctx) convertValue(n Node, v constant.Value, to Type) (r constant.Value) {
if !known(v) {
return unknown
}
switch to.Kind() {
case
Complex128,
Complex64,
Function,
Interface,
Map,
Pointer,
Slice,
String,
Struct,
Tuple,
UnsafePointer,
UntypedBool,
UntypedComplex,
UntypedFloat,
UntypedInt,
UntypedNil,
UntypedRune,
UntypedString:
c.err(n, "TODO %v -> %v", v, to)
case Int:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
i64, ok := constant.Int64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
switch c.cfg.goarch {
case "386", "arm":
if i64 < math.MinInt32 || i64 > math.MaxInt32 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
}
return w
case Int8:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
i64, ok := constant.Int64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
if i64 < math.MinInt8 || i64 > math.MaxInt8 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Int16:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
i64, ok := constant.Int64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
if i64 < math.MinInt16 || i64 > math.MaxInt16 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Int32:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
i64, ok := constant.Int64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
if i64 < math.MinInt32 || i64 > math.MaxInt32 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Int64:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
if _, ok := constant.Int64Val(w); !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Uint, Uintptr:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
u64, ok := constant.Uint64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
switch c.cfg.goarch {
case "386", "arm":
if u64 > math.MaxUint32 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
}
return w
case Uint8:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
u64, ok := constant.Uint64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
if u64 > math.MaxUint8 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Uint16:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
u64, ok := constant.Uint64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
if u64 > math.MaxUint16 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Uint32:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
u64, ok := constant.Uint64Val(w)
if !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
if u64 > math.MaxUint32 {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Uint64:
w := constant.ToInt(v)
if !known(w) {
c.err(n, "cannot convert %s to %s", v, to)
return unknown
}
if _, ok := constant.Uint64Val(w); !ok {
c.err(n, "value %s overflows %s", v, to)
return unknown
}
return w
case Float32, Float64:
return constant.ToFloat(v)
case Bool:
if v.Kind() == constant.Bool {
return v
}
}
return unknown
}