feat: Waku v2 bridge

Issue #12610
This commit is contained in:
Michal Iskierko
2023-11-12 13:29:38 +01:00
parent 56e7bd01ca
commit 6d31343205
6716 changed files with 1982502 additions and 5891 deletions

95
vendor/github.com/mutecomm/go-sqlcipher/v4/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,95 @@
The code taken from https://github.com/mattn/go-sqlite3 is licensed under:
The MIT License (MIT)
Copyright (c) 2014 Yasuhiro Matsumoto
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
--------------------------------------------------------------------------------
The code taken from https://github.com/sqlcipher/sqlcipher is licensed under:
Copyright (c) 2008, ZETETIC LLC
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the ZETETIC LLC nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--------------------------------------------------------------------------------
SQLite itself is unlicensed with the following notice:
The author disclaims copyright to this source code. In place of
a legal notice, here is a blessing:
May you do good and not evil.
May you find forgiveness for yourself and forgive others.
May you share freely, never taking more than you give.
--------------------------------------------------------------------------------
The code taken from https://github.com/libtom/libtomcrypt is unlicensed with the
following notice:
The LibTom license
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>

37
vendor/github.com/mutecomm/go-sqlcipher/v4/MAINTENANCE generated vendored Normal file
View File

@@ -0,0 +1,37 @@
To maintain this code properly, the following three repositories have to be
tracked for changes (maintenance details below):
- https://github.com/mattn/go-sqlite
- https://github.com/sqlcipher/sqlcipher
- https://github.com/libtom/libtomcrypt
Update code from https://github.com/mattn/go-sqlite3
----------------------------------------------------
Current release: v1.14.5
Use ./track_go-sqlite3.sh
Update code from https://github.com/sqlcipher/sqlcipher
-------------------------------------------------------
Current release: v4.4.2
Execute:
./configure
make
Track files:
sqlite3.h
sqlite3.c
Update code from https://github.com/libtom/libtomcrypt
------------------------------------------------------
Current HEAD: cfbd7f8d364e1438555ff2a247f7e17add11840e
(from develop branch, 2020-08-29)
Use ./track_libtomcrypt.sh

11
vendor/github.com/mutecomm/go-sqlcipher/v4/Makefile generated vendored Normal file
View File

@@ -0,0 +1,11 @@
.PHONY: all test update-modules
all:
env GO111MODULE=on go build -v ./...
test:
gocheck -g -c -e _example -e sqlite3_test -novet
update-modules:
env GO111MODULE=on go get -u
env GO111MODULE=on go mod tidy -v

77
vendor/github.com/mutecomm/go-sqlcipher/v4/README.md generated vendored Normal file
View File

@@ -0,0 +1,77 @@
## go-sqlcipher
[![GoDoc](http://img.shields.io/badge/go-documentation-blue.svg?style=flat-square)](http://godoc.org/github.com/mutecomm/go-sqlcipher) [![CI](https://github.com/mutecomm/go-sqlcipher/workflows/CI/badge.svg)](https://github.com/mutecomm/go-sqlcipher/actions)
### Description
Self-contained Go sqlite3 driver with an AES-256 encrypted sqlite3 database
conforming to the built-in database/sql interface. It is based on:
- Go sqlite3 driver: https://github.com/mattn/go-sqlite3
- SQLite extension with AES-256 codec: https://github.com/sqlcipher/sqlcipher
- AES-256 implementation from: https://github.com/libtom/libtomcrypt
SQLite itself is part of SQLCipher.
### Incompatibilities of SQLCipher
The version tags of go-sqlcipher are the same as for SQLCipher.
**SQLCipher 4.x is incompatible with SQLCipher 3.x!**
go-sqlcipher does not implement any migration strategies at the moment.
So if you upgrade a major version of go-sqlcipher, you yourself are responsible
to upgrade existing database files.
See [migrating databases](https://www.zetetic.net/sqlcipher/sqlcipher-api/#Migrating_Databases) for details.
To upgrade your Go code to the 4.x series, change the import path to
"github.com/mutecomm/go-sqlcipher/v4"
### Installation
This package can be installed with the go get command:
go get github.com/mutecomm/go-sqlcipher
### Documentation
To create and open encrypted database files use the following DSN parameters:
```go
key := "2DD29CA851E7B56E4697B0E1F08507293D761A05CE4D1B628663F411A8086D99"
dbname := fmt.Sprintf("db?_pragma_key=x'%s'&_pragma_cipher_page_size=4096", key)
db, _ := sql.Open("sqlite3", dbname)
```
`_pragma_key` is the hex encoded 32 byte key (must be 64 characters long).
`_pragma_cipher_page_size` is the page size of the encrypted database (set if
you want a different value than the default size).
```go
key := url.QueryEscape("secret")
dbname := fmt.Sprintf("db?_pragma_key=%s&_pragma_cipher_page_size=4096", key)
db, _ := sql.Open("sqlite3", dbname)
```
This uses a passphrase directly as `_pragma_key` with the key derivation function in
SQLCipher. Do not forget the `url.QueryEscape()` call in your code!
See also [PRAGMA key](https://www.zetetic.net/sqlcipher/sqlcipher-api/#PRAGMA_key).
API documentation can be found here:
http://godoc.org/github.com/mutecomm/go-sqlcipher
Use the function
[sqlite3.IsEncrypted()](https://godoc.org/github.com/mutecomm/go-sqlcipher#IsEncrypted)
to check whether a database file is encrypted or not.
Examples can be found under the `./_example` directory
### License
The code of the originating packages is covered by their respective licenses.
See [LICENSE](LICENSE) file for details.

292
vendor/github.com/mutecomm/go-sqlcipher/v4/aes.c generated vendored Normal file
View File

@@ -0,0 +1,292 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/**
@file aes.c
Implementation of AES
*/
#include "tomcrypt_private.h"
#ifdef LTC_RIJNDAEL
#include "mbtls_aes.h"
static __thread mbedtls_aes_context ctx_encrypt;
#ifndef ENCRYPT_ONLY
static __thread mbedtls_aes_context ctx_decrypt;
#define SETUP rijndael_setup
#define ECB_ENC rijndael_ecb_encrypt
#define ECB_DEC rijndael_ecb_decrypt
#define ECB_DONE rijndael_done
#define ECB_TEST rijndael_test
#define ECB_KS rijndael_keysize
const struct ltc_cipher_descriptor rijndael_desc =
{
"rijndael",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
const struct ltc_cipher_descriptor aes_desc =
{
"aes",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#else
#define SETUP rijndael_enc_setup
#define ECB_ENC rijndael_enc_ecb_encrypt
#define ECB_KS rijndael_enc_keysize
#define ECB_DONE rijndael_enc_done
const struct ltc_cipher_descriptor rijndael_enc_desc =
{
"rijndael",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
const struct ltc_cipher_descriptor aes_enc_desc =
{
"aes",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#endif
/**
Initialize the AES (Rijndael) block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
return CRYPT_INVALID_ROUNDS;
}
mbedtls_aes_init(&ctx_encrypt);
if (mbedtls_aes_setkey_enc(&ctx_encrypt, key, keylen*8) != 0)
return CRYPT_INVALID_KEYSIZE;
memcpy(skey->rijndael.eK, ctx_encrypt.buf, sizeof(skey->rijndael.eK));
#ifndef ENCRYPT_ONLY
mbedtls_aes_init(&ctx_decrypt);
if (mbedtls_aes_setkey_dec(&ctx_decrypt, key, keylen*8) != 0)
return CRYPT_INVALID_KEYSIZE;
memcpy(skey->rijndael.dK, ctx_decrypt.buf, sizeof(skey->rijndael.dK));
#endif
skey->rijndael.Nr = ctx_encrypt.nr;
return CRYPT_OK;
}
/**
Encrypts a block of text with AES
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
ctx_encrypt.nr = skey->rijndael.Nr;
memset(ctx_encrypt.buf, 0, sizeof(ctx_encrypt.buf));
memcpy(ctx_encrypt.buf, skey->rijndael.eK, sizeof(skey->rijndael.eK));
return mbedtls_aes_crypt_ecb(&ctx_encrypt, MBEDTLS_AES_ENCRYPT, pt, ct) == 0 ? CRYPT_OK : CRYPT_ERROR;
}
#ifdef LTC_CLEAN_STACK
int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
return s_rijndael_ecb_encrypt(pt, ct, skey);
}
#endif
#ifndef ENCRYPT_ONLY
/**
Decrypts a block of text with AES
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
ctx_decrypt.nr = skey->rijndael.Nr;
memset(ctx_decrypt.buf, 0, sizeof(ctx_decrypt.buf));
memcpy(ctx_decrypt.buf, skey->rijndael.dK, sizeof(skey->rijndael.dK));
return mbedtls_aes_crypt_ecb(&ctx_decrypt, MBEDTLS_AES_DECRYPT, ct, pt) == 0 ? CRYPT_OK : CRYPT_ERROR;
}
#ifdef LTC_CLEAN_STACK
int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
return s_rijndael_ecb_decrypt(ct, pt, skey);
}
#endif
/**
Performs a self-test of the AES block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int ECB_TEST(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
}, {
24,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
}, {
32,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&key, sizeof(key));
if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i) ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
#endif /* ENCRYPT_ONLY */
/** Terminate the context
@param skey The scheduled key
*/
void ECB_DONE(symmetric_key *skey)
{
mbedtls_aes_free(&ctx_encrypt);
#ifndef ENCRYPT_ONLY
mbedtls_aes_free(&ctx_decrypt);
#endif
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int ECB_KS(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
}
if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
}
*keysize = 32;
return CRYPT_OK;
}
#endif

302
vendor/github.com/mutecomm/go-sqlcipher/v4/aesce.c generated vendored Normal file
View File

@@ -0,0 +1,302 @@
/*
* Armv8-A Cryptographic Extension support functions for Aarch64
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && defined(__clang__) && __clang_major__ >= 4
/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
*
* The intrinsic declaration are guarded by predefined ACLE macros in clang:
* these are normally only enabled by the -march option on the command line.
* By defining the macros ourselves we gain access to those declarations without
* requiring -march on the command line.
*
* `arm_neon.h` could be included by any header file, so we put these defines
* at the top of this file, before any includes.
*/
#define __ARM_FEATURE_CRYPTO 1
/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
*
* `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
* for older compilers.
*/
#define __ARM_FEATURE_AES 1
#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
#endif
#include <string.h>
#include "aesce.h"
#if defined(MBEDTLS_AESCE_C)
#if defined(MBEDTLS_HAVE_ARM64)
/* Compiler version checks. */
#if defined(__clang__)
# if __clang_major__ < 4
# error "Minimum version of Clang for MBEDTLS_AESCE_C is 4.0."
# endif
#elif defined(__GNUC__)
# if __GNUC__ < 6
# error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
# endif
#elif defined(_MSC_VER)
/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
* please update this and document of `MBEDTLS_AESCE_C` in
* `mbedtls_config.h`. */
# if _MSC_VER < 1929
# error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
# endif
#endif
#if !defined(__ARM_FEATURE_AES) || defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
# if defined(__clang__)
# pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function)
# define MBEDTLS_POP_TARGET_PRAGMA
# elif defined(__GNUC__)
# pragma GCC push_options
# pragma GCC target ("arch=armv8-a+crypto")
# define MBEDTLS_POP_TARGET_PRAGMA
# elif defined(_MSC_VER)
# error "Required feature(__ARM_FEATURE_AES) is not enabled."
# endif
#endif /* !__ARM_FEATURE_AES || MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
#include <arm_neon.h>
#if defined(__linux__)
#include <asm/hwcap.h>
#include <sys/auxv.h>
#endif
/*
* AES instruction support detection routine
*/
int mbedtls_aesce_has_support(void)
{
#if defined(__linux__)
unsigned long auxval = getauxval(AT_HWCAP);
return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
(HWCAP_ASIMD | HWCAP_AES);
#else
/* Assume AES instructions are supported. */
return 1;
#endif
}
static uint8x16_t aesce_encrypt_block(uint8x16_t block,
unsigned char *keys,
int rounds)
{
for (int i = 0; i < rounds - 1; i++) {
/* AES AddRoundKey, SubBytes, ShiftRows (in this order).
* AddRoundKey adds the round key for the previous round. */
block = vaeseq_u8(block, vld1q_u8(keys + i * 16));
/* AES mix columns */
block = vaesmcq_u8(block);
}
/* AES AddRoundKey for the previous round.
* SubBytes, ShiftRows for the final round. */
block = vaeseq_u8(block, vld1q_u8(keys + (rounds -1) * 16));
/* Final round: no MixColumns */
/* Final AddRoundKey */
block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
return block;
}
static uint8x16_t aesce_decrypt_block(uint8x16_t block,
unsigned char *keys,
int rounds)
{
for (int i = 0; i < rounds - 1; i++) {
/* AES AddRoundKey, SubBytes, ShiftRows */
block = vaesdq_u8(block, vld1q_u8(keys + i * 16));
/* AES inverse MixColumns for the next round.
*
* This means that we switch the order of the inverse AddRoundKey and
* inverse MixColumns operations. We have to do this as AddRoundKey is
* done in an atomic instruction together with the inverses of SubBytes
* and ShiftRows.
*
* It works because MixColumns is a linear operation over GF(2^8) and
* AddRoundKey is an exclusive or, which is equivalent to addition over
* GF(2^8). (The inverse of MixColumns needs to be applied to the
* affected round keys separately which has been done when the
* decryption round keys were calculated.) */
block = vaesimcq_u8(block);
}
/* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
* last full round. */
block = vaesdq_u8(block, vld1q_u8(keys + (rounds - 1) * 16));
/* Inverse AddRoundKey for inverting the initial round key addition. */
block = veorq_u8(block, vld1q_u8(keys + rounds * 16));
return block;
}
/*
* AES-ECB block en(de)cryption
*/
int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
uint8x16_t block = vld1q_u8(&input[0]);
unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
if (mode == MBEDTLS_AES_ENCRYPT) {
block = aesce_encrypt_block(block, keys, ctx->nr);
} else {
block = aesce_decrypt_block(block, keys, ctx->nr);
}
vst1q_u8(&output[0], block);
return 0;
}
/*
* Compute decryption round keys from encryption round keys
*/
void mbedtls_aesce_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey,
int nr)
{
int i, j;
j = nr;
vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
for (i = 1, j--; j > 0; i++, j--) {
vst1q_u8(invkey + i * 16,
vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
}
vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
}
static inline uint32_t aes_rot_word(uint32_t word)
{
return (word << (32 - 8)) | (word >> 8);
}
static inline uint32_t aes_sub_word(uint32_t in)
{
uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
uint8x16_t zero = vdupq_n_u8(0);
/* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
* the correct result as ShiftRows doesn't change the first row. */
v = vaeseq_u8(zero, v);
return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
}
/*
* Key expansion function
*/
static void aesce_setkey_enc(unsigned char *rk,
const unsigned char *key,
const size_t key_bit_length)
{
static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
0x20, 0x40, 0x80, 0x1b, 0x36 };
/* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
* - Section 5, Nr = Nk + 6
* - Section 5.2, the length of round keys is Nb*(Nr+1)
*/
const uint32_t key_len_in_words = key_bit_length / 32; /* Nk */
const size_t round_key_len_in_words = 4; /* Nb */
const size_t rounds_needed = key_len_in_words + 6; /* Nr */
const size_t round_keys_len_in_words =
round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
memcpy(rk, key, key_len_in_words * 4);
for (uint32_t *rki = (uint32_t *) rk;
rki + key_len_in_words < rko_end;
rki += key_len_in_words) {
size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
uint32_t *rko;
rko = rki + key_len_in_words;
rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
rko[0] ^= rcon[iteration] ^ rki[0];
rko[1] = rko[0] ^ rki[1];
rko[2] = rko[1] ^ rki[2];
rko[3] = rko[2] ^ rki[3];
if (rko + key_len_in_words > rko_end) {
/* Do not write overflow words.*/
continue;
}
switch (key_bit_length) {
case 128:
break;
case 192:
rko[4] = rko[3] ^ rki[4];
rko[5] = rko[4] ^ rki[5];
break;
case 256:
rko[4] = aes_sub_word(rko[3]) ^ rki[4];
rko[5] = rko[4] ^ rki[5];
rko[6] = rko[5] ^ rki[6];
rko[7] = rko[6] ^ rki[7];
break;
}
}
}
/*
* Key expansion, wrapper
*/
int mbedtls_aesce_setkey_enc(unsigned char *rk,
const unsigned char *key,
size_t bits)
{
switch (bits) {
case 128:
case 192:
case 256:
aesce_setkey_enc(rk, key, bits);
break;
default:
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
return 0;
}
#if defined(MBEDTLS_POP_TARGET_PRAGMA)
#if defined(__clang__)
#pragma clang attribute pop
#elif defined(__GNUC__)
#pragma GCC pop_options
#endif
#undef MBEDTLS_POP_TARGET_PRAGMA
#endif
#endif /* MBEDTLS_HAVE_ARM64 */
#endif /* MBEDTLS_AESCE_C */

90
vendor/github.com/mutecomm/go-sqlcipher/v4/aesce.h generated vendored Normal file
View File

@@ -0,0 +1,90 @@
/**
* \file aesce.h
*
* \brief Support hardware AES acceleration on Armv8-A processors with
* the Armv8-A Cryptographic Extension in AArch64 execution state.
*
* \warning These functions are only for internal use by other library
* functions; you must not call them directly.
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBEDTLS_AESCE_H
#define MBEDTLS_AESCE_H
#include "mbtls_aes.h"
#if defined(MBEDTLS_HAVE_ARM64)
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Internal function to detect the crypto extension in CPUs.
*
* \return 1 if CPU has support for the feature, 0 otherwise
*/
int mbedtls_aesce_has_support(void);
/**
* \brief Internal AES-ECB block encryption and decryption
*
* \param ctx AES context
* \param mode MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT
* \param input 16-byte input block
* \param output 16-byte output block
*
* \return 0 on success (cannot fail)
*/
int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16]);
/**
* \brief Internal round key inversion. This function computes
* decryption round keys from the encryption round keys.
*
* \param invkey Round keys for the equivalent inverse cipher
* \param fwdkey Original round keys (for encryption)
* \param nr Number of rounds (that is, number of round keys minus one)
*/
void mbedtls_aesce_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey,
int nr);
/**
* \brief Internal key expansion for encryption
*
* \param rk Destination buffer where the round keys are written
* \param key Encryption key
* \param bits Key size in bits (must be 128, 192 or 256)
*
* \return 0 if successful, or MBEDTLS_ERR_AES_INVALID_KEY_LENGTH
*/
int mbedtls_aesce_setkey_enc(unsigned char *rk,
const unsigned char *key,
size_t bits);
#ifdef __cplusplus
}
#endif
#endif /* MBEDTLS_HAVE_ARM64 */
#endif /* MBEDTLS_AESCE_H */

331
vendor/github.com/mutecomm/go-sqlcipher/v4/aesni.c generated vendored Normal file
View File

@@ -0,0 +1,331 @@
/*
* AES-NI support functions
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
* [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
*/
#include "aesni.h"
#if defined(MBEDTLS_AESNI_C)
#include <string.h>
#if defined(MBEDTLS_AESNI_HAVE_CODE)
/*
* AES-NI support detection routine
*/
int mbedtls_aesni_has_support(unsigned int what)
{
static int done = 0;
static unsigned int c = 0;
if (!done) {
/* AESNI using asm */
asm ("movl $1, %%eax \n\t"
"cpuid \n\t"
: "=c" (c)
:
: "eax", "ebx", "edx");
done = 1;
}
return (c & what) != 0;
}
/*
* Binutils needs to be at least 2.19 to support AES-NI instructions.
* Unfortunately, a lot of users have a lower version now (2014-04).
* Emit bytecode directly in order to support "old" version of gas.
*
* Opcodes from the Intel architecture reference manual, vol. 3.
* We always use registers, so we don't need prefixes for memory operands.
* Operand macros are in gas order (src, dst) as opposed to Intel order
* (dst, src) in order to blend better into the surrounding assembly code.
*/
#define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
#define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
#define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
#define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
#define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
#define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
#define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
#define xmm0_xmm0 "0xC0"
#define xmm0_xmm1 "0xC8"
#define xmm0_xmm2 "0xD0"
#define xmm0_xmm3 "0xD8"
#define xmm0_xmm4 "0xE0"
#define xmm1_xmm0 "0xC1"
#define xmm1_xmm2 "0xD1"
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16])
{
asm ("movdqu (%3), %%xmm0 \n\t" // load input
"movdqu (%1), %%xmm1 \n\t" // load round key 0
"pxor %%xmm1, %%xmm0 \n\t" // round 0
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // normal rounds = nr - 1
"test %2, %2 \n\t" // mode?
"jz 2f \n\t" // 0 = decrypt
"1: \n\t" // encryption loop
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENC(xmm1_xmm0) // do round
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // loop
"jnz 1b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENCLAST(xmm1_xmm0) // last round
"jmp 3f \n\t"
"2: \n\t" // decryption loop
"movdqu (%1), %%xmm1 \n\t"
AESDEC(xmm1_xmm0) // do round
"add $16, %1 \n\t"
"subl $1, %0 \n\t"
"jnz 2b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESDECLAST(xmm1_xmm0) // last round
"3: \n\t"
"movdqu %%xmm0, (%4) \n\t" // export output
:
: "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
: "memory", "cc", "xmm0", "xmm1");
return 0;
}
/*
* Compute decryption round keys from encryption round keys
*/
void mbedtls_aesni_inverse_key(unsigned char *invkey, const unsigned char *fwdkey, int nr)
{
unsigned char *ik = invkey;
const unsigned char *fk = fwdkey + 16 * nr;
memcpy(ik, fk, 16);
for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
asm ("movdqu (%0), %%xmm0 \n\t"
AESIMC(xmm0_xmm0)
"movdqu %%xmm0, (%1) \n\t"
:
: "r" (fk), "r" (ik)
: "memory", "xmm0");
}
memcpy(ik, fk, 16);
}
/*
* Key expansion, 128-bit case
*/
static void aesni_setkey_enc_128(unsigned char *rk, const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
"movdqu %%xmm0, (%0) \n\t" // as round key 0
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next round key.
*
* On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
"pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm1 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
"add $16, %0 \n\t" // point to next round key
"movdqu %%xmm0, (%0) \n\t" // write it
"ret \n\t"
/* Main "loop" */
"2: \n\t"
AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
/*
* Key expansion, 192-bit case
*/
static void aesni_setkey_enc_192(unsigned char *rk, const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movq 16(%1), %%xmm1 \n\t"
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next 6 quarter-keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
* and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
*
* On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
"1: \n\t"
"pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
"pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
"pslldq $4, %%xmm0 \n\t" // etc
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
"pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
"pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
"pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
"movq %%xmm1, (%0) \n\t"
"add $8, %0 \n\t"
"ret \n\t"
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
/*
* Key expansion, 256-bit case
*/
static void aesni_setkey_enc_256(unsigned char *rk, const unsigned char *key)
{
asm ("movdqu (%1), %%xmm0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
"add $16, %0 \n\t"
"movdqu 16(%1), %%xmm1 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"jmp 2f \n\t" // skip auxiliary routine
/*
* Finish generating the next two round keys.
*
* On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
* xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
*
* On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
* and those have been written to the output buffer.
*/
"1: \n\t"
"pshufd $0xff, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm0, %%xmm2 \n\t"
"pslldq $4, %%xmm0 \n\t"
"pxor %%xmm2, %%xmm0 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm0, (%0) \n\t"
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
AESKEYGENA(xmm0_xmm2, "0x00")
"pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
"pxor %%xmm2, %%xmm1 \n\t"
"add $16, %0 \n\t"
"movdqu %%xmm1, (%0) \n\t"
"ret \n\t"
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
"2: \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
/*
* Key expansion, wrapper
*/
int mbedtls_aesni_setkey_enc(unsigned char *rk, const unsigned char *key, size_t bits)
{
switch (bits) {
case 128: aesni_setkey_enc_128(rk, key); break;
case 192: aesni_setkey_enc_192(rk, key); break;
case 256: aesni_setkey_enc_256(rk, key); break;
default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
return 0;
}
#endif /* MBEDTLS_AESNI_HAVE_CODE */
#endif /* MBEDTLS_AESNI_C */

138
vendor/github.com/mutecomm/go-sqlcipher/v4/aesni.h generated vendored Normal file
View File

@@ -0,0 +1,138 @@
/**
* \file aesni.h
*
* \brief AES-NI for hardware AES acceleration on some Intel processors
*
* \warning These functions are only for internal use by other library
* functions; you must not call them directly.
*/
/*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MBEDTLS_AESNI_H
#define MBEDTLS_AESNI_H
#include "mbtls_aes.h"
#define MBEDTLS_AESNI_AES 0x02000000u
#define MBEDTLS_AESNI_CLMUL 0x00000002u
#if defined(MBEDTLS_AESNI_C)
/* Can we do AESNI with intrinsics?
* (Only implemented with certain compilers, only for certain targets.)
*/
#undef MBEDTLS_AESNI_HAVE_INTRINSICS
#if defined(_MSC_VER)
/* Visual Studio supports AESNI intrinsics since VS 2008 SP1. We only support
* VS 2013 and up for other reasons anyway, so no need to check the version. */
#define MBEDTLS_AESNI_HAVE_INTRINSICS
#endif
/* GCC-like compilers: currently, we only support intrinsics if the requisite
* target flag is enabled when building the library (e.g. `gcc -mpclmul -msse2`
* or `clang -maes -mpclmul`). */
#if defined(__GNUC__) && defined(__AES__) && defined(__PCLMUL__)
#define MBEDTLS_AESNI_HAVE_INTRINSICS
#endif
/* Choose the implementation of AESNI, if one is available. */
#undef MBEDTLS_AESNI_HAVE_CODE
/* To minimize disruption when releasing the intrinsics-based implementation,
* favor the assembly-based implementation if it's available. We intend to
* revise this in a later release of Mbed TLS 3.x. In the long run, we will
* likely remove the assembly implementation. */
#if defined(MBEDTLS_HAVE_X86_64)
#define MBEDTLS_AESNI_HAVE_CODE 1 // via assembly
#elif defined(MBEDTLS_AESNI_HAVE_INTRINSICS)
#define MBEDTLS_AESNI_HAVE_CODE 2 // via intrinsics
#endif
#if defined(MBEDTLS_AESNI_HAVE_CODE)
#ifdef __cplusplus
extern "C" {
#endif
/**
* \brief Internal function to detect the AES-NI feature in CPUs.
*
* \note This function is only for internal use by other library
* functions; you must not call it directly.
*
* \param what The feature to detect
* (MBEDTLS_AESNI_AES or MBEDTLS_AESNI_CLMUL)
*
* \return 1 if CPU has support for the feature, 0 otherwise
*/
int mbedtls_aesni_has_support(unsigned int what);
/**
* \brief Internal AES-NI AES-ECB block encryption and decryption
*
* \note This function is only for internal use by other library
* functions; you must not call it directly.
*
* \param ctx AES context
* \param mode MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT
* \param input 16-byte input block
* \param output 16-byte output block
*
* \return 0 on success (cannot fail)
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16]);
/**
* \brief Internal round key inversion. This function computes
* decryption round keys from the encryption round keys.
*
* \note This function is only for internal use by other library
* functions; you must not call it directly.
*
* \param invkey Round keys for the equivalent inverse cipher
* \param fwdkey Original round keys (for encryption)
* \param nr Number of rounds (that is, number of round keys minus one)
*/
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey,
int nr);
/**
* \brief Internal key expansion for encryption
*
* \note This function is only for internal use by other library
* functions; you must not call it directly.
*
* \param rk Destination buffer where the round keys are written
* \param key Encryption key
* \param bits Key size in bits (must be 128, 192 or 256)
*
* \return 0 if successful, or MBEDTLS_ERR_AES_INVALID_KEY_LENGTH
*/
int mbedtls_aesni_setkey_enc(unsigned char *rk,
const unsigned char *key,
size_t bits);
#ifdef __cplusplus
}
#endif
#endif /* MBEDTLS_AESNI_HAVE_CODE */
#endif /* MBEDTLS_AESNI_C */
#endif /* MBEDTLS_AESNI_H */

85
vendor/github.com/mutecomm/go-sqlcipher/v4/backup.go generated vendored Normal file
View File

@@ -0,0 +1,85 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package sqlite3
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
*/
import "C"
import (
"runtime"
"unsafe"
)
// SQLiteBackup implement interface of Backup.
type SQLiteBackup struct {
b *C.sqlite3_backup
}
// Backup make backup from src to dest.
func (destConn *SQLiteConn) Backup(dest string, srcConn *SQLiteConn, src string) (*SQLiteBackup, error) {
destptr := C.CString(dest)
defer C.free(unsafe.Pointer(destptr))
srcptr := C.CString(src)
defer C.free(unsafe.Pointer(srcptr))
if b := C.sqlite3_backup_init(destConn.db, destptr, srcConn.db, srcptr); b != nil {
bb := &SQLiteBackup{b: b}
runtime.SetFinalizer(bb, (*SQLiteBackup).Finish)
return bb, nil
}
return nil, destConn.lastError()
}
// Step to backs up for one step. Calls the underlying `sqlite3_backup_step`
// function. This function returns a boolean indicating if the backup is done
// and an error signalling any other error. Done is returned if the underlying
// C function returns SQLITE_DONE (Code 101)
func (b *SQLiteBackup) Step(p int) (bool, error) {
ret := C.sqlite3_backup_step(b.b, C.int(p))
if ret == C.SQLITE_DONE {
return true, nil
} else if ret != 0 && ret != C.SQLITE_LOCKED && ret != C.SQLITE_BUSY {
return false, Error{Code: ErrNo(ret)}
}
return false, nil
}
// Remaining return whether have the rest for backup.
func (b *SQLiteBackup) Remaining() int {
return int(C.sqlite3_backup_remaining(b.b))
}
// PageCount return count of pages.
func (b *SQLiteBackup) PageCount() int {
return int(C.sqlite3_backup_pagecount(b.b))
}
// Finish close backup.
func (b *SQLiteBackup) Finish() error {
return b.Close()
}
// Close close backup.
func (b *SQLiteBackup) Close() error {
ret := C.sqlite3_backup_finish(b.b)
// sqlite3_backup_finish() never fails, it just returns the
// error code from previous operations, so clean up before
// checking and returning an error
b.b = nil
runtime.SetFinalizer(b, nil)
if ret != 0 {
return Error{Code: ErrNo(ret)}
}
return nil
}

View File

@@ -0,0 +1,32 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
#include "tomcrypt.h"
/**
@file burn_stack.c
Burn stack, Tom St Denis
*/
/**
Burn some stack memory
@param len amount of stack to burn in bytes
*/
void burn_stack(unsigned long len)
{
unsigned char buf[len];
zeromem(buf, sizeof(buf));
}
/* $Source$ */
/* $Revision$ */
/* $Date$ */

392
vendor/github.com/mutecomm/go-sqlcipher/v4/callback.go generated vendored Normal file
View File

@@ -0,0 +1,392 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package sqlite3
// You can't export a Go function to C and have definitions in the C
// preamble in the same file, so we have to have callbackTrampoline in
// its own file. Because we need a separate file anyway, the support
// code for SQLite custom functions is in here.
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
void _sqlite3_result_text(sqlite3_context* ctx, const char* s);
void _sqlite3_result_blob(sqlite3_context* ctx, const void* b, int l);
*/
import "C"
import (
"errors"
"fmt"
"math"
"reflect"
"sync"
"unsafe"
)
//export callbackTrampoline
func callbackTrampoline(ctx *C.sqlite3_context, argc int, argv **C.sqlite3_value) {
args := (*[(math.MaxInt32 - 1) / unsafe.Sizeof((*C.sqlite3_value)(nil))]*C.sqlite3_value)(unsafe.Pointer(argv))[:argc:argc]
fi := lookupHandle(C.sqlite3_user_data(ctx)).(*functionInfo)
fi.Call(ctx, args)
}
//export stepTrampoline
func stepTrampoline(ctx *C.sqlite3_context, argc C.int, argv **C.sqlite3_value) {
args := (*[(math.MaxInt32 - 1) / unsafe.Sizeof((*C.sqlite3_value)(nil))]*C.sqlite3_value)(unsafe.Pointer(argv))[:int(argc):int(argc)]
ai := lookupHandle(C.sqlite3_user_data(ctx)).(*aggInfo)
ai.Step(ctx, args)
}
//export doneTrampoline
func doneTrampoline(ctx *C.sqlite3_context) {
ai := lookupHandle(C.sqlite3_user_data(ctx)).(*aggInfo)
ai.Done(ctx)
}
//export compareTrampoline
func compareTrampoline(handlePtr unsafe.Pointer, la C.int, a *C.char, lb C.int, b *C.char) C.int {
cmp := lookupHandle(handlePtr).(func(string, string) int)
return C.int(cmp(C.GoStringN(a, la), C.GoStringN(b, lb)))
}
//export commitHookTrampoline
func commitHookTrampoline(handle unsafe.Pointer) int {
callback := lookupHandle(handle).(func() int)
return callback()
}
//export rollbackHookTrampoline
func rollbackHookTrampoline(handle unsafe.Pointer) {
callback := lookupHandle(handle).(func())
callback()
}
//export updateHookTrampoline
func updateHookTrampoline(handle unsafe.Pointer, op int, db *C.char, table *C.char, rowid int64) {
callback := lookupHandle(handle).(func(int, string, string, int64))
callback(op, C.GoString(db), C.GoString(table), rowid)
}
//export authorizerTrampoline
func authorizerTrampoline(handle unsafe.Pointer, op int, arg1 *C.char, arg2 *C.char, arg3 *C.char) int {
callback := lookupHandle(handle).(func(int, string, string, string) int)
return callback(op, C.GoString(arg1), C.GoString(arg2), C.GoString(arg3))
}
//export preUpdateHookTrampoline
func preUpdateHookTrampoline(handle unsafe.Pointer, dbHandle uintptr, op int, db *C.char, table *C.char, oldrowid int64, newrowid int64) {
hval := lookupHandleVal(handle)
data := SQLitePreUpdateData{
Conn: hval.db,
Op: op,
DatabaseName: C.GoString(db),
TableName: C.GoString(table),
OldRowID: oldrowid,
NewRowID: newrowid,
}
callback := hval.val.(func(SQLitePreUpdateData))
callback(data)
}
// Use handles to avoid passing Go pointers to C.
type handleVal struct {
db *SQLiteConn
val interface{}
}
var handleLock sync.Mutex
var handleVals = make(map[unsafe.Pointer]handleVal)
func newHandle(db *SQLiteConn, v interface{}) unsafe.Pointer {
handleLock.Lock()
defer handleLock.Unlock()
val := handleVal{db: db, val: v}
var p unsafe.Pointer = C.malloc(C.size_t(1))
if p == nil {
panic("can't allocate 'cgo-pointer hack index pointer': ptr == nil")
}
handleVals[p] = val
return p
}
func lookupHandleVal(handle unsafe.Pointer) handleVal {
handleLock.Lock()
defer handleLock.Unlock()
return handleVals[handle]
}
func lookupHandle(handle unsafe.Pointer) interface{} {
return lookupHandleVal(handle).val
}
func deleteHandles(db *SQLiteConn) {
handleLock.Lock()
defer handleLock.Unlock()
for handle, val := range handleVals {
if val.db == db {
delete(handleVals, handle)
C.free(handle)
}
}
}
// This is only here so that tests can refer to it.
type callbackArgRaw C.sqlite3_value
type callbackArgConverter func(*C.sqlite3_value) (reflect.Value, error)
type callbackArgCast struct {
f callbackArgConverter
typ reflect.Type
}
func (c callbackArgCast) Run(v *C.sqlite3_value) (reflect.Value, error) {
val, err := c.f(v)
if err != nil {
return reflect.Value{}, err
}
if !val.Type().ConvertibleTo(c.typ) {
return reflect.Value{}, fmt.Errorf("cannot convert %s to %s", val.Type(), c.typ)
}
return val.Convert(c.typ), nil
}
func callbackArgInt64(v *C.sqlite3_value) (reflect.Value, error) {
if C.sqlite3_value_type(v) != C.SQLITE_INTEGER {
return reflect.Value{}, fmt.Errorf("argument must be an INTEGER")
}
return reflect.ValueOf(int64(C.sqlite3_value_int64(v))), nil
}
func callbackArgBool(v *C.sqlite3_value) (reflect.Value, error) {
if C.sqlite3_value_type(v) != C.SQLITE_INTEGER {
return reflect.Value{}, fmt.Errorf("argument must be an INTEGER")
}
i := int64(C.sqlite3_value_int64(v))
val := false
if i != 0 {
val = true
}
return reflect.ValueOf(val), nil
}
func callbackArgFloat64(v *C.sqlite3_value) (reflect.Value, error) {
if C.sqlite3_value_type(v) != C.SQLITE_FLOAT {
return reflect.Value{}, fmt.Errorf("argument must be a FLOAT")
}
return reflect.ValueOf(float64(C.sqlite3_value_double(v))), nil
}
func callbackArgBytes(v *C.sqlite3_value) (reflect.Value, error) {
switch C.sqlite3_value_type(v) {
case C.SQLITE_BLOB:
l := C.sqlite3_value_bytes(v)
p := C.sqlite3_value_blob(v)
return reflect.ValueOf(C.GoBytes(p, l)), nil
case C.SQLITE_TEXT:
l := C.sqlite3_value_bytes(v)
c := unsafe.Pointer(C.sqlite3_value_text(v))
return reflect.ValueOf(C.GoBytes(c, l)), nil
default:
return reflect.Value{}, fmt.Errorf("argument must be BLOB or TEXT")
}
}
func callbackArgString(v *C.sqlite3_value) (reflect.Value, error) {
switch C.sqlite3_value_type(v) {
case C.SQLITE_BLOB:
l := C.sqlite3_value_bytes(v)
p := (*C.char)(C.sqlite3_value_blob(v))
return reflect.ValueOf(C.GoStringN(p, l)), nil
case C.SQLITE_TEXT:
c := (*C.char)(unsafe.Pointer(C.sqlite3_value_text(v)))
return reflect.ValueOf(C.GoString(c)), nil
default:
return reflect.Value{}, fmt.Errorf("argument must be BLOB or TEXT")
}
}
func callbackArgGeneric(v *C.sqlite3_value) (reflect.Value, error) {
switch C.sqlite3_value_type(v) {
case C.SQLITE_INTEGER:
return callbackArgInt64(v)
case C.SQLITE_FLOAT:
return callbackArgFloat64(v)
case C.SQLITE_TEXT:
return callbackArgString(v)
case C.SQLITE_BLOB:
return callbackArgBytes(v)
case C.SQLITE_NULL:
// Interpret NULL as a nil byte slice.
var ret []byte
return reflect.ValueOf(ret), nil
default:
panic("unreachable")
}
}
func callbackArg(typ reflect.Type) (callbackArgConverter, error) {
switch typ.Kind() {
case reflect.Interface:
if typ.NumMethod() != 0 {
return nil, errors.New("the only supported interface type is interface{}")
}
return callbackArgGeneric, nil
case reflect.Slice:
if typ.Elem().Kind() != reflect.Uint8 {
return nil, errors.New("the only supported slice type is []byte")
}
return callbackArgBytes, nil
case reflect.String:
return callbackArgString, nil
case reflect.Bool:
return callbackArgBool, nil
case reflect.Int64:
return callbackArgInt64, nil
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Int, reflect.Uint:
c := callbackArgCast{callbackArgInt64, typ}
return c.Run, nil
case reflect.Float64:
return callbackArgFloat64, nil
case reflect.Float32:
c := callbackArgCast{callbackArgFloat64, typ}
return c.Run, nil
default:
return nil, fmt.Errorf("don't know how to convert to %s", typ)
}
}
func callbackConvertArgs(argv []*C.sqlite3_value, converters []callbackArgConverter, variadic callbackArgConverter) ([]reflect.Value, error) {
var args []reflect.Value
if len(argv) < len(converters) {
return nil, fmt.Errorf("function requires at least %d arguments", len(converters))
}
for i, arg := range argv[:len(converters)] {
v, err := converters[i](arg)
if err != nil {
return nil, err
}
args = append(args, v)
}
if variadic != nil {
for _, arg := range argv[len(converters):] {
v, err := variadic(arg)
if err != nil {
return nil, err
}
args = append(args, v)
}
}
return args, nil
}
type callbackRetConverter func(*C.sqlite3_context, reflect.Value) error
func callbackRetInteger(ctx *C.sqlite3_context, v reflect.Value) error {
switch v.Type().Kind() {
case reflect.Int64:
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Int, reflect.Uint:
v = v.Convert(reflect.TypeOf(int64(0)))
case reflect.Bool:
b := v.Interface().(bool)
if b {
v = reflect.ValueOf(int64(1))
} else {
v = reflect.ValueOf(int64(0))
}
default:
return fmt.Errorf("cannot convert %s to INTEGER", v.Type())
}
C.sqlite3_result_int64(ctx, C.sqlite3_int64(v.Interface().(int64)))
return nil
}
func callbackRetFloat(ctx *C.sqlite3_context, v reflect.Value) error {
switch v.Type().Kind() {
case reflect.Float64:
case reflect.Float32:
v = v.Convert(reflect.TypeOf(float64(0)))
default:
return fmt.Errorf("cannot convert %s to FLOAT", v.Type())
}
C.sqlite3_result_double(ctx, C.double(v.Interface().(float64)))
return nil
}
func callbackRetBlob(ctx *C.sqlite3_context, v reflect.Value) error {
if v.Type().Kind() != reflect.Slice || v.Type().Elem().Kind() != reflect.Uint8 {
return fmt.Errorf("cannot convert %s to BLOB", v.Type())
}
i := v.Interface()
if i == nil || len(i.([]byte)) == 0 {
C.sqlite3_result_null(ctx)
} else {
bs := i.([]byte)
C._sqlite3_result_blob(ctx, unsafe.Pointer(&bs[0]), C.int(len(bs)))
}
return nil
}
func callbackRetText(ctx *C.sqlite3_context, v reflect.Value) error {
if v.Type().Kind() != reflect.String {
return fmt.Errorf("cannot convert %s to TEXT", v.Type())
}
C._sqlite3_result_text(ctx, C.CString(v.Interface().(string)))
return nil
}
func callbackRetNil(ctx *C.sqlite3_context, v reflect.Value) error {
return nil
}
func callbackRet(typ reflect.Type) (callbackRetConverter, error) {
switch typ.Kind() {
case reflect.Interface:
errorInterface := reflect.TypeOf((*error)(nil)).Elem()
if typ.Implements(errorInterface) {
return callbackRetNil, nil
}
fallthrough
case reflect.Slice:
if typ.Elem().Kind() != reflect.Uint8 {
return nil, errors.New("the only supported slice type is []byte")
}
return callbackRetBlob, nil
case reflect.String:
return callbackRetText, nil
case reflect.Bool, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Int, reflect.Uint:
return callbackRetInteger, nil
case reflect.Float32, reflect.Float64:
return callbackRetFloat, nil
default:
return nil, fmt.Errorf("don't know how to convert to %s", typ)
}
}
func callbackError(ctx *C.sqlite3_context, err error) {
cstr := C.CString(err.Error())
defer C.free(unsafe.Pointer(cstr))
C.sqlite3_result_error(ctx, cstr, C.int(-1))
}
// Test support code. Tests are not allowed to import "C", so we can't
// declare any functions that use C.sqlite3_value.
func callbackSyntheticForTests(v reflect.Value, err error) callbackArgConverter {
return func(*C.sqlite3_value) (reflect.Value, error) {
return v, err
}
}

View File

@@ -0,0 +1,84 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file cbc_decrypt.c
CBC implementation, encrypt block, Tom St Denis
*/
#ifdef LTC_CBC_MODE
/**
CBC decrypt
@param ct Ciphertext
@param pt [out] Plaintext
@param len The number of bytes to process (must be multiple of block length)
@param cbc CBC state
@return CRYPT_OK if successful
*/
int cbc_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CBC *cbc)
{
int x, err;
unsigned char tmp[16];
#ifdef LTC_FAST
LTC_FAST_TYPE tmpy;
#else
unsigned char tmpy;
#endif
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(cbc != NULL);
if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) {
return err;
}
/* is blocklen valid? */
if (cbc->blocklen < 1 || cbc->blocklen > (int)sizeof(cbc->IV) || cbc->blocklen > (int)sizeof(tmp)) {
return CRYPT_INVALID_ARG;
}
if (len % cbc->blocklen) {
return CRYPT_INVALID_ARG;
}
#ifdef LTC_FAST
if (cbc->blocklen % sizeof(LTC_FAST_TYPE)) {
return CRYPT_INVALID_ARG;
}
#endif
if (cipher_descriptor[cbc->cipher].accel_cbc_decrypt != NULL) {
return cipher_descriptor[cbc->cipher].accel_cbc_decrypt(ct, pt, len / cbc->blocklen, cbc->IV, &cbc->key);
}
while (len) {
/* decrypt */
if ((err = cipher_descriptor[cbc->cipher].ecb_decrypt(ct, tmp, &cbc->key)) != CRYPT_OK) {
return err;
}
/* xor IV against plaintext */
#if defined(LTC_FAST)
for (x = 0; x < cbc->blocklen; x += sizeof(LTC_FAST_TYPE)) {
tmpy = *(LTC_FAST_TYPE_PTR_CAST((unsigned char *)cbc->IV + x)) ^ *(LTC_FAST_TYPE_PTR_CAST((unsigned char *)tmp + x));
*(LTC_FAST_TYPE_PTR_CAST((unsigned char *)cbc->IV + x)) = *(LTC_FAST_TYPE_PTR_CAST((unsigned char *)ct + x));
*(LTC_FAST_TYPE_PTR_CAST((unsigned char *)pt + x)) = tmpy;
}
#else
for (x = 0; x < cbc->blocklen; x++) {
tmpy = tmp[x] ^ cbc->IV[x];
cbc->IV[x] = ct[x];
pt[x] = tmpy;
}
#endif
ct += cbc->blocklen;
pt += cbc->blocklen;
len -= cbc->blocklen;
}
return CRYPT_OK;
}
#endif

30
vendor/github.com/mutecomm/go-sqlcipher/v4/cbc_done.c generated vendored Normal file
View File

@@ -0,0 +1,30 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file cbc_done.c
CBC implementation, finish chain, Tom St Denis
*/
#ifdef LTC_CBC_MODE
/** Terminate the chain
@param cbc The CBC chain to terminate
@return CRYPT_OK on success
*/
int cbc_done(symmetric_CBC *cbc)
{
int err;
LTC_ARGCHK(cbc != NULL);
if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) {
return err;
}
cipher_descriptor[cbc->cipher].done(&cbc->key);
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,85 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file cbc_encrypt.c
CBC implementation, encrypt block, Tom St Denis
*/
#ifdef LTC_CBC_MODE
/**
CBC encrypt
@param pt Plaintext
@param ct [out] Ciphertext
@param len The number of bytes to process (must be multiple of block length)
@param cbc CBC state
@return CRYPT_OK if successful
*/
int cbc_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CBC *cbc)
{
int x, err;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(cbc != NULL);
if ((err = cipher_is_valid(cbc->cipher)) != CRYPT_OK) {
return err;
}
/* is blocklen valid? */
if (cbc->blocklen < 1 || cbc->blocklen > (int)sizeof(cbc->IV)) {
return CRYPT_INVALID_ARG;
}
if (len % cbc->blocklen) {
return CRYPT_INVALID_ARG;
}
#ifdef LTC_FAST
if (cbc->blocklen % sizeof(LTC_FAST_TYPE)) {
return CRYPT_INVALID_ARG;
}
#endif
if (cipher_descriptor[cbc->cipher].accel_cbc_encrypt != NULL) {
return cipher_descriptor[cbc->cipher].accel_cbc_encrypt(pt, ct, len / cbc->blocklen, cbc->IV, &cbc->key);
}
while (len) {
/* xor IV against plaintext */
#if defined(LTC_FAST)
for (x = 0; x < cbc->blocklen; x += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST((unsigned char *)cbc->IV + x)) ^= *(LTC_FAST_TYPE_PTR_CAST((unsigned char *)pt + x));
}
#else
for (x = 0; x < cbc->blocklen; x++) {
cbc->IV[x] ^= pt[x];
}
#endif
/* encrypt */
if ((err = cipher_descriptor[cbc->cipher].ecb_encrypt(cbc->IV, ct, &cbc->key)) != CRYPT_OK) {
return err;
}
/* store IV [ciphertext] for a future block */
#if defined(LTC_FAST)
for (x = 0; x < cbc->blocklen; x += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST((unsigned char *)cbc->IV + x)) = *(LTC_FAST_TYPE_PTR_CAST((unsigned char *)ct + x));
}
#else
for (x = 0; x < cbc->blocklen; x++) {
cbc->IV[x] = ct[x];
}
#endif
ct += cbc->blocklen;
pt += cbc->blocklen;
len -= cbc->blocklen;
}
return CRYPT_OK;
}
#endif

50
vendor/github.com/mutecomm/go-sqlcipher/v4/cbc_start.c generated vendored Normal file
View File

@@ -0,0 +1,50 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file cbc_start.c
CBC implementation, start chain, Tom St Denis
*/
#ifdef LTC_CBC_MODE
/**
Initialize a CBC context
@param cipher The index of the cipher desired
@param IV The initialization vector
@param key The secret key
@param keylen The length of the secret key (octets)
@param num_rounds Number of rounds in the cipher desired (0 for default)
@param cbc The CBC state to initialize
@return CRYPT_OK if successful
*/
int cbc_start(int cipher, const unsigned char *IV, const unsigned char *key,
int keylen, int num_rounds, symmetric_CBC *cbc)
{
int x, err;
LTC_ARGCHK(IV != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(cbc != NULL);
/* bad param? */
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
/* setup cipher */
if ((err = cipher_descriptor[cipher].setup(key, keylen, num_rounds, &cbc->key)) != CRYPT_OK) {
return err;
}
/* copy IV */
cbc->blocklen = cipher_descriptor[cipher].block_length;
cbc->cipher = cipher;
for (x = 0; x < cbc->blocklen; x++) {
cbc->IV[x] = IV[x];
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,81 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file compare_testvector.c
Function to compare two testvectors and print a (detailed) error-message if required, Steffen Jaeckel
*/
#if defined(LTC_TEST) && defined(LTC_TEST_DBG)
static void s_print_hex(const char* what, const void* v, const unsigned long l)
{
const unsigned char* p = v;
unsigned long x, y = 0, z;
fprintf(stderr, "%s contents: \n", what);
for (x = 0; x < l; ) {
fprintf(stderr, "%02X ", p[x]);
if (!(++x % 16) || x == l) {
if((x % 16) != 0) {
z = 16 - (x % 16);
if(z >= 8)
fprintf(stderr, " ");
for (; z != 0; --z) {
fprintf(stderr, " ");
}
}
fprintf(stderr, " | ");
for(; y < x; y++) {
if((y % 8) == 0)
fprintf(stderr, " ");
if(isgraph(p[y]))
fprintf(stderr, "%c", p[y]);
else
fprintf(stderr, ".");
}
fprintf(stderr, "\n");
}
else if((x % 8) == 0) {
fprintf(stderr, " ");
}
}
}
#endif
/**
Compare two test-vectors
@param is The data as it is
@param is_len The length of is
@param should The data as it should
@param should_len The length of should
@param what The type of the data
@param which The iteration count
@return 0 on equality, -1 or 1 on difference
*/
int compare_testvector(const void* is, const unsigned long is_len, const void* should, const unsigned long should_len, const char* what, int which)
{
int res = 0;
if(is_len != should_len) {
res = is_len > should_len ? -1 : 1;
} else {
res = XMEMCMP(is, should, is_len);
}
#if defined(LTC_TEST) && defined(LTC_TEST_DBG)
if (res != 0) {
fprintf(stderr, "Testvector #%i of %s failed:\n", which, what);
s_print_hex("SHOULD", should, should_len);
s_print_hex("IS ", is, is_len);
#if LTC_TEST_DBG > 1
} else {
fprintf(stderr, "Testvector #%i of %s passed!\n", which, what);
#endif
}
#else
LTC_UNUSED_PARAM(which);
LTC_UNUSED_PARAM(what);
#endif
return res;
}

299
vendor/github.com/mutecomm/go-sqlcipher/v4/convert.go generated vendored Normal file
View File

@@ -0,0 +1,299 @@
// Extracted from Go database/sql source code
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Type conversions for Scan.
package sqlite3
import (
"database/sql"
"database/sql/driver"
"errors"
"fmt"
"reflect"
"strconv"
"time"
)
var errNilPtr = errors.New("destination pointer is nil") // embedded in descriptive error
// convertAssign copies to dest the value in src, converting it if possible.
// An error is returned if the copy would result in loss of information.
// dest should be a pointer type.
func convertAssign(dest, src interface{}) error {
// Common cases, without reflect.
switch s := src.(type) {
case string:
switch d := dest.(type) {
case *string:
if d == nil {
return errNilPtr
}
*d = s
return nil
case *[]byte:
if d == nil {
return errNilPtr
}
*d = []byte(s)
return nil
case *sql.RawBytes:
if d == nil {
return errNilPtr
}
*d = append((*d)[:0], s...)
return nil
}
case []byte:
switch d := dest.(type) {
case *string:
if d == nil {
return errNilPtr
}
*d = string(s)
return nil
case *interface{}:
if d == nil {
return errNilPtr
}
*d = cloneBytes(s)
return nil
case *[]byte:
if d == nil {
return errNilPtr
}
*d = cloneBytes(s)
return nil
case *sql.RawBytes:
if d == nil {
return errNilPtr
}
*d = s
return nil
}
case time.Time:
switch d := dest.(type) {
case *time.Time:
*d = s
return nil
case *string:
*d = s.Format(time.RFC3339Nano)
return nil
case *[]byte:
if d == nil {
return errNilPtr
}
*d = []byte(s.Format(time.RFC3339Nano))
return nil
case *sql.RawBytes:
if d == nil {
return errNilPtr
}
*d = s.AppendFormat((*d)[:0], time.RFC3339Nano)
return nil
}
case nil:
switch d := dest.(type) {
case *interface{}:
if d == nil {
return errNilPtr
}
*d = nil
return nil
case *[]byte:
if d == nil {
return errNilPtr
}
*d = nil
return nil
case *sql.RawBytes:
if d == nil {
return errNilPtr
}
*d = nil
return nil
}
}
var sv reflect.Value
switch d := dest.(type) {
case *string:
sv = reflect.ValueOf(src)
switch sv.Kind() {
case reflect.Bool,
reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
reflect.Float32, reflect.Float64:
*d = asString(src)
return nil
}
case *[]byte:
sv = reflect.ValueOf(src)
if b, ok := asBytes(nil, sv); ok {
*d = b
return nil
}
case *sql.RawBytes:
sv = reflect.ValueOf(src)
if b, ok := asBytes([]byte(*d)[:0], sv); ok {
*d = sql.RawBytes(b)
return nil
}
case *bool:
bv, err := driver.Bool.ConvertValue(src)
if err == nil {
*d = bv.(bool)
}
return err
case *interface{}:
*d = src
return nil
}
if scanner, ok := dest.(sql.Scanner); ok {
return scanner.Scan(src)
}
dpv := reflect.ValueOf(dest)
if dpv.Kind() != reflect.Ptr {
return errors.New("destination not a pointer")
}
if dpv.IsNil() {
return errNilPtr
}
if !sv.IsValid() {
sv = reflect.ValueOf(src)
}
dv := reflect.Indirect(dpv)
if sv.IsValid() && sv.Type().AssignableTo(dv.Type()) {
switch b := src.(type) {
case []byte:
dv.Set(reflect.ValueOf(cloneBytes(b)))
default:
dv.Set(sv)
}
return nil
}
if dv.Kind() == sv.Kind() && sv.Type().ConvertibleTo(dv.Type()) {
dv.Set(sv.Convert(dv.Type()))
return nil
}
// The following conversions use a string value as an intermediate representation
// to convert between various numeric types.
//
// This also allows scanning into user defined types such as "type Int int64".
// For symmetry, also check for string destination types.
switch dv.Kind() {
case reflect.Ptr:
if src == nil {
dv.Set(reflect.Zero(dv.Type()))
return nil
}
dv.Set(reflect.New(dv.Type().Elem()))
return convertAssign(dv.Interface(), src)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
s := asString(src)
i64, err := strconv.ParseInt(s, 10, dv.Type().Bits())
if err != nil {
err = strconvErr(err)
return fmt.Errorf("converting driver.Value type %T (%q) to a %s: %v", src, s, dv.Kind(), err)
}
dv.SetInt(i64)
return nil
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
s := asString(src)
u64, err := strconv.ParseUint(s, 10, dv.Type().Bits())
if err != nil {
err = strconvErr(err)
return fmt.Errorf("converting driver.Value type %T (%q) to a %s: %v", src, s, dv.Kind(), err)
}
dv.SetUint(u64)
return nil
case reflect.Float32, reflect.Float64:
s := asString(src)
f64, err := strconv.ParseFloat(s, dv.Type().Bits())
if err != nil {
err = strconvErr(err)
return fmt.Errorf("converting driver.Value type %T (%q) to a %s: %v", src, s, dv.Kind(), err)
}
dv.SetFloat(f64)
return nil
case reflect.String:
switch v := src.(type) {
case string:
dv.SetString(v)
return nil
case []byte:
dv.SetString(string(v))
return nil
}
}
return fmt.Errorf("unsupported Scan, storing driver.Value type %T into type %T", src, dest)
}
func strconvErr(err error) error {
if ne, ok := err.(*strconv.NumError); ok {
return ne.Err
}
return err
}
func cloneBytes(b []byte) []byte {
if b == nil {
return nil
}
c := make([]byte, len(b))
copy(c, b)
return c
}
func asString(src interface{}) string {
switch v := src.(type) {
case string:
return v
case []byte:
return string(v)
}
rv := reflect.ValueOf(src)
switch rv.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return strconv.FormatInt(rv.Int(), 10)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return strconv.FormatUint(rv.Uint(), 10)
case reflect.Float64:
return strconv.FormatFloat(rv.Float(), 'g', -1, 64)
case reflect.Float32:
return strconv.FormatFloat(rv.Float(), 'g', -1, 32)
case reflect.Bool:
return strconv.FormatBool(rv.Bool())
}
return fmt.Sprintf("%v", src)
}
func asBytes(buf []byte, rv reflect.Value) (b []byte, ok bool) {
switch rv.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return strconv.AppendInt(buf, rv.Int(), 10), true
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return strconv.AppendUint(buf, rv.Uint(), 10), true
case reflect.Float32:
return strconv.AppendFloat(buf, rv.Float(), 'g', -1, 32), true
case reflect.Float64:
return strconv.AppendFloat(buf, rv.Float(), 'g', -1, 64), true
case reflect.Bool:
return strconv.AppendBool(buf, rv.Bool()), true
case reflect.String:
s := rv.String()
return append(buf, s...), true
}
return
}

View File

@@ -0,0 +1,17 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_argchk.c
Perform argument checking, Tom St Denis
*/
#if (ARGTYPE == 0)
void crypt_argchk(const char *v, const char *s, int d)
{
fprintf(stderr, "LTC_ARGCHK '%s' failure on line %d of file %s\n",
v, d, s);
abort();
}
#endif

View File

@@ -0,0 +1,15 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_cipher_descriptor.c
Stores the cipher descriptor table, Tom St Denis
*/
struct ltc_cipher_descriptor cipher_descriptor[TAB_SIZE] = {
{ NULL, 0, 0, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }
};
LTC_MUTEX_GLOBAL(ltc_cipher_mutex)

View File

@@ -0,0 +1,24 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_cipher_is_valid.c
Determine if cipher is valid, Tom St Denis
*/
/*
Test if a cipher index is valid
@param idx The index of the cipher to search for
@return CRYPT_OK if valid
*/
int cipher_is_valid(int idx)
{
LTC_MUTEX_LOCK(&ltc_cipher_mutex);
if (idx < 0 || idx >= TAB_SIZE || cipher_descriptor[idx].name == NULL) {
LTC_MUTEX_UNLOCK(&ltc_cipher_mutex);
return CRYPT_INVALID_CIPHER;
}
LTC_MUTEX_UNLOCK(&ltc_cipher_mutex);
return CRYPT_OK;
}

View File

@@ -0,0 +1,29 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_find_cipher.c
Find a cipher in the descriptor tables, Tom St Denis
*/
/**
Find a registered cipher by name
@param name The name of the cipher to look for
@return >= 0 if found, -1 if not present
*/
int find_cipher(const char *name)
{
int x;
LTC_ARGCHK(name != NULL);
LTC_MUTEX_LOCK(&ltc_cipher_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (cipher_descriptor[x].name != NULL && !XSTRCMP(cipher_descriptor[x].name, name)) {
LTC_MUTEX_UNLOCK(&ltc_cipher_mutex);
return x;
}
}
LTC_MUTEX_UNLOCK(&ltc_cipher_mutex);
return -1;
}

View File

@@ -0,0 +1,28 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_find_hash.c
Find a hash, Tom St Denis
*/
/**
Find a registered hash by name
@param name The name of the hash to look for
@return >= 0 if found, -1 if not present
*/
int find_hash(const char *name)
{
int x;
LTC_ARGCHK(name != NULL);
LTC_MUTEX_LOCK(&ltc_hash_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (hash_descriptor[x].name != NULL && XSTRCMP(hash_descriptor[x].name, name) == 0) {
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return x;
}
}
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return -1;
}

View File

@@ -0,0 +1,15 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_hash_descriptor.c
Stores the hash descriptor table, Tom St Denis
*/
struct ltc_hash_descriptor hash_descriptor[TAB_SIZE] = {
{ NULL, 0, 0, 0, { 0 }, 0, NULL, NULL, NULL, NULL, NULL }
};
LTC_MUTEX_GLOBAL(ltc_hash_mutex)

View File

@@ -0,0 +1,24 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_hash_is_valid.c
Determine if hash is valid, Tom St Denis
*/
/*
Test if a hash index is valid
@param idx The index of the hash to search for
@return CRYPT_OK if valid
*/
int hash_is_valid(int idx)
{
LTC_MUTEX_LOCK(&ltc_hash_mutex);
if (idx < 0 || idx >= TAB_SIZE || hash_descriptor[idx].name == NULL) {
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return CRYPT_INVALID_HASH;
}
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return CRYPT_OK;
}

View File

@@ -0,0 +1,14 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_prng_descriptor.c
Stores the PRNG descriptors, Tom St Denis
*/
struct ltc_prng_descriptor prng_descriptor[TAB_SIZE] = {
{ NULL, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }
};
LTC_MUTEX_GLOBAL(ltc_prng_mutex)

View File

@@ -0,0 +1,42 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_register_cipher.c
Register a cipher, Tom St Denis
*/
/**
Register a cipher with the descriptor table
@param cipher The cipher you wish to register
@return value >= 0 if successfully added (or already present), -1 if unsuccessful
*/
int register_cipher(const struct ltc_cipher_descriptor *cipher)
{
int x;
LTC_ARGCHK(cipher != NULL);
/* is it already registered? */
LTC_MUTEX_LOCK(&ltc_cipher_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (cipher_descriptor[x].name != NULL && cipher_descriptor[x].ID == cipher->ID) {
LTC_MUTEX_UNLOCK(&ltc_cipher_mutex);
return x;
}
}
/* find a blank spot */
for (x = 0; x < TAB_SIZE; x++) {
if (cipher_descriptor[x].name == NULL) {
XMEMCPY(&cipher_descriptor[x], cipher, sizeof(struct ltc_cipher_descriptor));
LTC_MUTEX_UNLOCK(&ltc_cipher_mutex);
return x;
}
}
/* no spot */
LTC_MUTEX_UNLOCK(&ltc_cipher_mutex);
return -1;
}

View File

@@ -0,0 +1,42 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_register_hash.c
Register a HASH, Tom St Denis
*/
/**
Register a hash with the descriptor table
@param hash The hash you wish to register
@return value >= 0 if successfully added (or already present), -1 if unsuccessful
*/
int register_hash(const struct ltc_hash_descriptor *hash)
{
int x;
LTC_ARGCHK(hash != NULL);
/* is it already registered? */
LTC_MUTEX_LOCK(&ltc_hash_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (XMEMCMP(&hash_descriptor[x], hash, sizeof(struct ltc_hash_descriptor)) == 0) {
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return x;
}
}
/* find a blank spot */
for (x = 0; x < TAB_SIZE; x++) {
if (hash_descriptor[x].name == NULL) {
XMEMCPY(&hash_descriptor[x], hash, sizeof(struct ltc_hash_descriptor));
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return x;
}
}
/* no spot */
LTC_MUTEX_UNLOCK(&ltc_hash_mutex);
return -1;
}

View File

@@ -0,0 +1,42 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file crypt_register_prng.c
Register a PRNG, Tom St Denis
*/
/**
Register a PRNG with the descriptor table
@param prng The PRNG you wish to register
@return value >= 0 if successfully added (or already present), -1 if unsuccessful
*/
int register_prng(const struct ltc_prng_descriptor *prng)
{
int x;
LTC_ARGCHK(prng != NULL);
/* is it already registered? */
LTC_MUTEX_LOCK(&ltc_prng_mutex);
for (x = 0; x < TAB_SIZE; x++) {
if (XMEMCMP(&prng_descriptor[x], prng, sizeof(struct ltc_prng_descriptor)) == 0) {
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return x;
}
}
/* find a blank spot */
for (x = 0; x < TAB_SIZE; x++) {
if (prng_descriptor[x].name == NULL) {
XMEMCPY(&prng_descriptor[x], prng, sizeof(struct ltc_prng_descriptor));
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return x;
}
}
/* no spot */
LTC_MUTEX_UNLOCK(&ltc_prng_mutex);
return -1;
}

135
vendor/github.com/mutecomm/go-sqlcipher/v4/doc.go generated vendored Normal file
View File

@@ -0,0 +1,135 @@
/*
Package sqlite3 provides interface to SQLite3 databases.
This works as a driver for database/sql.
Installation
go get github.com/mattn/go-sqlite3
Supported Types
Currently, go-sqlite3 supports the following data types.
+------------------------------+
|go | sqlite3 |
|----------|-------------------|
|nil | null |
|int | integer |
|int64 | integer |
|float64 | float |
|bool | integer |
|[]byte | blob |
|string | text |
|time.Time | timestamp/datetime|
+------------------------------+
SQLite3 Extension
You can write your own extension module for sqlite3. For example, below is an
extension for a Regexp matcher operation.
#include <pcre.h>
#include <string.h>
#include <stdio.h>
#include <sqlite3ext.h>
SQLITE_EXTENSION_INIT1
static void regexp_func(sqlite3_context *context, int argc, sqlite3_value **argv) {
if (argc >= 2) {
const char *target = (const char *)sqlite3_value_text(argv[1]);
const char *pattern = (const char *)sqlite3_value_text(argv[0]);
const char* errstr = NULL;
int erroff = 0;
int vec[500];
int n, rc;
pcre* re = pcre_compile(pattern, 0, &errstr, &erroff, NULL);
rc = pcre_exec(re, NULL, target, strlen(target), 0, 0, vec, 500);
if (rc <= 0) {
sqlite3_result_error(context, errstr, 0);
return;
}
sqlite3_result_int(context, 1);
}
}
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_extension_init(sqlite3 *db, char **errmsg,
const sqlite3_api_routines *api) {
SQLITE_EXTENSION_INIT2(api);
return sqlite3_create_function(db, "regexp", 2, SQLITE_UTF8,
(void*)db, regexp_func, NULL, NULL);
}
It needs to be built as a so/dll shared library. And you need to register
the extension module like below.
sql.Register("sqlite3_with_extensions",
&sqlite3.SQLiteDriver{
Extensions: []string{
"sqlite3_mod_regexp",
},
})
Then, you can use this extension.
rows, err := db.Query("select text from mytable where name regexp '^golang'")
Connection Hook
You can hook and inject your code when the connection is established by setting
ConnectHook to get the SQLiteConn.
sql.Register("sqlite3_with_hook_example",
&sqlite3.SQLiteDriver{
ConnectHook: func(conn *sqlite3.SQLiteConn) error {
sqlite3conn = append(sqlite3conn, conn)
return nil
},
})
You can also use database/sql.Conn.Raw (Go >= 1.13):
conn, err := db.Conn(context.Background())
// if err != nil { ... }
defer conn.Close()
err = conn.Raw(func (driverConn interface{}) error {
sqliteConn := driverConn.(*sqlite3.SQLiteConn)
// ... use sqliteConn
})
// if err != nil { ... }
Go SQlite3 Extensions
If you want to register Go functions as SQLite extension functions
you can make a custom driver by calling RegisterFunction from
ConnectHook.
regex = func(re, s string) (bool, error) {
return regexp.MatchString(re, s)
}
sql.Register("sqlite3_extended",
&sqlite3.SQLiteDriver{
ConnectHook: func(conn *sqlite3.SQLiteConn) error {
return conn.RegisterFunc("regexp", regex, true)
},
})
You can then use the custom driver by passing its name to sql.Open.
var i int
conn, err := sql.Open("sqlite3_extended", "./foo.db")
if err != nil {
panic(err)
}
err = db.QueryRow(`SELECT regexp("foo.*", "seafood")`).Scan(&i)
if err != nil {
panic(err)
}
See the documentation of RegisterFunc for more details.
*/
package sqlite3

150
vendor/github.com/mutecomm/go-sqlcipher/v4/error.go generated vendored Normal file
View File

@@ -0,0 +1,150 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package sqlite3
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
*/
import "C"
import "syscall"
// ErrNo inherit errno.
type ErrNo int
// ErrNoMask is mask code.
const ErrNoMask C.int = 0xff
// ErrNoExtended is extended errno.
type ErrNoExtended int
// Error implement sqlite error code.
type Error struct {
Code ErrNo /* The error code returned by SQLite */
ExtendedCode ErrNoExtended /* The extended error code returned by SQLite */
SystemErrno syscall.Errno /* The system errno returned by the OS through SQLite, if applicable */
err string /* The error string returned by sqlite3_errmsg(),
this usually contains more specific details. */
}
// result codes from http://www.sqlite.org/c3ref/c_abort.html
var (
ErrError = ErrNo(1) /* SQL error or missing database */
ErrInternal = ErrNo(2) /* Internal logic error in SQLite */
ErrPerm = ErrNo(3) /* Access permission denied */
ErrAbort = ErrNo(4) /* Callback routine requested an abort */
ErrBusy = ErrNo(5) /* The database file is locked */
ErrLocked = ErrNo(6) /* A table in the database is locked */
ErrNomem = ErrNo(7) /* A malloc() failed */
ErrReadonly = ErrNo(8) /* Attempt to write a readonly database */
ErrInterrupt = ErrNo(9) /* Operation terminated by sqlite3_interrupt() */
ErrIoErr = ErrNo(10) /* Some kind of disk I/O error occurred */
ErrCorrupt = ErrNo(11) /* The database disk image is malformed */
ErrNotFound = ErrNo(12) /* Unknown opcode in sqlite3_file_control() */
ErrFull = ErrNo(13) /* Insertion failed because database is full */
ErrCantOpen = ErrNo(14) /* Unable to open the database file */
ErrProtocol = ErrNo(15) /* Database lock protocol error */
ErrEmpty = ErrNo(16) /* Database is empty */
ErrSchema = ErrNo(17) /* The database schema changed */
ErrTooBig = ErrNo(18) /* String or BLOB exceeds size limit */
ErrConstraint = ErrNo(19) /* Abort due to constraint violation */
ErrMismatch = ErrNo(20) /* Data type mismatch */
ErrMisuse = ErrNo(21) /* Library used incorrectly */
ErrNoLFS = ErrNo(22) /* Uses OS features not supported on host */
ErrAuth = ErrNo(23) /* Authorization denied */
ErrFormat = ErrNo(24) /* Auxiliary database format error */
ErrRange = ErrNo(25) /* 2nd parameter to sqlite3_bind out of range */
ErrNotADB = ErrNo(26) /* File opened that is not a database file */
ErrNotice = ErrNo(27) /* Notifications from sqlite3_log() */
ErrWarning = ErrNo(28) /* Warnings from sqlite3_log() */
)
// Error return error message from errno.
func (err ErrNo) Error() string {
return Error{Code: err}.Error()
}
// Extend return extended errno.
func (err ErrNo) Extend(by int) ErrNoExtended {
return ErrNoExtended(int(err) | (by << 8))
}
// Error return error message that is extended code.
func (err ErrNoExtended) Error() string {
return Error{Code: ErrNo(C.int(err) & ErrNoMask), ExtendedCode: err}.Error()
}
func (err Error) Error() string {
var str string
if err.err != "" {
str = err.err
} else {
str = C.GoString(C.sqlite3_errstr(C.int(err.Code)))
}
if err.SystemErrno != 0 {
str += ": " + err.SystemErrno.Error()
}
return str
}
// result codes from http://www.sqlite.org/c3ref/c_abort_rollback.html
var (
ErrIoErrRead = ErrIoErr.Extend(1)
ErrIoErrShortRead = ErrIoErr.Extend(2)
ErrIoErrWrite = ErrIoErr.Extend(3)
ErrIoErrFsync = ErrIoErr.Extend(4)
ErrIoErrDirFsync = ErrIoErr.Extend(5)
ErrIoErrTruncate = ErrIoErr.Extend(6)
ErrIoErrFstat = ErrIoErr.Extend(7)
ErrIoErrUnlock = ErrIoErr.Extend(8)
ErrIoErrRDlock = ErrIoErr.Extend(9)
ErrIoErrDelete = ErrIoErr.Extend(10)
ErrIoErrBlocked = ErrIoErr.Extend(11)
ErrIoErrNoMem = ErrIoErr.Extend(12)
ErrIoErrAccess = ErrIoErr.Extend(13)
ErrIoErrCheckReservedLock = ErrIoErr.Extend(14)
ErrIoErrLock = ErrIoErr.Extend(15)
ErrIoErrClose = ErrIoErr.Extend(16)
ErrIoErrDirClose = ErrIoErr.Extend(17)
ErrIoErrSHMOpen = ErrIoErr.Extend(18)
ErrIoErrSHMSize = ErrIoErr.Extend(19)
ErrIoErrSHMLock = ErrIoErr.Extend(20)
ErrIoErrSHMMap = ErrIoErr.Extend(21)
ErrIoErrSeek = ErrIoErr.Extend(22)
ErrIoErrDeleteNoent = ErrIoErr.Extend(23)
ErrIoErrMMap = ErrIoErr.Extend(24)
ErrIoErrGetTempPath = ErrIoErr.Extend(25)
ErrIoErrConvPath = ErrIoErr.Extend(26)
ErrLockedSharedCache = ErrLocked.Extend(1)
ErrBusyRecovery = ErrBusy.Extend(1)
ErrBusySnapshot = ErrBusy.Extend(2)
ErrCantOpenNoTempDir = ErrCantOpen.Extend(1)
ErrCantOpenIsDir = ErrCantOpen.Extend(2)
ErrCantOpenFullPath = ErrCantOpen.Extend(3)
ErrCantOpenConvPath = ErrCantOpen.Extend(4)
ErrCorruptVTab = ErrCorrupt.Extend(1)
ErrReadonlyRecovery = ErrReadonly.Extend(1)
ErrReadonlyCantLock = ErrReadonly.Extend(2)
ErrReadonlyRollback = ErrReadonly.Extend(3)
ErrReadonlyDbMoved = ErrReadonly.Extend(4)
ErrAbortRollback = ErrAbort.Extend(2)
ErrConstraintCheck = ErrConstraint.Extend(1)
ErrConstraintCommitHook = ErrConstraint.Extend(2)
ErrConstraintForeignKey = ErrConstraint.Extend(3)
ErrConstraintFunction = ErrConstraint.Extend(4)
ErrConstraintNotNull = ErrConstraint.Extend(5)
ErrConstraintPrimaryKey = ErrConstraint.Extend(6)
ErrConstraintTrigger = ErrConstraint.Extend(7)
ErrConstraintUnique = ErrConstraint.Extend(8)
ErrConstraintVTab = ErrConstraint.Extend(9)
ErrConstraintRowID = ErrConstraint.Extend(10)
ErrNoticeRecoverWAL = ErrNotice.Extend(1)
ErrNoticeRecoverRollback = ErrNotice.Extend(2)
ErrWarningAutoIndex = ErrWarning.Extend(1)
)

26
vendor/github.com/mutecomm/go-sqlcipher/v4/flags.go generated vendored Normal file
View File

@@ -0,0 +1,26 @@
package sqlite3
/*
// make go-sqlite3 use embedded library without code changes
#cgo CFLAGS: -DUSE_LIBSQLITE3
// enable encryption codec in sqlite
#cgo CFLAGS: -DSQLITE_HAS_CODEC
// use memory for temporay storage in sqlite
#cgo CFLAGS: -DSQLITE_TEMP_STORE=2
// use libtomcrypt implementation in sqlcipher
#cgo CFLAGS: -DSQLCIPHER_CRYPTO_LIBTOMCRYPT
// disable anything "not portable" in libtomcrypt
#cgo CFLAGS: -DLTC_NO_ASM
// disable assertions
#cgo CFLAGS: -DNDEBUG
// set operating specific sqlite flags
#cgo linux CFLAGS: -DSQLITE_OS_UNIX=1
#cgo windows CFLAGS: -DSQLITE_OS_WIN=1
*/
import "C"

520
vendor/github.com/mutecomm/go-sqlcipher/v4/fortuna.c generated vendored Normal file
View File

@@ -0,0 +1,520 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
#if defined(_WIN32)
#include <windows.h>
#elif defined(LTC_CLOCK_GETTIME)
#include <time.h> /* struct timespec + clock_gettime */
#else
#include <sys/time.h> /* struct timeval + gettimeofday */
#endif
#endif
/**
@file fortuna.c
Fortuna PRNG, Tom St Denis
*/
/* Implementation of Fortuna by Tom St Denis
We deviate slightly here for reasons of simplicity [and to fit in the API]. First all "sources"
in the AddEntropy function are fixed to 0. Second since no reliable timer is provided
we reseed automatically when len(pool0) >= 64 or every LTC_FORTUNA_WD calls to the read function */
#ifdef LTC_FORTUNA
/* requries LTC_SHA256 and AES */
#if !(defined(LTC_RIJNDAEL) && defined(LTC_SHA256))
#error LTC_FORTUNA requires LTC_SHA256 and LTC_RIJNDAEL (AES)
#endif
#ifndef LTC_FORTUNA_POOLS
#warning LTC_FORTUNA_POOLS was not previously defined (old headers?)
#define LTC_FORTUNA_POOLS 32
#endif
#if LTC_FORTUNA_POOLS < 4 || LTC_FORTUNA_POOLS > 32
#error LTC_FORTUNA_POOLS must be in [4..32]
#endif
const struct ltc_prng_descriptor fortuna_desc = {
"fortuna",
64,
&fortuna_start,
&fortuna_add_entropy,
&fortuna_ready,
&fortuna_read,
&fortuna_done,
&fortuna_export,
&fortuna_import,
&fortuna_test
};
/* update the IV */
static void s_fortuna_update_iv(prng_state *prng)
{
int x;
unsigned char *IV;
/* update IV */
IV = prng->u.fortuna.IV;
for (x = 0; x < 16; x++) {
IV[x] = (IV[x] + 1) & 255;
if (IV[x] != 0) break;
}
}
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
/* get the current time in 100ms steps */
static ulong64 s_fortuna_current_time(void)
{
ulong64 cur_time;
#if defined(_WIN32)
FILETIME CurrentTime;
ULARGE_INTEGER ul;
GetSystemTimeAsFileTime(&CurrentTime);
ul.LowPart = CurrentTime.dwLowDateTime;
ul.HighPart = CurrentTime.dwHighDateTime;
cur_time = ul.QuadPart; /* now we have 100ns intervals since 1 January 1601 */
cur_time -= CONST64(116444736000000000); /* subtract 100ns intervals between 1601-1970 */
cur_time /= 10; /* 100ns intervals > microseconds */
#elif defined(LTC_CLOCK_GETTIME)
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
cur_time = (ulong64)(ts.tv_sec) * 1000000 + (ulong64)(ts.tv_nsec) / 1000; /* get microseconds */
#else
struct timeval tv;
gettimeofday(&tv, NULL);
cur_time = (ulong64)(tv.tv_sec) * 1000000 + (ulong64)(tv.tv_usec); /* get microseconds */
#endif
return cur_time / 100;
}
#endif
/* reseed the PRNG */
static int s_fortuna_reseed(prng_state *prng)
{
unsigned char tmp[MAXBLOCKSIZE];
hash_state md;
ulong64 reset_cnt;
int err, x;
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
ulong64 now = s_fortuna_current_time();
if (now == prng->u.fortuna.wd) {
return CRYPT_OK;
}
#else
if (++prng->u.fortuna.wd < LTC_FORTUNA_WD) {
return CRYPT_OK;
}
#endif
/* new K == LTC_SHA256(K || s) where s == LTC_SHA256(P0) || LTC_SHA256(P1) ... */
sha256_init(&md);
if ((err = sha256_process(&md, prng->u.fortuna.K, 32)) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
reset_cnt = prng->u.fortuna.reset_cnt + 1;
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
if (x == 0 || ((reset_cnt >> (x-1)) & 1) == 0) {
/* terminate this hash */
if ((err = sha256_done(&prng->u.fortuna.pool[x], tmp)) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
/* add it to the string */
if ((err = sha256_process(&md, tmp, 32)) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
/* reset this pool */
if ((err = sha256_init(&prng->u.fortuna.pool[x])) != CRYPT_OK) {
sha256_done(&md, tmp);
return err;
}
} else {
break;
}
}
/* finish key */
if ((err = sha256_done(&md, prng->u.fortuna.K)) != CRYPT_OK) {
return err;
}
if ((err = rijndael_setup(prng->u.fortuna.K, 32, 0, &prng->u.fortuna.skey)) != CRYPT_OK) {
return err;
}
s_fortuna_update_iv(prng);
/* reset/update internals */
prng->u.fortuna.pool0_len = 0;
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
prng->u.fortuna.wd = now;
#else
prng->u.fortuna.wd = 0;
#endif
prng->u.fortuna.reset_cnt = reset_cnt;
#ifdef LTC_CLEAN_STACK
zeromem(&md, sizeof(md));
zeromem(tmp, sizeof(tmp));
#endif
return CRYPT_OK;
}
/**
"Update Seed File"-compliant update of K
@param in The PRNG state
@param inlen Size of the state
@param prng The PRNG to import
@return CRYPT_OK if successful
*/
int fortuna_update_seed(const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
unsigned char tmp[MAXBLOCKSIZE];
hash_state md;
LTC_MUTEX_LOCK(&prng->lock);
/* new K = LTC_SHA256(K || in) */
sha256_init(&md);
if ((err = sha256_process(&md, prng->u.fortuna.K, 32)) != CRYPT_OK) {
sha256_done(&md, tmp);
goto LBL_UNLOCK;
}
if ((err = sha256_process(&md, in, inlen)) != CRYPT_OK) {
sha256_done(&md, tmp);
goto LBL_UNLOCK;
}
/* finish key */
if ((err = sha256_done(&md, prng->u.fortuna.K)) != CRYPT_OK) {
goto LBL_UNLOCK;
}
s_fortuna_update_iv(prng);
LBL_UNLOCK:
LTC_MUTEX_UNLOCK(&prng->lock);
#ifdef LTC_CLEAN_STACK
zeromem(&md, sizeof(md));
#endif
return err;
}
/**
Start the PRNG
@param prng [out] The PRNG state to initialize
@return CRYPT_OK if successful
*/
int fortuna_start(prng_state *prng)
{
int err, x, y;
unsigned char tmp[MAXBLOCKSIZE];
LTC_ARGCHK(prng != NULL);
prng->ready = 0;
/* initialize the pools */
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
if ((err = sha256_init(&prng->u.fortuna.pool[x])) != CRYPT_OK) {
for (y = 0; y < x; y++) {
sha256_done(&prng->u.fortuna.pool[y], tmp);
}
return err;
}
}
prng->u.fortuna.pool_idx = prng->u.fortuna.pool0_len = 0;
prng->u.fortuna.reset_cnt = prng->u.fortuna.wd = 0;
/* reset bufs */
zeromem(prng->u.fortuna.K, 32);
if ((err = rijndael_setup(prng->u.fortuna.K, 32, 0, &prng->u.fortuna.skey)) != CRYPT_OK) {
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
sha256_done(&prng->u.fortuna.pool[x], tmp);
}
return err;
}
zeromem(prng->u.fortuna.IV, 16);
LTC_MUTEX_INIT(&prng->lock)
return CRYPT_OK;
}
static int s_fortuna_add(unsigned long source, unsigned long pool, const unsigned char *in, unsigned long inlen, prng_state *prng)
{
unsigned char tmp[2];
int err;
/* ensure inlen <= 32 */
if (inlen > 32) {
inlen = 32;
}
/* add s || length(in) || in to pool[pool_idx] */
tmp[0] = (unsigned char)source;
tmp[1] = (unsigned char)inlen;
if ((err = sha256_process(&prng->u.fortuna.pool[pool], tmp, 2)) != CRYPT_OK) {
return err;
}
if ((err = sha256_process(&prng->u.fortuna.pool[pool], in, inlen)) != CRYPT_OK) {
return err;
}
if (pool == 0) {
prng->u.fortuna.pool0_len += inlen;
}
return CRYPT_OK; /* success */
}
/**
Add random event to the PRNG state as proposed by the original paper.
@param source The source this random event comes from (0 .. 255)
@param pool The pool where to add the data to (0 .. LTC_FORTUNA_POOLS)
@param in The data to add
@param inlen Length of the data to add
@param prng PRNG state to update
@return CRYPT_OK if successful
*/
int fortuna_add_random_event(unsigned long source, unsigned long pool, const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
LTC_ARGCHK(prng != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(inlen > 0);
LTC_ARGCHK(source <= 255);
LTC_ARGCHK(pool < LTC_FORTUNA_POOLS);
LTC_MUTEX_LOCK(&prng->lock);
err = s_fortuna_add(source, pool, in, inlen, prng);
LTC_MUTEX_UNLOCK(&prng->lock);
return err;
}
/**
Add entropy to the PRNG state
@param in The data to add
@param inlen Length of the data to add
@param prng PRNG state to update
@return CRYPT_OK if successful
*/
int fortuna_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
LTC_ARGCHK(prng != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(inlen > 0);
LTC_MUTEX_LOCK(&prng->lock);
err = s_fortuna_add(0, prng->u.fortuna.pool_idx, in, inlen, prng);
if (err == CRYPT_OK) {
++(prng->u.fortuna.pool_idx);
prng->u.fortuna.pool_idx %= LTC_FORTUNA_POOLS;
}
LTC_MUTEX_UNLOCK(&prng->lock);
return err;
}
/**
Make the PRNG ready to read from
@param prng The PRNG to make active
@return CRYPT_OK if successful
*/
int fortuna_ready(prng_state *prng)
{
int err;
LTC_ARGCHK(prng != NULL);
LTC_MUTEX_LOCK(&prng->lock);
/* make sure the reseed doesn't fail because
* of the chosen rate limit */
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
prng->u.fortuna.wd = s_fortuna_current_time() - 1;
#else
prng->u.fortuna.wd = LTC_FORTUNA_WD;
#endif
err = s_fortuna_reseed(prng);
prng->ready = (err == CRYPT_OK) ? 1 : 0;
LTC_MUTEX_UNLOCK(&prng->lock);
return err;
}
/**
Read from the PRNG
@param out Destination
@param outlen Length of output
@param prng The active PRNG to read from
@return Number of octets read
*/
unsigned long fortuna_read(unsigned char *out, unsigned long outlen, prng_state *prng)
{
unsigned char tmp[16];
unsigned long tlen = 0;
if (outlen == 0 || prng == NULL || out == NULL) return 0;
LTC_MUTEX_LOCK(&prng->lock);
if (!prng->ready) {
goto LBL_UNLOCK;
}
/* do we have to reseed? */
if (prng->u.fortuna.pool0_len >= 64) {
if (s_fortuna_reseed(prng) != CRYPT_OK) {
goto LBL_UNLOCK;
}
}
/* ensure that one reseed happened before allowing to read */
if (prng->u.fortuna.reset_cnt == 0) {
goto LBL_UNLOCK;
}
/* now generate the blocks required */
tlen = outlen;
/* handle whole blocks without the extra XMEMCPY */
while (outlen >= 16) {
/* encrypt the IV and store it */
rijndael_ecb_encrypt(prng->u.fortuna.IV, out, &prng->u.fortuna.skey);
out += 16;
outlen -= 16;
s_fortuna_update_iv(prng);
}
/* left over bytes? */
if (outlen > 0) {
rijndael_ecb_encrypt(prng->u.fortuna.IV, tmp, &prng->u.fortuna.skey);
XMEMCPY(out, tmp, outlen);
s_fortuna_update_iv(prng);
}
/* generate new key */
rijndael_ecb_encrypt(prng->u.fortuna.IV, prng->u.fortuna.K , &prng->u.fortuna.skey);
s_fortuna_update_iv(prng);
rijndael_ecb_encrypt(prng->u.fortuna.IV, prng->u.fortuna.K+16, &prng->u.fortuna.skey);
s_fortuna_update_iv(prng);
if (rijndael_setup(prng->u.fortuna.K, 32, 0, &prng->u.fortuna.skey) != CRYPT_OK) {
tlen = 0;
}
LBL_UNLOCK:
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
LTC_MUTEX_UNLOCK(&prng->lock);
return tlen;
}
/**
Terminate the PRNG
@param prng The PRNG to terminate
@return CRYPT_OK if successful
*/
int fortuna_done(prng_state *prng)
{
int err, x;
unsigned char tmp[32];
LTC_ARGCHK(prng != NULL);
LTC_MUTEX_LOCK(&prng->lock);
prng->ready = 0;
/* terminate all the hashes */
for (x = 0; x < LTC_FORTUNA_POOLS; x++) {
if ((err = sha256_done(&(prng->u.fortuna.pool[x]), tmp)) != CRYPT_OK) {
goto LBL_UNLOCK;
}
}
/* call cipher done when we invent one ;-) */
err = CRYPT_OK; /* success */
LBL_UNLOCK:
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
LTC_MUTEX_UNLOCK(&prng->lock);
LTC_MUTEX_DESTROY(&prng->lock);
return err;
}
/**
Export the PRNG state
@param out [out] Destination
@param outlen [in/out] Max size and resulting size of the state
@param prng The PRNG to export
@return CRYPT_OK if successful
*/
LTC_PRNG_EXPORT(fortuna)
/**
Import a PRNG state
@param in The PRNG state
@param inlen Size of the state
@param prng The PRNG to import
@return CRYPT_OK if successful
*/
int fortuna_import(const unsigned char *in, unsigned long inlen, prng_state *prng)
{
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(prng != NULL);
if (inlen < (unsigned long)fortuna_desc.export_size) {
return CRYPT_INVALID_ARG;
}
if ((err = fortuna_start(prng)) != CRYPT_OK) {
return err;
}
if ((err = fortuna_update_seed(in, inlen, prng)) != CRYPT_OK) {
return err;
}
return err;
}
/**
PRNG self-test
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled
*/
int fortuna_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
if ((err = sha256_test()) != CRYPT_OK) {
return err;
}
return rijndael_test();
#endif
}
#endif

View File

@@ -0,0 +1,59 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_HASH_HELPERS
/**
@file hash_memory.c
Hash memory helper, Tom St Denis
*/
/**
Hash a block of memory and store the digest.
@param hash The index of the hash you wish to use
@param in The data you wish to hash
@param inlen The length of the data to hash (octets)
@param out [out] Where to store the digest
@param outlen [in/out] Max size and resulting size of the digest
@return CRYPT_OK if successful
*/
int hash_memory(int hash, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen)
{
hash_state *md;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
if (*outlen < hash_descriptor[hash].hashsize) {
*outlen = hash_descriptor[hash].hashsize;
return CRYPT_BUFFER_OVERFLOW;
}
md = XMALLOC(sizeof(hash_state));
if (md == NULL) {
return CRYPT_MEM;
}
if ((err = hash_descriptor[hash].init(md)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].process(md, in, inlen)) != CRYPT_OK) {
goto LBL_ERR;
}
err = hash_descriptor[hash].done(md, out);
*outlen = hash_descriptor[hash].hashsize;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
XFREE(md);
return err;
}
#endif /* #ifdef LTC_HASH_HELPERS */

96
vendor/github.com/mutecomm/go-sqlcipher/v4/hmac_done.c generated vendored Normal file
View File

@@ -0,0 +1,96 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file hmac_done.c
HMAC support, terminate stream, Tom St Denis/Dobes Vandermeer
*/
#ifdef LTC_HMAC
#define LTC_HMAC_BLOCKSIZE hash_descriptor[hash].blocksize
/**
Terminate an HMAC session
@param hmac The HMAC state
@param out [out] The destination of the HMAC authentication tag
@param outlen [in/out] The max size and resulting size of the HMAC authentication tag
@return CRYPT_OK if successful
*/
int hmac_done(hmac_state *hmac, unsigned char *out, unsigned long *outlen)
{
unsigned char *buf, *isha;
unsigned long hashsize, i;
int hash, err;
LTC_ARGCHK(hmac != NULL);
LTC_ARGCHK(out != NULL);
/* test hash */
hash = hmac->hash;
if((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
/* get the hash message digest size */
hashsize = hash_descriptor[hash].hashsize;
/* allocate buffers */
buf = XMALLOC(LTC_HMAC_BLOCKSIZE);
isha = XMALLOC(hashsize);
if (buf == NULL || isha == NULL) {
if (buf != NULL) {
XFREE(buf);
}
if (isha != NULL) {
XFREE(isha);
}
return CRYPT_MEM;
}
/* Get the hash of the first HMAC vector plus the data */
if ((err = hash_descriptor[hash].done(&hmac->md, isha)) != CRYPT_OK) {
goto LBL_ERR;
}
/* Create the second HMAC vector vector for step (3) */
for(i=0; i < LTC_HMAC_BLOCKSIZE; i++) {
buf[i] = hmac->key[i] ^ 0x5C;
}
/* Now calculate the "outer" hash for step (5), (6), and (7) */
if ((err = hash_descriptor[hash].init(&hmac->md)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].process(&hmac->md, buf, LTC_HMAC_BLOCKSIZE)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].process(&hmac->md, isha, hashsize)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].done(&hmac->md, buf)) != CRYPT_OK) {
goto LBL_ERR;
}
/* copy to output */
for (i = 0; i < hashsize && i < *outlen; i++) {
out[i] = buf[i];
}
*outlen = i;
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(isha, hashsize);
zeromem(buf, hashsize);
zeromem(hmac, sizeof(*hmac));
#endif
XFREE(isha);
XFREE(buf);
return err;
}
#endif

94
vendor/github.com/mutecomm/go-sqlcipher/v4/hmac_init.c generated vendored Normal file
View File

@@ -0,0 +1,94 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file hmac_init.c
HMAC support, initialize state, Tom St Denis/Dobes Vandermeer
*/
#ifdef LTC_HMAC
#define LTC_HMAC_BLOCKSIZE hash_descriptor[hash].blocksize
/**
Initialize an HMAC context.
@param hmac The HMAC state
@param hash The index of the hash you want to use
@param key The secret key
@param keylen The length of the secret key (octets)
@return CRYPT_OK if successful
*/
int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen)
{
unsigned char *buf;
unsigned long hashsize;
unsigned long i, z;
int err;
LTC_ARGCHK(hmac != NULL);
LTC_ARGCHK(key != NULL);
/* valid hash? */
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
hmac->hash = hash;
hashsize = hash_descriptor[hash].hashsize;
/* valid key length? */
if (keylen == 0) {
return CRYPT_INVALID_KEYSIZE;
}
/* allocate ram for buf */
buf = XMALLOC(LTC_HMAC_BLOCKSIZE);
if (buf == NULL) {
return CRYPT_MEM;
}
/* check hash block fits */
if (sizeof(hmac->key) < LTC_HMAC_BLOCKSIZE) {
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
/* (1) make sure we have a large enough key */
if(keylen > LTC_HMAC_BLOCKSIZE) {
z = LTC_HMAC_BLOCKSIZE;
if ((err = hash_memory(hash, key, keylen, hmac->key, &z)) != CRYPT_OK) {
goto LBL_ERR;
}
keylen = hashsize;
} else {
XMEMCPY(hmac->key, key, (size_t)keylen);
}
if(keylen < LTC_HMAC_BLOCKSIZE) {
zeromem((hmac->key) + keylen, (size_t)(LTC_HMAC_BLOCKSIZE - keylen));
}
/* Create the initialization vector for step (3) */
for(i=0; i < LTC_HMAC_BLOCKSIZE; i++) {
buf[i] = hmac->key[i] ^ 0x36;
}
/* Pre-pend that to the hash data */
if ((err = hash_descriptor[hash].init(&hmac->md)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].process(&hmac->md, buf, LTC_HMAC_BLOCKSIZE)) != CRYPT_OK) {
goto LBL_ERR;
}
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(buf, LTC_HMAC_BLOCKSIZE);
#endif
XFREE(buf);
return err;
}
#endif

View File

@@ -0,0 +1,76 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file hmac_memory.c
HMAC support, process a block of memory, Tom St Denis/Dobes Vandermeer
*/
#ifdef LTC_HMAC
/**
HMAC a block of memory to produce the authentication tag
@param hash The index of the hash to use
@param key The secret key
@param keylen The length of the secret key (octets)
@param in The data to HMAC
@param inlen The length of the data to HMAC (octets)
@param out [out] Destination of the authentication tag
@param outlen [in/out] Max size and resulting size of authentication tag
@return CRYPT_OK if successful
*/
int hmac_memory(int hash,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
hmac_state *hmac;
int err;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* make sure hash descriptor is valid */
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
/* is there a descriptor? */
if (hash_descriptor[hash].hmac_block != NULL) {
return hash_descriptor[hash].hmac_block(key, keylen, in, inlen, out, outlen);
}
/* nope, so call the hmac functions */
/* allocate ram for hmac state */
hmac = XMALLOC(sizeof(hmac_state));
if (hmac == NULL) {
return CRYPT_MEM;
}
if ((err = hmac_init(hmac, hash, key, keylen)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hmac_process(hmac, in, inlen)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hmac_done(hmac, out, outlen)) != CRYPT_OK) {
goto LBL_ERR;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(hmac, sizeof(hmac_state));
#endif
XFREE(hmac);
return err;
}
#endif

View File

@@ -0,0 +1,31 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file hmac_process.c
HMAC support, process data, Tom St Denis/Dobes Vandermeer
*/
#ifdef LTC_HMAC
/**
Process data through HMAC
@param hmac The hmac state
@param in The data to send through HMAC
@param inlen The length of the data to HMAC (octets)
@return CRYPT_OK if successful
*/
int hmac_process(hmac_state *hmac, const unsigned char *in, unsigned long inlen)
{
int err;
LTC_ARGCHK(hmac != NULL);
LTC_ARGCHK(in != NULL);
if ((err = hash_is_valid(hmac->hash)) != CRYPT_OK) {
return err;
}
return hash_descriptor[hmac->hash].process(&hmac->md, in, inlen);
}
#endif

713
vendor/github.com/mutecomm/go-sqlcipher/v4/mbtls_aes.c generated vendored Normal file
View File

@@ -0,0 +1,713 @@
#include "mbtls_aes.h"
#if defined(MBEDTLS_AESNI_C)
#include "aesni.h"
#endif
#if defined(MBEDTLS_AESCE_C)
#include "aesce.h"
#endif
/** Byte Reading Macros
*
* Given a multi-byte integer \p x, MBEDTLS_BYTE_n retrieves the n-th
* byte from x, where byte 0 is the least significant byte.
*/
#define MBEDTLS_BYTE_0(x) ((uint8_t) ((x) & 0xff))
#define MBEDTLS_BYTE_1(x) ((uint8_t) (((x) >> 8) & 0xff))
#define MBEDTLS_BYTE_2(x) ((uint8_t) (((x) >> 16) & 0xff))
#define MBEDTLS_BYTE_3(x) ((uint8_t) (((x) >> 24) & 0xff))
#define MBEDTLS_BYTE_4(x) ((uint8_t) (((x) >> 32) & 0xff))
#define MBEDTLS_BYTE_5(x) ((uint8_t) (((x) >> 40) & 0xff))
#define MBEDTLS_BYTE_6(x) ((uint8_t) (((x) >> 48) & 0xff))
#define MBEDTLS_BYTE_7(x) ((uint8_t) (((x) >> 56) & 0xff))
static void *(*const volatile memset_func)(void *, int, size_t) = memset;
void mbedtls_platform_zeroize(void *buf, size_t len)
{
if (buf && len > 0) {
memset_func(buf, 0, len);
}
}
/*
* Forward S-box
*/
static const unsigned char FSb[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
/*
* Forward tables
*/
#define FT \
\
V(A5, 63, 63, C6), V(84, 7C, 7C, F8), V(99, 77, 77, EE), V(8D, 7B, 7B, F6), \
V(0D, F2, F2, FF), V(BD, 6B, 6B, D6), V(B1, 6F, 6F, DE), V(54, C5, C5, 91), \
V(50, 30, 30, 60), V(03, 01, 01, 02), V(A9, 67, 67, CE), V(7D, 2B, 2B, 56), \
V(19, FE, FE, E7), V(62, D7, D7, B5), V(E6, AB, AB, 4D), V(9A, 76, 76, EC), \
V(45, CA, CA, 8F), V(9D, 82, 82, 1F), V(40, C9, C9, 89), V(87, 7D, 7D, FA), \
V(15, FA, FA, EF), V(EB, 59, 59, B2), V(C9, 47, 47, 8E), V(0B, F0, F0, FB), \
V(EC, AD, AD, 41), V(67, D4, D4, B3), V(FD, A2, A2, 5F), V(EA, AF, AF, 45), \
V(BF, 9C, 9C, 23), V(F7, A4, A4, 53), V(96, 72, 72, E4), V(5B, C0, C0, 9B), \
V(C2, B7, B7, 75), V(1C, FD, FD, E1), V(AE, 93, 93, 3D), V(6A, 26, 26, 4C), \
V(5A, 36, 36, 6C), V(41, 3F, 3F, 7E), V(02, F7, F7, F5), V(4F, CC, CC, 83), \
V(5C, 34, 34, 68), V(F4, A5, A5, 51), V(34, E5, E5, D1), V(08, F1, F1, F9), \
V(93, 71, 71, E2), V(73, D8, D8, AB), V(53, 31, 31, 62), V(3F, 15, 15, 2A), \
V(0C, 04, 04, 08), V(52, C7, C7, 95), V(65, 23, 23, 46), V(5E, C3, C3, 9D), \
V(28, 18, 18, 30), V(A1, 96, 96, 37), V(0F, 05, 05, 0A), V(B5, 9A, 9A, 2F), \
V(09, 07, 07, 0E), V(36, 12, 12, 24), V(9B, 80, 80, 1B), V(3D, E2, E2, DF), \
V(26, EB, EB, CD), V(69, 27, 27, 4E), V(CD, B2, B2, 7F), V(9F, 75, 75, EA), \
V(1B, 09, 09, 12), V(9E, 83, 83, 1D), V(74, 2C, 2C, 58), V(2E, 1A, 1A, 34), \
V(2D, 1B, 1B, 36), V(B2, 6E, 6E, DC), V(EE, 5A, 5A, B4), V(FB, A0, A0, 5B), \
V(F6, 52, 52, A4), V(4D, 3B, 3B, 76), V(61, D6, D6, B7), V(CE, B3, B3, 7D), \
V(7B, 29, 29, 52), V(3E, E3, E3, DD), V(71, 2F, 2F, 5E), V(97, 84, 84, 13), \
V(F5, 53, 53, A6), V(68, D1, D1, B9), V(00, 00, 00, 00), V(2C, ED, ED, C1), \
V(60, 20, 20, 40), V(1F, FC, FC, E3), V(C8, B1, B1, 79), V(ED, 5B, 5B, B6), \
V(BE, 6A, 6A, D4), V(46, CB, CB, 8D), V(D9, BE, BE, 67), V(4B, 39, 39, 72), \
V(DE, 4A, 4A, 94), V(D4, 4C, 4C, 98), V(E8, 58, 58, B0), V(4A, CF, CF, 85), \
V(6B, D0, D0, BB), V(2A, EF, EF, C5), V(E5, AA, AA, 4F), V(16, FB, FB, ED), \
V(C5, 43, 43, 86), V(D7, 4D, 4D, 9A), V(55, 33, 33, 66), V(94, 85, 85, 11), \
V(CF, 45, 45, 8A), V(10, F9, F9, E9), V(06, 02, 02, 04), V(81, 7F, 7F, FE), \
V(F0, 50, 50, A0), V(44, 3C, 3C, 78), V(BA, 9F, 9F, 25), V(E3, A8, A8, 4B), \
V(F3, 51, 51, A2), V(FE, A3, A3, 5D), V(C0, 40, 40, 80), V(8A, 8F, 8F, 05), \
V(AD, 92, 92, 3F), V(BC, 9D, 9D, 21), V(48, 38, 38, 70), V(04, F5, F5, F1), \
V(DF, BC, BC, 63), V(C1, B6, B6, 77), V(75, DA, DA, AF), V(63, 21, 21, 42), \
V(30, 10, 10, 20), V(1A, FF, FF, E5), V(0E, F3, F3, FD), V(6D, D2, D2, BF), \
V(4C, CD, CD, 81), V(14, 0C, 0C, 18), V(35, 13, 13, 26), V(2F, EC, EC, C3), \
V(E1, 5F, 5F, BE), V(A2, 97, 97, 35), V(CC, 44, 44, 88), V(39, 17, 17, 2E), \
V(57, C4, C4, 93), V(F2, A7, A7, 55), V(82, 7E, 7E, FC), V(47, 3D, 3D, 7A), \
V(AC, 64, 64, C8), V(E7, 5D, 5D, BA), V(2B, 19, 19, 32), V(95, 73, 73, E6), \
V(A0, 60, 60, C0), V(98, 81, 81, 19), V(D1, 4F, 4F, 9E), V(7F, DC, DC, A3), \
V(66, 22, 22, 44), V(7E, 2A, 2A, 54), V(AB, 90, 90, 3B), V(83, 88, 88, 0B), \
V(CA, 46, 46, 8C), V(29, EE, EE, C7), V(D3, B8, B8, 6B), V(3C, 14, 14, 28), \
V(79, DE, DE, A7), V(E2, 5E, 5E, BC), V(1D, 0B, 0B, 16), V(76, DB, DB, AD), \
V(3B, E0, E0, DB), V(56, 32, 32, 64), V(4E, 3A, 3A, 74), V(1E, 0A, 0A, 14), \
V(DB, 49, 49, 92), V(0A, 06, 06, 0C), V(6C, 24, 24, 48), V(E4, 5C, 5C, B8), \
V(5D, C2, C2, 9F), V(6E, D3, D3, BD), V(EF, AC, AC, 43), V(A6, 62, 62, C4), \
V(A8, 91, 91, 39), V(A4, 95, 95, 31), V(37, E4, E4, D3), V(8B, 79, 79, F2), \
V(32, E7, E7, D5), V(43, C8, C8, 8B), V(59, 37, 37, 6E), V(B7, 6D, 6D, DA), \
V(8C, 8D, 8D, 01), V(64, D5, D5, B1), V(D2, 4E, 4E, 9C), V(E0, A9, A9, 49), \
V(B4, 6C, 6C, D8), V(FA, 56, 56, AC), V(07, F4, F4, F3), V(25, EA, EA, CF), \
V(AF, 65, 65, CA), V(8E, 7A, 7A, F4), V(E9, AE, AE, 47), V(18, 08, 08, 10), \
V(D5, BA, BA, 6F), V(88, 78, 78, F0), V(6F, 25, 25, 4A), V(72, 2E, 2E, 5C), \
V(24, 1C, 1C, 38), V(F1, A6, A6, 57), V(C7, B4, B4, 73), V(51, C6, C6, 97), \
V(23, E8, E8, CB), V(7C, DD, DD, A1), V(9C, 74, 74, E8), V(21, 1F, 1F, 3E), \
V(DD, 4B, 4B, 96), V(DC, BD, BD, 61), V(86, 8B, 8B, 0D), V(85, 8A, 8A, 0F), \
V(90, 70, 70, E0), V(42, 3E, 3E, 7C), V(C4, B5, B5, 71), V(AA, 66, 66, CC), \
V(D8, 48, 48, 90), V(05, 03, 03, 06), V(01, F6, F6, F7), V(12, 0E, 0E, 1C), \
V(A3, 61, 61, C2), V(5F, 35, 35, 6A), V(F9, 57, 57, AE), V(D0, B9, B9, 69), \
V(91, 86, 86, 17), V(58, C1, C1, 99), V(27, 1D, 1D, 3A), V(B9, 9E, 9E, 27), \
V(38, E1, E1, D9), V(13, F8, F8, EB), V(B3, 98, 98, 2B), V(33, 11, 11, 22), \
V(BB, 69, 69, D2), V(70, D9, D9, A9), V(89, 8E, 8E, 07), V(A7, 94, 94, 33), \
V(B6, 9B, 9B, 2D), V(22, 1E, 1E, 3C), V(92, 87, 87, 15), V(20, E9, E9, C9), \
V(49, CE, CE, 87), V(FF, 55, 55, AA), V(78, 28, 28, 50), V(7A, DF, DF, A5), \
V(8F, 8C, 8C, 03), V(F8, A1, A1, 59), V(80, 89, 89, 09), V(17, 0D, 0D, 1A), \
V(DA, BF, BF, 65), V(31, E6, E6, D7), V(C6, 42, 42, 84), V(B8, 68, 68, D0), \
V(C3, 41, 41, 82), V(B0, 99, 99, 29), V(77, 2D, 2D, 5A), V(11, 0F, 0F, 1E), \
V(CB, B0, B0, 7B), V(FC, 54, 54, A8), V(D6, BB, BB, 6D), V(3A, 16, 16, 2C)
#define V(a, b, c, d) 0x##a##b##c##d
static const uint32_t FT0[256] = { FT };
#undef V
#define V(a, b, c, d) 0x##b##c##d##a
static const uint32_t FT1[256] = { FT };
#undef V
#define V(a, b, c, d) 0x##c##d##a##b
static const uint32_t FT2[256] = { FT };
#undef V
#define V(a, b, c, d) 0x##d##a##b##c
static const uint32_t FT3[256] = { FT };
#undef V
#undef FT
/*
* Reverse S-box
*/
static const unsigned char RSb[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
/*
* Reverse tables
*/
#define RT \
\
V(50, A7, F4, 51), V(53, 65, 41, 7E), V(C3, A4, 17, 1A), V(96, 5E, 27, 3A), \
V(CB, 6B, AB, 3B), V(F1, 45, 9D, 1F), V(AB, 58, FA, AC), V(93, 03, E3, 4B), \
V(55, FA, 30, 20), V(F6, 6D, 76, AD), V(91, 76, CC, 88), V(25, 4C, 02, F5), \
V(FC, D7, E5, 4F), V(D7, CB, 2A, C5), V(80, 44, 35, 26), V(8F, A3, 62, B5), \
V(49, 5A, B1, DE), V(67, 1B, BA, 25), V(98, 0E, EA, 45), V(E1, C0, FE, 5D), \
V(02, 75, 2F, C3), V(12, F0, 4C, 81), V(A3, 97, 46, 8D), V(C6, F9, D3, 6B), \
V(E7, 5F, 8F, 03), V(95, 9C, 92, 15), V(EB, 7A, 6D, BF), V(DA, 59, 52, 95), \
V(2D, 83, BE, D4), V(D3, 21, 74, 58), V(29, 69, E0, 49), V(44, C8, C9, 8E), \
V(6A, 89, C2, 75), V(78, 79, 8E, F4), V(6B, 3E, 58, 99), V(DD, 71, B9, 27), \
V(B6, 4F, E1, BE), V(17, AD, 88, F0), V(66, AC, 20, C9), V(B4, 3A, CE, 7D), \
V(18, 4A, DF, 63), V(82, 31, 1A, E5), V(60, 33, 51, 97), V(45, 7F, 53, 62), \
V(E0, 77, 64, B1), V(84, AE, 6B, BB), V(1C, A0, 81, FE), V(94, 2B, 08, F9), \
V(58, 68, 48, 70), V(19, FD, 45, 8F), V(87, 6C, DE, 94), V(B7, F8, 7B, 52), \
V(23, D3, 73, AB), V(E2, 02, 4B, 72), V(57, 8F, 1F, E3), V(2A, AB, 55, 66), \
V(07, 28, EB, B2), V(03, C2, B5, 2F), V(9A, 7B, C5, 86), V(A5, 08, 37, D3), \
V(F2, 87, 28, 30), V(B2, A5, BF, 23), V(BA, 6A, 03, 02), V(5C, 82, 16, ED), \
V(2B, 1C, CF, 8A), V(92, B4, 79, A7), V(F0, F2, 07, F3), V(A1, E2, 69, 4E), \
V(CD, F4, DA, 65), V(D5, BE, 05, 06), V(1F, 62, 34, D1), V(8A, FE, A6, C4), \
V(9D, 53, 2E, 34), V(A0, 55, F3, A2), V(32, E1, 8A, 05), V(75, EB, F6, A4), \
V(39, EC, 83, 0B), V(AA, EF, 60, 40), V(06, 9F, 71, 5E), V(51, 10, 6E, BD), \
V(F9, 8A, 21, 3E), V(3D, 06, DD, 96), V(AE, 05, 3E, DD), V(46, BD, E6, 4D), \
V(B5, 8D, 54, 91), V(05, 5D, C4, 71), V(6F, D4, 06, 04), V(FF, 15, 50, 60), \
V(24, FB, 98, 19), V(97, E9, BD, D6), V(CC, 43, 40, 89), V(77, 9E, D9, 67), \
V(BD, 42, E8, B0), V(88, 8B, 89, 07), V(38, 5B, 19, E7), V(DB, EE, C8, 79), \
V(47, 0A, 7C, A1), V(E9, 0F, 42, 7C), V(C9, 1E, 84, F8), V(00, 00, 00, 00), \
V(83, 86, 80, 09), V(48, ED, 2B, 32), V(AC, 70, 11, 1E), V(4E, 72, 5A, 6C), \
V(FB, FF, 0E, FD), V(56, 38, 85, 0F), V(1E, D5, AE, 3D), V(27, 39, 2D, 36), \
V(64, D9, 0F, 0A), V(21, A6, 5C, 68), V(D1, 54, 5B, 9B), V(3A, 2E, 36, 24), \
V(B1, 67, 0A, 0C), V(0F, E7, 57, 93), V(D2, 96, EE, B4), V(9E, 91, 9B, 1B), \
V(4F, C5, C0, 80), V(A2, 20, DC, 61), V(69, 4B, 77, 5A), V(16, 1A, 12, 1C), \
V(0A, BA, 93, E2), V(E5, 2A, A0, C0), V(43, E0, 22, 3C), V(1D, 17, 1B, 12), \
V(0B, 0D, 09, 0E), V(AD, C7, 8B, F2), V(B9, A8, B6, 2D), V(C8, A9, 1E, 14), \
V(85, 19, F1, 57), V(4C, 07, 75, AF), V(BB, DD, 99, EE), V(FD, 60, 7F, A3), \
V(9F, 26, 01, F7), V(BC, F5, 72, 5C), V(C5, 3B, 66, 44), V(34, 7E, FB, 5B), \
V(76, 29, 43, 8B), V(DC, C6, 23, CB), V(68, FC, ED, B6), V(63, F1, E4, B8), \
V(CA, DC, 31, D7), V(10, 85, 63, 42), V(40, 22, 97, 13), V(20, 11, C6, 84), \
V(7D, 24, 4A, 85), V(F8, 3D, BB, D2), V(11, 32, F9, AE), V(6D, A1, 29, C7), \
V(4B, 2F, 9E, 1D), V(F3, 30, B2, DC), V(EC, 52, 86, 0D), V(D0, E3, C1, 77), \
V(6C, 16, B3, 2B), V(99, B9, 70, A9), V(FA, 48, 94, 11), V(22, 64, E9, 47), \
V(C4, 8C, FC, A8), V(1A, 3F, F0, A0), V(D8, 2C, 7D, 56), V(EF, 90, 33, 22), \
V(C7, 4E, 49, 87), V(C1, D1, 38, D9), V(FE, A2, CA, 8C), V(36, 0B, D4, 98), \
V(CF, 81, F5, A6), V(28, DE, 7A, A5), V(26, 8E, B7, DA), V(A4, BF, AD, 3F), \
V(E4, 9D, 3A, 2C), V(0D, 92, 78, 50), V(9B, CC, 5F, 6A), V(62, 46, 7E, 54), \
V(C2, 13, 8D, F6), V(E8, B8, D8, 90), V(5E, F7, 39, 2E), V(F5, AF, C3, 82), \
V(BE, 80, 5D, 9F), V(7C, 93, D0, 69), V(A9, 2D, D5, 6F), V(B3, 12, 25, CF), \
V(3B, 99, AC, C8), V(A7, 7D, 18, 10), V(6E, 63, 9C, E8), V(7B, BB, 3B, DB), \
V(09, 78, 26, CD), V(F4, 18, 59, 6E), V(01, B7, 9A, EC), V(A8, 9A, 4F, 83), \
V(65, 6E, 95, E6), V(7E, E6, FF, AA), V(08, CF, BC, 21), V(E6, E8, 15, EF), \
V(D9, 9B, E7, BA), V(CE, 36, 6F, 4A), V(D4, 09, 9F, EA), V(D6, 7C, B0, 29), \
V(AF, B2, A4, 31), V(31, 23, 3F, 2A), V(30, 94, A5, C6), V(C0, 66, A2, 35), \
V(37, BC, 4E, 74), V(A6, CA, 82, FC), V(B0, D0, 90, E0), V(15, D8, A7, 33), \
V(4A, 98, 04, F1), V(F7, DA, EC, 41), V(0E, 50, CD, 7F), V(2F, F6, 91, 17), \
V(8D, D6, 4D, 76), V(4D, B0, EF, 43), V(54, 4D, AA, CC), V(DF, 04, 96, E4), \
V(E3, B5, D1, 9E), V(1B, 88, 6A, 4C), V(B8, 1F, 2C, C1), V(7F, 51, 65, 46), \
V(04, EA, 5E, 9D), V(5D, 35, 8C, 01), V(73, 74, 87, FA), V(2E, 41, 0B, FB), \
V(5A, 1D, 67, B3), V(52, D2, DB, 92), V(33, 56, 10, E9), V(13, 47, D6, 6D), \
V(8C, 61, D7, 9A), V(7A, 0C, A1, 37), V(8E, 14, F8, 59), V(89, 3C, 13, EB), \
V(EE, 27, A9, CE), V(35, C9, 61, B7), V(ED, E5, 1C, E1), V(3C, B1, 47, 7A), \
V(59, DF, D2, 9C), V(3F, 73, F2, 55), V(79, CE, 14, 18), V(BF, 37, C7, 73), \
V(EA, CD, F7, 53), V(5B, AA, FD, 5F), V(14, 6F, 3D, DF), V(86, DB, 44, 78), \
V(81, F3, AF, CA), V(3E, C4, 68, B9), V(2C, 34, 24, 38), V(5F, 40, A3, C2), \
V(72, C3, 1D, 16), V(0C, 25, E2, BC), V(8B, 49, 3C, 28), V(41, 95, 0D, FF), \
V(71, 01, A8, 39), V(DE, B3, 0C, 08), V(9C, E4, B4, D8), V(90, C1, 56, 64), \
V(61, 84, CB, 7B), V(70, B6, 32, D5), V(74, 5C, 6C, 48), V(42, 57, B8, D0)
#define V(a, b, c, d) 0x##a##b##c##d
static const uint32_t RT0[256] = { RT };
#undef V
#define V(a, b, c, d) 0x##b##c##d##a
static const uint32_t RT1[256] = { RT };
#undef V
#define V(a, b, c, d) 0x##c##d##a##b
static const uint32_t RT2[256] = { RT };
#undef V
#define V(a, b, c, d) 0x##d##a##b##c
static const uint32_t RT3[256] = { RT };
#undef V
#undef RT
#define AES_RT0(idx) RT0[idx]
#define AES_RT1(idx) RT1[idx]
#define AES_RT2(idx) RT2[idx]
#define AES_RT3(idx) RT3[idx]
#define AES_FT0(idx) FT0[idx]
#define AES_FT1(idx) FT1[idx]
#define AES_FT2(idx) FT2[idx]
#define AES_FT3(idx) FT3[idx]
/*
* Round constants
*/
static const uint32_t RCON[10] = {
0x00000001, 0x00000002, 0x00000004, 0x00000008,
0x00000010, 0x00000020, 0x00000040, 0x00000080,
0x0000001B, 0x00000036
};
#define AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \
do \
{ \
(X0) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y0)) ^ \
AES_FT1(MBEDTLS_BYTE_1(Y1)) ^ \
AES_FT2(MBEDTLS_BYTE_2(Y2)) ^ \
AES_FT3(MBEDTLS_BYTE_3(Y3)); \
\
(X1) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y1)) ^ \
AES_FT1(MBEDTLS_BYTE_1(Y2)) ^ \
AES_FT2(MBEDTLS_BYTE_2(Y3)) ^ \
AES_FT3(MBEDTLS_BYTE_3(Y0)); \
\
(X2) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y2)) ^ \
AES_FT1(MBEDTLS_BYTE_1(Y3)) ^ \
AES_FT2(MBEDTLS_BYTE_2(Y0)) ^ \
AES_FT3(MBEDTLS_BYTE_3(Y1)); \
\
(X3) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y3)) ^ \
AES_FT1(MBEDTLS_BYTE_1(Y0)) ^ \
AES_FT2(MBEDTLS_BYTE_2(Y1)) ^ \
AES_FT3(MBEDTLS_BYTE_3(Y2)); \
} while (0)
#define AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \
do \
{ \
(X0) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y0)) ^ \
AES_RT1(MBEDTLS_BYTE_1(Y3)) ^ \
AES_RT2(MBEDTLS_BYTE_2(Y2)) ^ \
AES_RT3(MBEDTLS_BYTE_3(Y1)); \
\
(X1) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y1)) ^ \
AES_RT1(MBEDTLS_BYTE_1(Y0)) ^ \
AES_RT2(MBEDTLS_BYTE_2(Y3)) ^ \
AES_RT3(MBEDTLS_BYTE_3(Y2)); \
\
(X2) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y2)) ^ \
AES_RT1(MBEDTLS_BYTE_1(Y1)) ^ \
AES_RT2(MBEDTLS_BYTE_2(Y0)) ^ \
AES_RT3(MBEDTLS_BYTE_3(Y3)); \
\
(X3) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y3)) ^ \
AES_RT1(MBEDTLS_BYTE_1(Y2)) ^ \
AES_RT2(MBEDTLS_BYTE_2(Y1)) ^ \
AES_RT3(MBEDTLS_BYTE_3(Y0)); \
} while (0)
void mbedtls_aes_init(mbedtls_aes_context *ctx)
{
memset(ctx, 0, sizeof(mbedtls_aes_context));
}
void mbedtls_aes_free(mbedtls_aes_context *ctx)
{
if (ctx == NULL) {
return;
}
mbedtls_platform_zeroize(ctx, sizeof(mbedtls_aes_context));
}
static unsigned mbedtls_aes_rk_offset(uint32_t *buf)
{
(void) buf;
return 0;
}
/**
* Read the unsigned 32 bits integer from the given address, which need not
* be aligned.
*
* \param p pointer to 4 bytes of data
* \return Data at the given address
*/
uint32_t mbedtls_get_unaligned_uint32(const void *p)
{
uint32_t r;
memcpy(&r, p, sizeof(r));
return r;
}
#define MBEDTLS_GET_UINT32_LE(data, offset) \
((MBEDTLS_IS_BIG_ENDIAN) \
? MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \
: mbedtls_get_unaligned_uint32((data) + (offset)) \
)
int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key, unsigned int keybits)
{
switch (keybits) {
case 128: ctx->nr = 10; break;
case 192: ctx->nr = 12; break;
case 256: ctx->nr = 14; break;
default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
ctx->rk_offset = mbedtls_aes_rk_offset(ctx->buf);
uint32_t *RK = ctx->buf + ctx->rk_offset;
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
return mbedtls_aesni_setkey_enc((unsigned char *) RK, key, keybits);
}
#endif
#if defined(MBEDTLS_AESCE_C) && defined(MBEDTLS_HAVE_ARM64)
if (mbedtls_aesce_has_support()) {
return mbedtls_aesce_setkey_enc((unsigned char *) RK, key, keybits);
}
#endif
unsigned int i;
for (i = 0; i < (keybits >> 5); i++) {
RK[i] = MBEDTLS_GET_UINT32_LE(key, i << 2);
}
switch (ctx->nr) {
case 10:
for (i = 0; i < 10; i++, RK += 4) {
RK[4] = RK[0] ^ RCON[i] ^
((uint32_t) FSb[MBEDTLS_BYTE_1(RK[3])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(RK[3])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(RK[3])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_0(RK[3])] << 24);
RK[5] = RK[1] ^ RK[4];
RK[6] = RK[2] ^ RK[5];
RK[7] = RK[3] ^ RK[6];
}
break;
case 12:
for (i = 0; i < 8; i++, RK += 6) {
RK[6] = RK[0] ^ RCON[i] ^
((uint32_t) FSb[MBEDTLS_BYTE_1(RK[5])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(RK[5])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(RK[5])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_0(RK[5])] << 24);
RK[7] = RK[1] ^ RK[6];
RK[8] = RK[2] ^ RK[7];
RK[9] = RK[3] ^ RK[8];
RK[10] = RK[4] ^ RK[9];
RK[11] = RK[5] ^ RK[10];
}
break;
case 14:
for (i = 0; i < 7; i++, RK += 8) {
RK[8] = RK[0] ^ RCON[i] ^
((uint32_t) FSb[MBEDTLS_BYTE_1(RK[7])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(RK[7])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(RK[7])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_0(RK[7])] << 24);
RK[9] = RK[1] ^ RK[8];
RK[10] = RK[2] ^ RK[9];
RK[11] = RK[3] ^ RK[10];
RK[12] = RK[4] ^
((uint32_t) FSb[MBEDTLS_BYTE_0(RK[11])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_1(RK[11])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(RK[11])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(RK[11])] << 24);
RK[13] = RK[5] ^ RK[12];
RK[14] = RK[6] ^ RK[13];
RK[15] = RK[7] ^ RK[14];
}
break;
}
return 0;
}
int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key, unsigned int keybits)
{
mbedtls_aes_context cty;
mbedtls_aes_init(&cty);
ctx->rk_offset = mbedtls_aes_rk_offset(ctx->buf);
uint32_t *RK = ctx->buf + ctx->rk_offset;
int ret;
/* Also checks keybits */
if ((ret = mbedtls_aes_setkey_enc(&cty, key, keybits)) != 0) {
goto exit;
}
ctx->nr = cty.nr;
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
mbedtls_aesni_inverse_key((unsigned char *) RK,
(const unsigned char *) (cty.buf + cty.rk_offset), ctx->nr);
goto exit;
}
#endif
#if defined(MBEDTLS_AESCE_C) && defined(MBEDTLS_HAVE_ARM64)
if (mbedtls_aesce_has_support()) {
mbedtls_aesce_inverse_key(
(unsigned char *) RK,
(const unsigned char *) (cty.buf + cty.rk_offset),
ctx->nr);
goto exit;
}
#endif
uint32_t *SK = cty.buf + cty.rk_offset + cty.nr * 4;
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
int i, j;
for (i = ctx->nr - 1, SK -= 8; i > 0; i--, SK -= 8) {
for (j = 0; j < 4; j++, SK++) {
*RK++ = AES_RT0(FSb[MBEDTLS_BYTE_0(*SK)]) ^
AES_RT1(FSb[MBEDTLS_BYTE_1(*SK)]) ^
AES_RT2(FSb[MBEDTLS_BYTE_2(*SK)]) ^
AES_RT3(FSb[MBEDTLS_BYTE_3(*SK)]);
}
}
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
*RK++ = *SK++;
exit:
mbedtls_aes_free(&cty);
return ret;
}
void mbedtls_put_unaligned_uint32(void *p, uint32_t x)
{
memcpy(p, &x, sizeof(x));
}
/**
* Put in memory a 32 bits unsigned integer in little-endian order.
*
* \param n 32 bits unsigned integer to put in memory.
* \param data Base address of the memory where to put the 32
* bits unsigned integer in.
* \param offset Offset from \p data where to put the least significant
* byte of the 32 bits unsigned integer \p n.
*/
#define MBEDTLS_PUT_UINT32_LE(n, data, offset) \
{ \
if (MBEDTLS_IS_BIG_ENDIAN) \
{ \
mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \
} \
else \
{ \
mbedtls_put_unaligned_uint32((data) + (offset), ((uint32_t) (n))); \
} \
}
int mbedtls_internal_aes_encrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
int i;
uint32_t *RK = ctx->buf + ctx->rk_offset;
struct {
uint32_t X[4];
uint32_t Y[4];
} t;
t.X[0] = MBEDTLS_GET_UINT32_LE(input, 0); t.X[0] ^= *RK++;
t.X[1] = MBEDTLS_GET_UINT32_LE(input, 4); t.X[1] ^= *RK++;
t.X[2] = MBEDTLS_GET_UINT32_LE(input, 8); t.X[2] ^= *RK++;
t.X[3] = MBEDTLS_GET_UINT32_LE(input, 12); t.X[3] ^= *RK++;
for (i = (ctx->nr >> 1) - 1; i > 0; i--) {
AES_FROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
AES_FROUND(t.X[0], t.X[1], t.X[2], t.X[3], t.Y[0], t.Y[1], t.Y[2], t.Y[3]);
}
AES_FROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
t.X[0] = *RK++ ^ \
((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[0])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[1])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[2])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[3])] << 24);
t.X[1] = *RK++ ^ \
((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[1])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[2])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[3])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[0])] << 24);
t.X[2] = *RK++ ^ \
((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[2])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[3])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[0])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[1])] << 24);
t.X[3] = *RK++ ^ \
((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[3])]) ^
((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[0])] << 8) ^
((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[1])] << 16) ^
((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[2])] << 24);
MBEDTLS_PUT_UINT32_LE(t.X[0], output, 0);
MBEDTLS_PUT_UINT32_LE(t.X[1], output, 4);
MBEDTLS_PUT_UINT32_LE(t.X[2], output, 8);
MBEDTLS_PUT_UINT32_LE(t.X[3], output, 12);
mbedtls_platform_zeroize(&t, sizeof(t));
return 0;
}
int mbedtls_internal_aes_decrypt(mbedtls_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16])
{
int i;
uint32_t *RK = ctx->buf + ctx->rk_offset;
struct {
uint32_t X[4];
uint32_t Y[4];
} t;
t.X[0] = MBEDTLS_GET_UINT32_LE(input, 0); t.X[0] ^= *RK++;
t.X[1] = MBEDTLS_GET_UINT32_LE(input, 4); t.X[1] ^= *RK++;
t.X[2] = MBEDTLS_GET_UINT32_LE(input, 8); t.X[2] ^= *RK++;
t.X[3] = MBEDTLS_GET_UINT32_LE(input, 12); t.X[3] ^= *RK++;
for (i = (ctx->nr >> 1) - 1; i > 0; i--) {
AES_RROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
AES_RROUND(t.X[0], t.X[1], t.X[2], t.X[3], t.Y[0], t.Y[1], t.Y[2], t.Y[3]);
}
AES_RROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
t.X[0] = *RK++ ^ \
((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[0])]) ^
((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[3])] << 8) ^
((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[2])] << 16) ^
((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[1])] << 24);
t.X[1] = *RK++ ^ \
((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[1])]) ^
((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[0])] << 8) ^
((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[3])] << 16) ^
((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[2])] << 24);
t.X[2] = *RK++ ^ \
((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[2])]) ^
((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[1])] << 8) ^
((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[0])] << 16) ^
((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[3])] << 24);
t.X[3] = *RK++ ^ \
((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[3])]) ^
((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[2])] << 8) ^
((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[1])] << 16) ^
((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[0])] << 24);
MBEDTLS_PUT_UINT32_LE(t.X[0], output, 0);
MBEDTLS_PUT_UINT32_LE(t.X[1], output, 4);
MBEDTLS_PUT_UINT32_LE(t.X[2], output, 8);
MBEDTLS_PUT_UINT32_LE(t.X[3], output, 12);
mbedtls_platform_zeroize(&t, sizeof(t));
return 0;
}
int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
}
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
return mbedtls_aesni_crypt_ecb(ctx, mode, input, output);
}
#endif
#if defined(MBEDTLS_AESCE_C) && defined(MBEDTLS_HAVE_ARM64)
if (mbedtls_aesce_has_support()) {
return mbedtls_aesce_crypt_ecb(ctx, mode, input, output);
}
#endif
if (mode == MBEDTLS_AES_ENCRYPT) {
return mbedtls_internal_aes_encrypt(ctx, input, output);
}
return mbedtls_internal_aes_decrypt(ctx, input, output);
}

206
vendor/github.com/mutecomm/go-sqlcipher/v4/mbtls_aes.h generated vendored Normal file
View File

@@ -0,0 +1,206 @@
#pragma once
#include <stddef.h>
#include <stdint.h>
#include <string.h>
/* Can we do AESNI with inline assembly?
* (Only implemented with gas syntax, only for 64-bit.)
*/
#if defined(__GNUC__) && (defined(__amd64__) || defined(__x86_64__)) && !defined(MBEDTLS_HAVE_X86_64)
#define MBEDTLS_AESNI_C
#define MBEDTLS_HAVE_X86_64
#endif
#if !defined(MBEDTLS_HAVE_ARM64)
#if defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)
#define MBEDTLS_AESCE_C
#define MBEDTLS_HAVE_ARM64
#endif
#endif
#define MBEDTLS_AES_ENCRYPT 1 /**< AES encryption. */
#define MBEDTLS_AES_DECRYPT 0 /**< AES decryption. */
/* Error codes in range 0x0020-0x0022 */
/** Invalid key length. */
#define MBEDTLS_ERR_AES_INVALID_KEY_LENGTH -0x0020
/** Invalid data input length. */
#define MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH -0x0022
/* Error codes in range 0x0021-0x0025 */
/** Invalid input data. */
#define MBEDTLS_ERR_AES_BAD_INPUT_DATA -0x0021
#if !defined(__BYTE_ORDER__)
static const uint16_t mbedtls_byte_order_detector = { 0x100 };
#define MBEDTLS_IS_BIG_ENDIAN (*((unsigned char *) (&mbedtls_byte_order_detector)) == 0x01)
#else
#define MBEDTLS_IS_BIG_ENDIAN ((__BYTE_ORDER__) == (__ORDER_BIG_ENDIAN__))
#endif /* !defined(__BYTE_ORDER__) */
/*
* Detect GCC built-in byteswap routines
*/
#if defined(__GNUC__) && defined(__GNUC_PREREQ)
#if __GNUC_PREREQ(4, 8)
#define MBEDTLS_BSWAP16 __builtin_bswap16
#endif /* __GNUC_PREREQ(4,8) */
#if __GNUC_PREREQ(4, 3)
#define MBEDTLS_BSWAP32 __builtin_bswap32
#define MBEDTLS_BSWAP64 __builtin_bswap64
#endif /* __GNUC_PREREQ(4,3) */
#endif /* defined(__GNUC__) && defined(__GNUC_PREREQ) */
/*
* Detect Clang built-in byteswap routines
*/
#if defined(__clang__) && defined(__has_builtin)
#if __has_builtin(__builtin_bswap16) && !defined(MBEDTLS_BSWAP16)
#define MBEDTLS_BSWAP16 __builtin_bswap16
#endif /* __has_builtin(__builtin_bswap16) */
#if __has_builtin(__builtin_bswap32) && !defined(MBEDTLS_BSWAP32)
#define MBEDTLS_BSWAP32 __builtin_bswap32
#endif /* __has_builtin(__builtin_bswap32) */
#if __has_builtin(__builtin_bswap64) && !defined(MBEDTLS_BSWAP64)
#define MBEDTLS_BSWAP64 __builtin_bswap64
#endif /* __has_builtin(__builtin_bswap64) */
#endif /* defined(__clang__) && defined(__has_builtin) */
/*
* Detect MSVC built-in byteswap routines
*/
#if defined(_MSC_VER)
#if !defined(MBEDTLS_BSWAP16)
#define MBEDTLS_BSWAP16 _byteswap_ushort
#endif
#if !defined(MBEDTLS_BSWAP32)
#define MBEDTLS_BSWAP32 _byteswap_ulong
#endif
#if !defined(MBEDTLS_BSWAP64)
#define MBEDTLS_BSWAP64 _byteswap_uint64
#endif
#endif /* defined(_MSC_VER) */
/* Detect armcc built-in byteswap routine */
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 410000) && !defined(MBEDTLS_BSWAP32)
#define MBEDTLS_BSWAP32 __rev
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* Write the unsigned 32 bits integer to the given address, which need not
* be aligned.
*
* \param p pointer to 4 bytes of data
* \param x data to write
*/
/**
* \brief The AES context-type definition.
*/
typedef struct mbedtls_aes_context {
int nr; /*!< The number of rounds. */
size_t rk_offset; /*!< The offset in array elements to AES round keys in the buffer. */
uint32_t buf[68]; /*!< Unaligned data buffer. This buffer can
hold 32 extra Bytes, which can be used for
one of the following purposes:
<ul><li>Alignment if VIA padlock is
used.</li>
<li>Simplifying key expansion in the 256-bit
case by generating an extra round key.
</li></ul> */
} mbedtls_aes_context;
/**
* \brief This function initializes the specified AES context.
*
* It must be the first API called before using
* the context.
*
* \param ctx The AES context to initialize. This must not be \c NULL.
*/
void mbedtls_aes_init(mbedtls_aes_context *ctx);
/**
* \brief This function releases and clears the specified AES context.
*
* \param ctx The AES context to clear.
* If this is \c NULL, this function does nothing.
* Otherwise, the context must have been at least initialized.
*/
void mbedtls_aes_free(mbedtls_aes_context *ctx);
/**
* \brief This function sets the encryption key.
*
* \param ctx The AES context to which the key should be bound.
* It must be initialized.
* \param key The encryption key.
* This must be a readable buffer of size \p keybits bits.
* \param keybits The size of data passed in bits. Valid options are:
* <ul><li>128 bits</li>
* <li>192 bits</li>
* <li>256 bits</li></ul>
*
* \return \c 0 on success.
* \return #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH on failure.
*/
int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits);
/**
* \brief This function sets the decryption key.
*
* \param ctx The AES context to which the key should be bound.
* It must be initialized.
* \param key The decryption key.
* This must be a readable buffer of size \p keybits bits.
* \param keybits The size of data passed. Valid options are:
* <ul><li>128 bits</li>
* <li>192 bits</li>
* <li>256 bits</li></ul>
*
* \return \c 0 on success.
* \return #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH on failure.
*/
int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
unsigned int keybits);
/**
* \brief This function performs an AES single-block encryption or
* decryption operation.
*
* It performs the operation defined in the \p mode parameter
* (encrypt or decrypt), on the input data buffer defined in
* the \p input parameter.
*
* mbedtls_aes_init(), and either mbedtls_aes_setkey_enc() or
* mbedtls_aes_setkey_dec() must be called before the first
* call to this API with the same context.
*
* \param ctx The AES context to use for encryption or decryption.
* It must be initialized and bound to a key.
* \param mode The AES operation: #MBEDTLS_AES_ENCRYPT or
* #MBEDTLS_AES_DECRYPT.
* \param input The buffer holding the input data.
* It must be readable and at least \c 16 Bytes long.
* \param output The buffer where the output data will be written.
* It must be writeable and at least \c 16 Bytes long.
* \return \c 0 on success.
*/
int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16]);
#ifdef __cplusplus
}
#endif

117
vendor/github.com/mutecomm/go-sqlcipher/v4/pkcs_5_2.c generated vendored Normal file
View File

@@ -0,0 +1,117 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file pkcs_5_2.c
PKCS #5, Algorithm #2, Tom St Denis
*/
#ifdef LTC_PKCS_5
/**
Execute PKCS #5 v2
@param password The input password (or key)
@param password_len The length of the password (octets)
@param salt The salt (or nonce)
@param salt_len The length of the salt (octets)
@param iteration_count # of iterations desired for PKCS #5 v2 [read specs for more]
@param hash_idx The index of the hash desired
@param out [out] The destination for this algorithm
@param outlen [in/out] The max size and resulting size of the algorithm output
@return CRYPT_OK if successful
*/
int pkcs_5_alg2(const unsigned char *password, unsigned long password_len,
const unsigned char *salt, unsigned long salt_len,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen)
{
int err, itts;
ulong32 blkno;
unsigned long stored, left, x, y;
unsigned char *buf[2];
hmac_state *hmac;
LTC_ARGCHK(password != NULL);
LTC_ARGCHK(salt != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
/* test hash IDX */
if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
return err;
}
buf[0] = XMALLOC(MAXBLOCKSIZE * 2);
hmac = XMALLOC(sizeof(hmac_state));
if (hmac == NULL || buf[0] == NULL) {
if (hmac != NULL) {
XFREE(hmac);
}
if (buf[0] != NULL) {
XFREE(buf[0]);
}
return CRYPT_MEM;
}
/* buf[1] points to the second block of MAXBLOCKSIZE bytes */
buf[1] = buf[0] + MAXBLOCKSIZE;
left = *outlen;
blkno = 1;
stored = 0;
while (left != 0) {
/* process block number blkno */
zeromem(buf[0], MAXBLOCKSIZE*2);
/* store current block number and increment for next pass */
STORE32H(blkno, buf[1]);
++blkno;
/* get PRF(P, S||int(blkno)) */
if ((err = hmac_init(hmac, hash_idx, password, password_len)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hmac_process(hmac, salt, salt_len)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hmac_process(hmac, buf[1], 4)) != CRYPT_OK) {
goto LBL_ERR;
}
x = MAXBLOCKSIZE;
if ((err = hmac_done(hmac, buf[0], &x)) != CRYPT_OK) {
goto LBL_ERR;
}
/* now compute repeated and XOR it in buf[1] */
XMEMCPY(buf[1], buf[0], x);
for (itts = 1; itts < iteration_count; ++itts) {
if ((err = hmac_memory(hash_idx, password, password_len, buf[0], x, buf[0], &x)) != CRYPT_OK) {
goto LBL_ERR;
}
for (y = 0; y < x; y++) {
buf[1][y] ^= buf[0][y];
}
}
/* now emit upto x bytes of buf[1] to output */
for (y = 0; y < x && left != 0; ++y) {
out[stored++] = buf[1][y];
--left;
}
}
*outlen = stored;
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(buf[0], MAXBLOCKSIZE*2);
zeromem(hmac, sizeof(hmac_state));
#endif
XFREE(hmac);
XFREE(buf[0]);
return err;
}
#endif

710
vendor/github.com/mutecomm/go-sqlcipher/v4/sha1.c generated vendored Normal file
View File

@@ -0,0 +1,710 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#include <stdint.h>
/**
@file sha1.c
LTC_SHA1 code by Tom St Denis
*/
#ifdef LTC_SHA1
// -> BEGIN arm intrinsics block
#if defined(__APPLE__) && (defined(__arm__) || defined(__aarch32__) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM))
# if defined(__GNUC__)
# include <stdint.h>
# endif
# if defined(__ARM_NEON)|| defined(_MSC_VER) || defined(__GNUC__)
# include <arm_neon.h>
# endif
/* GCC and LLVM Clang, but not Apple Clang */
# if defined(__GNUC__) && !defined(__apple_build_version__)
# if defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO)
# include <arm_acle.h>
# endif
# endif
#define SHA1_TARGET_ARM 1
// -> END arm intrinsics block
// -> BEGIN x86_64 intrinsics block
#elif defined(__x86_64__) || defined(__SHA__)
#if defined(__GNUC__) /* GCC and LLVM Clang */
# include <x86intrin.h>
#endif
/* Microsoft supports Intel SHA ACLE extensions as of Visual Studio 2015 */
#if defined(_MSC_VER)
# include <immintrin.h>
# define WIN32_LEAN_AND_MEAN
# include <Windows.h>
typedef UINT32 uint32_t;
typedef UINT8 uint8_t;
#endif
//#define SHA1_TARGET_X86 1
#endif
// -> END x86_64 intrinsics block
#define LENGTH_SIZE 8 // In bytes
#define BLOCK_LEN 64 // In bytes
#define STATE_LEN 5 // In words
const struct ltc_hash_descriptor sha1_desc =
{
"sha1",
2,
20,
64,
/* OID */
{ 1, 3, 14, 3, 2, 26, },
6,
&sha1_init,
&sha1_process,
&sha1_done,
&sha1_test,
NULL
};
#ifdef LTC_CLEAN_STACK
static int ss_sha1_compress(hash_state *md, const unsigned char *buf)
#else
static int s_sha1_compress(hash_state *md, const unsigned char *buf)
#endif
{
#if SHA1_TARGET_ARM
/* sha1-arm.c - ARMv8 SHA extensions using C intrinsics */
/* Written and placed in public domain by Jeffrey Walton */
/* Based on code from ARM, and by Johannes Schneiders, Skip */
/* Hovsmith and Barry O'Rourke for the mbedTLS project. */
// -> BEGIN arm intrinsics block
uint32x4_t ABCD, ABCD_SAVED;
uint32x4_t TMP0, TMP1;
uint32x4_t MSG0, MSG1, MSG2, MSG3;
uint32_t E0, E0_SAVED, E1;
/* Load state */
ABCD = vld1q_u32(&md->sha1.state[0]);
E0 = md->sha1.state[4];
/* Save state */
ABCD_SAVED = ABCD;
E0_SAVED = E0;
/* Load message */
MSG0 = vld1q_u32((const uint32_t*)(buf));
MSG1 = vld1q_u32((const uint32_t*)(buf + 16));
MSG2 = vld1q_u32((const uint32_t*)(buf + 32));
MSG3 = vld1q_u32((const uint32_t*)(buf + 48));
/* Reverse for little endian */
MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0)));
MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1)));
MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2)));
MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3)));
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x5A827999));
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x5A827999));
/* Rounds 0-3 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x5A827999));
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
/* Rounds 4-7 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0x5A827999));
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
/* Rounds 8-11 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x5A827999));
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
/* Rounds 12-15 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x6ED9EBA1));
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
/* Rounds 16-19 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x6ED9EBA1));
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
/* Rounds 20-23 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0x6ED9EBA1));
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
/* Rounds 24-27 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x6ED9EBA1));
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
/* Rounds 28-31 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x6ED9EBA1));
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
/* Rounds 32-35 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x8F1BBCDC));
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
/* Rounds 36-39 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0x8F1BBCDC));
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
/* Rounds 40-43 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0x8F1BBCDC));
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
/* Rounds 44-47 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0x8F1BBCDC));
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
/* Rounds 48-51 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0x8F1BBCDC));
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
/* Rounds 52-55 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0xCA62C1D6));
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
/* Rounds 56-59 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, vdupq_n_u32(0xCA62C1D6));
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
/* Rounds 60-63 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, vdupq_n_u32(0xCA62C1D6));
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
/* Rounds 64-67 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, vdupq_n_u32(0xCA62C1D6));
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
/* Rounds 68-71 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, vdupq_n_u32(0xCA62C1D6));
MSG0 = vsha1su1q_u32(MSG0, MSG3);
/* Rounds 72-75 */
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
/* Rounds 76-79 */
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
/* Combine state */
E0 += E0_SAVED;
ABCD = vaddq_u32(ABCD_SAVED, ABCD);
/* Save state */
vst1q_u32(&md->sha1.state[0], ABCD);
md->sha1.state[4] = E0;
// -> END arm intrinsics block
#elif SHA1_TARGET_X86
/* sha1-x86.c - Intel SHA extensions using C intrinsics */
/* Written and place in public domain by Jeffrey Walton */
/* Based on code from Intel, and by Sean Gulley for */
/* the miTLS project. */
// -> BEGIN x86_64 intrinsics block
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
__m128i MSG0, MSG1, MSG2, MSG3;
const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
/* Load initial values */
ABCD = _mm_loadu_si128((const __m128i*) md->sha1.state);
E0 = _mm_set_epi32(md->sha1.state[4], 0, 0, 0);
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
/* Save current state */
ABCD_SAVE = ABCD;
E0_SAVE = E0;
/* Rounds 0-3 */
MSG0 = _mm_loadu_si128((const __m128i*)(buf + 0));
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
E0 = _mm_add_epi32(E0, MSG0);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
/* Rounds 4-7 */
MSG1 = _mm_loadu_si128((const __m128i*)(buf + 16));
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
/* Rounds 8-11 */
MSG2 = _mm_loadu_si128((const __m128i*)(buf + 32));
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 12-15 */
MSG3 = _mm_loadu_si128((const __m128i*)(buf + 48));
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 16-19 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 20-23 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 24-27 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 28-31 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 32-35 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 36-39 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 40-43 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 44-47 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 48-51 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 52-55 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 56-59 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
/* Rounds 60-63 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
/* Rounds 64-67 */
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
/* Rounds 68-71 */
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG3 = _mm_xor_si128(MSG3, MSG1);
/* Rounds 72-75 */
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
/* Rounds 76-79 */
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
/* Combine state */
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
/* Save state */
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
_mm_storeu_si128((__m128i*) md->sha1.state, ABCD);
md->sha1.state[4] = _mm_extract_epi32(E0, 3);
// -> END x86_64 intrinsics block
#else
// -> BEGIN generic, non intrinsics block
/*
* SHA-1 hash in C
*
* Copyright (c) 2023 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/fast-sha1-hash-implementation-in-x86-assembly
*/
#define ROTL32(x, n) (((0U + (x)) << (n)) | ((x) >> (32 - (n)))) // Assumes that x is uint32_t and 0 < n < 32
#define LOADSCHEDULE(i) \
schedule[i] = (uint32_t)buf[i * 4 + 0] << 24 \
| (uint32_t)buf[i * 4 + 1] << 16 \
| (uint32_t)buf[i * 4 + 2] << 8 \
| (uint32_t)buf[i * 4 + 3] << 0;
#define SCHEDULE(i) \
temp = schedule[(i - 3) & 0xF] ^ schedule[(i - 8) & 0xF] ^ schedule[(i - 14) & 0xF] ^ schedule[(i - 16) & 0xF]; \
schedule[i & 0xF] = ROTL32(temp, 1);
#define ROUND0a(a, b, c, d, e, i) LOADSCHEDULE(i) ROUNDTAIL(a, b, e, ((b & c) | (~b & d)) , i, 0x5A827999)
#define ROUND0b(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, ((b & c) | (~b & d)) , i, 0x5A827999)
#define ROUND1(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, (b ^ c ^ d) , i, 0x6ED9EBA1)
#define ROUND2(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, ((b & c) ^ (b & d) ^ (c & d)), i, 0x8F1BBCDC)
#define ROUND3(a, b, c, d, e, i) SCHEDULE(i) ROUNDTAIL(a, b, e, (b ^ c ^ d) , i, 0xCA62C1D6)
#define ROUNDTAIL(a, b, e, f, i, k) \
e = 0U + e + ROTL32(a, 5) + f + UINT32_C(k) + schedule[i & 0xF]; \
b = ROTL32(b, 30);
uint32_t a = md->sha1.state[0];
uint32_t b = md->sha1.state[1];
uint32_t c = md->sha1.state[2];
uint32_t d = md->sha1.state[3];
uint32_t e = md->sha1.state[4];
uint32_t schedule[16];
uint32_t temp;
ROUND0a(a, b, c, d, e, 0)
ROUND0a(e, a, b, c, d, 1)
ROUND0a(d, e, a, b, c, 2)
ROUND0a(c, d, e, a, b, 3)
ROUND0a(b, c, d, e, a, 4)
ROUND0a(a, b, c, d, e, 5)
ROUND0a(e, a, b, c, d, 6)
ROUND0a(d, e, a, b, c, 7)
ROUND0a(c, d, e, a, b, 8)
ROUND0a(b, c, d, e, a, 9)
ROUND0a(a, b, c, d, e, 10)
ROUND0a(e, a, b, c, d, 11)
ROUND0a(d, e, a, b, c, 12)
ROUND0a(c, d, e, a, b, 13)
ROUND0a(b, c, d, e, a, 14)
ROUND0a(a, b, c, d, e, 15)
ROUND0b(e, a, b, c, d, 16)
ROUND0b(d, e, a, b, c, 17)
ROUND0b(c, d, e, a, b, 18)
ROUND0b(b, c, d, e, a, 19)
ROUND1(a, b, c, d, e, 20)
ROUND1(e, a, b, c, d, 21)
ROUND1(d, e, a, b, c, 22)
ROUND1(c, d, e, a, b, 23)
ROUND1(b, c, d, e, a, 24)
ROUND1(a, b, c, d, e, 25)
ROUND1(e, a, b, c, d, 26)
ROUND1(d, e, a, b, c, 27)
ROUND1(c, d, e, a, b, 28)
ROUND1(b, c, d, e, a, 29)
ROUND1(a, b, c, d, e, 30)
ROUND1(e, a, b, c, d, 31)
ROUND1(d, e, a, b, c, 32)
ROUND1(c, d, e, a, b, 33)
ROUND1(b, c, d, e, a, 34)
ROUND1(a, b, c, d, e, 35)
ROUND1(e, a, b, c, d, 36)
ROUND1(d, e, a, b, c, 37)
ROUND1(c, d, e, a, b, 38)
ROUND1(b, c, d, e, a, 39)
ROUND2(a, b, c, d, e, 40)
ROUND2(e, a, b, c, d, 41)
ROUND2(d, e, a, b, c, 42)
ROUND2(c, d, e, a, b, 43)
ROUND2(b, c, d, e, a, 44)
ROUND2(a, b, c, d, e, 45)
ROUND2(e, a, b, c, d, 46)
ROUND2(d, e, a, b, c, 47)
ROUND2(c, d, e, a, b, 48)
ROUND2(b, c, d, e, a, 49)
ROUND2(a, b, c, d, e, 50)
ROUND2(e, a, b, c, d, 51)
ROUND2(d, e, a, b, c, 52)
ROUND2(c, d, e, a, b, 53)
ROUND2(b, c, d, e, a, 54)
ROUND2(a, b, c, d, e, 55)
ROUND2(e, a, b, c, d, 56)
ROUND2(d, e, a, b, c, 57)
ROUND2(c, d, e, a, b, 58)
ROUND2(b, c, d, e, a, 59)
ROUND3(a, b, c, d, e, 60)
ROUND3(e, a, b, c, d, 61)
ROUND3(d, e, a, b, c, 62)
ROUND3(c, d, e, a, b, 63)
ROUND3(b, c, d, e, a, 64)
ROUND3(a, b, c, d, e, 65)
ROUND3(e, a, b, c, d, 66)
ROUND3(d, e, a, b, c, 67)
ROUND3(c, d, e, a, b, 68)
ROUND3(b, c, d, e, a, 69)
ROUND3(a, b, c, d, e, 70)
ROUND3(e, a, b, c, d, 71)
ROUND3(d, e, a, b, c, 72)
ROUND3(c, d, e, a, b, 73)
ROUND3(b, c, d, e, a, 74)
ROUND3(a, b, c, d, e, 75)
ROUND3(e, a, b, c, d, 76)
ROUND3(d, e, a, b, c, 77)
ROUND3(c, d, e, a, b, 78)
ROUND3(b, c, d, e, a, 79)
md->sha1.state[0] = 0U + md->sha1.state[0] + a;
md->sha1.state[1] = 0U + md->sha1.state[1] + b;
md->sha1.state[2] = 0U + md->sha1.state[2] + c;
md->sha1.state[3] = 0U + md->sha1.state[3] + d;
md->sha1.state[4] = 0U + md->sha1.state[4] + e;
#undef ROTL32
#undef LOADSCHEDULE
#undef SCHEDULE
#undef ROUND0a
#undef ROUND0b
#undef ROUND1
#undef ROUND2
#undef ROUND3
#undef ROUNDTAIL
// -> END generic, non intrinsics block
#endif
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int s_sha1_compress(hash_state *md, const unsigned char *buf)
{
int err;
err = ss_sha1_compress(md, buf);
burn_stack(sizeof(ulong32) * 87);
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int sha1_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->sha1.state[0] = 0x67452301UL;
md->sha1.state[1] = 0xefcdab89UL;
md->sha1.state[2] = 0x98badcfeUL;
md->sha1.state[3] = 0x10325476UL;
md->sha1.state[4] = 0xc3d2e1f0UL;
md->sha1.curlen = 0;
md->sha1.length = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(sha1_process, s_sha1_compress, sha1, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (20 bytes)
@return CRYPT_OK if successful
*/
int sha1_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->sha1.curlen >= sizeof(md->sha1.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->sha1.length += md->sha1.curlen * 8;
/* append the '1' bit */
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha1.curlen > 56) {
while (md->sha1.curlen < 64) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
s_sha1_compress(md, md->sha1.buf);
md->sha1.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->sha1.curlen < 56) {
md->sha1.buf[md->sha1.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha1.length, md->sha1.buf+56);
s_sha1_compress(md, md->sha1.buf);
/* copy output */
for (i = 0; i < 5; i++) {
STORE32H(md->sha1.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int sha1_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[20];
} tests[] = {
{ "abc",
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
0x9c, 0xd0, 0xd8, 0x9d }
},
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
0xE5, 0x46, 0x70, 0xF1 }
}
};
int i;
unsigned char tmp[20];
hash_state md;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
sha1_init(&md);
sha1_process(&md, (unsigned char*)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
sha1_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA1", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif

322
vendor/github.com/mutecomm/go-sqlcipher/v4/sha256.c generated vendored Normal file
View File

@@ -0,0 +1,322 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file sha256.c
LTC_SHA256 by Tom St Denis
*/
#ifdef LTC_SHA256
const struct ltc_hash_descriptor sha256_desc =
{
"sha256",
0,
32,
64,
/* OID */
{ 2, 16, 840, 1, 101, 3, 4, 2, 1, },
9,
&sha256_init,
&sha256_process,
&sha256_done,
&sha256_test,
NULL
};
#ifdef LTC_SMALL_CODE
/* the K array */
static const ulong32 K[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
#endif
/* Various logical functions */
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) RORc((x),(n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
/* compress 512-bits */
#ifdef LTC_CLEAN_STACK
static int ss_sha256_compress(hash_state * md, const unsigned char *buf)
#else
static int s_sha256_compress(hash_state * md, const unsigned char *buf)
#endif
{
ulong32 S[8], W[64], t0, t1;
#ifdef LTC_SMALL_CODE
ulong32 t;
#endif
int i;
/* copy state into S */
for (i = 0; i < 8; i++) {
S[i] = md->sha256.state[i];
}
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32H(W[i], buf + (4*i));
}
/* fill W[16..63] */
for (i = 16; i < 64; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
}
/* Compress */
#ifdef LTC_SMALL_CODE
#define RND(a,b,c,d,e,f,g,h,i) \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
for (i = 0; i < 64; ++i) {
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i);
t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
}
#else
#define RND(a,b,c,d,e,f,g,h,i,ki) \
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
#endif
#undef RND
/* feedback */
for (i = 0; i < 8; i++) {
md->sha256.state[i] = md->sha256.state[i] + S[i];
}
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int s_sha256_compress(hash_state * md, const unsigned char *buf)
{
int err;
err = ss_sha256_compress(md, buf);
burn_stack(sizeof(ulong32) * 74);
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int sha256_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->sha256.curlen = 0;
md->sha256.length = 0;
md->sha256.state[0] = 0x6A09E667UL;
md->sha256.state[1] = 0xBB67AE85UL;
md->sha256.state[2] = 0x3C6EF372UL;
md->sha256.state[3] = 0xA54FF53AUL;
md->sha256.state[4] = 0x510E527FUL;
md->sha256.state[5] = 0x9B05688CUL;
md->sha256.state[6] = 0x1F83D9ABUL;
md->sha256.state[7] = 0x5BE0CD19UL;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(sha256_process,s_sha256_compress, sha256, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (32 bytes)
@return CRYPT_OK if successful
*/
int sha256_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->sha256.curlen >= sizeof(md->sha256.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->sha256.length += md->sha256.curlen * 8;
/* append the '1' bit */
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha256.curlen > 56) {
while (md->sha256.curlen < 64) {
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
}
s_sha256_compress(md, md->sha256.buf);
md->sha256.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->sha256.curlen < 56) {
md->sha256.buf[md->sha256.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha256.length, md->sha256.buf+56);
s_sha256_compress(md, md->sha256.buf);
/* copy output */
for (i = 0; i < 8; i++) {
STORE32H(md->sha256.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int sha256_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[32];
} tests[] = {
{ "abc",
{ 0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea,
0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23,
0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c,
0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad }
},
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
{ 0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8,
0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39,
0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67,
0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1 }
},
};
int i;
unsigned char tmp[32];
hash_state md;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
sha256_init(&md);
sha256_process(&md, (unsigned char*)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
sha256_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA256", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif

303
vendor/github.com/mutecomm/go-sqlcipher/v4/sha512.c generated vendored Normal file
View File

@@ -0,0 +1,303 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@param sha512.c
LTC_SHA512 by Tom St Denis
*/
#ifdef LTC_SHA512
const struct ltc_hash_descriptor sha512_desc =
{
"sha512",
5,
64,
128,
/* OID */
{ 2, 16, 840, 1, 101, 3, 4, 2, 3, },
9,
&sha512_init,
&sha512_process,
&sha512_done,
&sha512_test,
NULL
};
/* the K array */
static const ulong64 K[80] = {
CONST64(0x428a2f98d728ae22), CONST64(0x7137449123ef65cd),
CONST64(0xb5c0fbcfec4d3b2f), CONST64(0xe9b5dba58189dbbc),
CONST64(0x3956c25bf348b538), CONST64(0x59f111f1b605d019),
CONST64(0x923f82a4af194f9b), CONST64(0xab1c5ed5da6d8118),
CONST64(0xd807aa98a3030242), CONST64(0x12835b0145706fbe),
CONST64(0x243185be4ee4b28c), CONST64(0x550c7dc3d5ffb4e2),
CONST64(0x72be5d74f27b896f), CONST64(0x80deb1fe3b1696b1),
CONST64(0x9bdc06a725c71235), CONST64(0xc19bf174cf692694),
CONST64(0xe49b69c19ef14ad2), CONST64(0xefbe4786384f25e3),
CONST64(0x0fc19dc68b8cd5b5), CONST64(0x240ca1cc77ac9c65),
CONST64(0x2de92c6f592b0275), CONST64(0x4a7484aa6ea6e483),
CONST64(0x5cb0a9dcbd41fbd4), CONST64(0x76f988da831153b5),
CONST64(0x983e5152ee66dfab), CONST64(0xa831c66d2db43210),
CONST64(0xb00327c898fb213f), CONST64(0xbf597fc7beef0ee4),
CONST64(0xc6e00bf33da88fc2), CONST64(0xd5a79147930aa725),
CONST64(0x06ca6351e003826f), CONST64(0x142929670a0e6e70),
CONST64(0x27b70a8546d22ffc), CONST64(0x2e1b21385c26c926),
CONST64(0x4d2c6dfc5ac42aed), CONST64(0x53380d139d95b3df),
CONST64(0x650a73548baf63de), CONST64(0x766a0abb3c77b2a8),
CONST64(0x81c2c92e47edaee6), CONST64(0x92722c851482353b),
CONST64(0xa2bfe8a14cf10364), CONST64(0xa81a664bbc423001),
CONST64(0xc24b8b70d0f89791), CONST64(0xc76c51a30654be30),
CONST64(0xd192e819d6ef5218), CONST64(0xd69906245565a910),
CONST64(0xf40e35855771202a), CONST64(0x106aa07032bbd1b8),
CONST64(0x19a4c116b8d2d0c8), CONST64(0x1e376c085141ab53),
CONST64(0x2748774cdf8eeb99), CONST64(0x34b0bcb5e19b48a8),
CONST64(0x391c0cb3c5c95a63), CONST64(0x4ed8aa4ae3418acb),
CONST64(0x5b9cca4f7763e373), CONST64(0x682e6ff3d6b2b8a3),
CONST64(0x748f82ee5defb2fc), CONST64(0x78a5636f43172f60),
CONST64(0x84c87814a1f0ab72), CONST64(0x8cc702081a6439ec),
CONST64(0x90befffa23631e28), CONST64(0xa4506cebde82bde9),
CONST64(0xbef9a3f7b2c67915), CONST64(0xc67178f2e372532b),
CONST64(0xca273eceea26619c), CONST64(0xd186b8c721c0c207),
CONST64(0xeada7dd6cde0eb1e), CONST64(0xf57d4f7fee6ed178),
CONST64(0x06f067aa72176fba), CONST64(0x0a637dc5a2c898a6),
CONST64(0x113f9804bef90dae), CONST64(0x1b710b35131c471b),
CONST64(0x28db77f523047d84), CONST64(0x32caab7b40c72493),
CONST64(0x3c9ebe0a15c9bebc), CONST64(0x431d67c49c100d4c),
CONST64(0x4cc5d4becb3e42b6), CONST64(0x597f299cfc657e2a),
CONST64(0x5fcb6fab3ad6faec), CONST64(0x6c44198c4a475817)
};
/* Various logical functions */
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) ROR64c(x, n)
#define R(x, n) (((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)n))
#define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
#define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
#define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
#define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
/* compress 1024-bits */
#ifdef LTC_CLEAN_STACK
static int ss_sha512_compress(hash_state * md, const unsigned char *buf)
#else
static int s_sha512_compress(hash_state * md, const unsigned char *buf)
#endif
{
ulong64 S[8], W[80], t0, t1;
int i;
/* copy state into S */
for (i = 0; i < 8; i++) {
S[i] = md->sha512.state[i];
}
/* copy the state into 1024-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD64H(W[i], buf + (8*i));
}
/* fill W[16..79] */
for (i = 16; i < 80; i++) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
}
/* Compress */
#ifdef LTC_SMALL_CODE
for (i = 0; i < 80; i++) {
t0 = S[7] + Sigma1(S[4]) + Ch(S[4], S[5], S[6]) + K[i] + W[i];
t1 = Sigma0(S[0]) + Maj(S[0], S[1], S[2]);
S[7] = S[6];
S[6] = S[5];
S[5] = S[4];
S[4] = S[3] + t0;
S[3] = S[2];
S[2] = S[1];
S[1] = S[0];
S[0] = t0 + t1;
}
#else
#define RND(a,b,c,d,e,f,g,h,i) \
t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
for (i = 0; i < 80; i += 8) {
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7);
}
#endif
/* feedback */
for (i = 0; i < 8; i++) {
md->sha512.state[i] = md->sha512.state[i] + S[i];
}
return CRYPT_OK;
}
/* compress 1024-bits */
#ifdef LTC_CLEAN_STACK
static int s_sha512_compress(hash_state * md, const unsigned char *buf)
{
int err;
err = ss_sha512_compress(md, buf);
burn_stack(sizeof(ulong64) * 90 + sizeof(int));
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int sha512_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->sha512.curlen = 0;
md->sha512.length = 0;
md->sha512.state[0] = CONST64(0x6a09e667f3bcc908);
md->sha512.state[1] = CONST64(0xbb67ae8584caa73b);
md->sha512.state[2] = CONST64(0x3c6ef372fe94f82b);
md->sha512.state[3] = CONST64(0xa54ff53a5f1d36f1);
md->sha512.state[4] = CONST64(0x510e527fade682d1);
md->sha512.state[5] = CONST64(0x9b05688c2b3e6c1f);
md->sha512.state[6] = CONST64(0x1f83d9abfb41bd6b);
md->sha512.state[7] = CONST64(0x5be0cd19137e2179);
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(sha512_process, s_sha512_compress, sha512, 128)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (64 bytes)
@return CRYPT_OK if successful
*/
int sha512_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->sha512.curlen >= sizeof(md->sha512.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->sha512.length += md->sha512.curlen * CONST64(8);
/* append the '1' bit */
md->sha512.buf[md->sha512.curlen++] = (unsigned char)0x80;
/* if the length is currently above 112 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->sha512.curlen > 112) {
while (md->sha512.curlen < 128) {
md->sha512.buf[md->sha512.curlen++] = (unsigned char)0;
}
s_sha512_compress(md, md->sha512.buf);
md->sha512.curlen = 0;
}
/* pad upto 120 bytes of zeroes
* note: that from 112 to 120 is the 64 MSB of the length. We assume that you won't hash
* > 2^64 bits of data... :-)
*/
while (md->sha512.curlen < 120) {
md->sha512.buf[md->sha512.curlen++] = (unsigned char)0;
}
/* store length */
STORE64H(md->sha512.length, md->sha512.buf+120);
s_sha512_compress(md, md->sha512.buf);
/* copy output */
for (i = 0; i < 8; i++) {
STORE64H(md->sha512.state[i], out+(8*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int sha512_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[64];
} tests[] = {
{ "abc",
{ 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba,
0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31,
0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2,
0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a,
0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8,
0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd,
0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e,
0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f }
},
{ "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu",
{ 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda,
0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f,
0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1,
0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18,
0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4,
0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a,
0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54,
0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09 }
},
};
int i;
unsigned char tmp[64];
hash_state md;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
sha512_init(&md);
sha512_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
sha512_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "SHA512", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif

View File

@@ -0,0 +1,35 @@
package sqlite3
import (
"bytes"
"errors"
"os"
)
// sqlite3Header defines the header string used by SQLite 3.
var sqlite3Header = []byte("SQLite format 3\000")
// IsEncrypted returns true, if the database with the given filename is
// encrypted, and false otherwise.
// If the database header cannot be read properly an error is returned.
func IsEncrypted(filename string) (bool, error) {
// open file
db, err := os.Open(filename)
if err != nil {
return false, err
}
defer db.Close()
// read header
var header [16]byte
n, err := db.Read(header[:])
if err != nil {
return false, err
}
if n != len(header) {
return false, errors.New("go-sqlcipher: could not read full header")
}
// SQLCipher encrypts also the header, the file is encrypted if the read
// header does not equal the header string used by SQLite 3.
encrypted := !bytes.Equal(header[:], sqlite3Header)
return encrypted, nil
}

250671
vendor/github.com/mutecomm/go-sqlcipher/v4/sqlite3.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

2134
vendor/github.com/mutecomm/go-sqlcipher/v4/sqlite3.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

13030
vendor/github.com/mutecomm/go-sqlcipher/v4/sqlite3.h generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,103 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package sqlite3
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
// These wrappers are necessary because SQLITE_TRANSIENT
// is a pointer constant, and cgo doesn't translate them correctly.
static inline void my_result_text(sqlite3_context *ctx, char *p, int np) {
sqlite3_result_text(ctx, p, np, SQLITE_TRANSIENT);
}
static inline void my_result_blob(sqlite3_context *ctx, void *p, int np) {
sqlite3_result_blob(ctx, p, np, SQLITE_TRANSIENT);
}
*/
import "C"
import (
"math"
"reflect"
"unsafe"
)
const i64 = unsafe.Sizeof(int(0)) > 4
// SQLiteContext behave sqlite3_context
type SQLiteContext C.sqlite3_context
// ResultBool sets the result of an SQL function.
func (c *SQLiteContext) ResultBool(b bool) {
if b {
c.ResultInt(1)
} else {
c.ResultInt(0)
}
}
// ResultBlob sets the result of an SQL function.
// See: sqlite3_result_blob, http://sqlite.org/c3ref/result_blob.html
func (c *SQLiteContext) ResultBlob(b []byte) {
if i64 && len(b) > math.MaxInt32 {
C.sqlite3_result_error_toobig((*C.sqlite3_context)(c))
return
}
var p *byte
if len(b) > 0 {
p = &b[0]
}
C.my_result_blob((*C.sqlite3_context)(c), unsafe.Pointer(p), C.int(len(b)))
}
// ResultDouble sets the result of an SQL function.
// See: sqlite3_result_double, http://sqlite.org/c3ref/result_blob.html
func (c *SQLiteContext) ResultDouble(d float64) {
C.sqlite3_result_double((*C.sqlite3_context)(c), C.double(d))
}
// ResultInt sets the result of an SQL function.
// See: sqlite3_result_int, http://sqlite.org/c3ref/result_blob.html
func (c *SQLiteContext) ResultInt(i int) {
if i64 && (i > math.MaxInt32 || i < math.MinInt32) {
C.sqlite3_result_int64((*C.sqlite3_context)(c), C.sqlite3_int64(i))
} else {
C.sqlite3_result_int((*C.sqlite3_context)(c), C.int(i))
}
}
// ResultInt64 sets the result of an SQL function.
// See: sqlite3_result_int64, http://sqlite.org/c3ref/result_blob.html
func (c *SQLiteContext) ResultInt64(i int64) {
C.sqlite3_result_int64((*C.sqlite3_context)(c), C.sqlite3_int64(i))
}
// ResultNull sets the result of an SQL function.
// See: sqlite3_result_null, http://sqlite.org/c3ref/result_blob.html
func (c *SQLiteContext) ResultNull() {
C.sqlite3_result_null((*C.sqlite3_context)(c))
}
// ResultText sets the result of an SQL function.
// See: sqlite3_result_text, http://sqlite.org/c3ref/result_blob.html
func (c *SQLiteContext) ResultText(s string) {
h := (*reflect.StringHeader)(unsafe.Pointer(&s))
cs, l := (*C.char)(unsafe.Pointer(h.Data)), C.int(h.Len)
C.my_result_text((*C.sqlite3_context)(c), cs, l)
}
// ResultZeroblob sets the result of an SQL function.
// See: sqlite3_result_zeroblob, http://sqlite.org/c3ref/result_blob.html
func (c *SQLiteContext) ResultZeroblob(n int) {
C.sqlite3_result_zeroblob((*C.sqlite3_context)(c), C.int(n))
}

View File

@@ -0,0 +1,120 @@
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package sqlite3
import (
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
)
// This file provides several different implementations for the
// default embedded sqlite_crypt function.
// This function is uses a caesar-cypher by default
// and is used within the UserAuthentication module to encode
// the password.
//
// The provided functions can be used as an overload to the sqlite_crypt
// function through the use of the RegisterFunc on the connection.
//
// Because the functions can serv a purpose to an end-user
// without using the UserAuthentication module
// the functions are default compiled in.
//
// From SQLITE3 - user-auth.txt
// The sqlite_user.pw field is encoded by a built-in SQL function
// "sqlite_crypt(X,Y)". The two arguments are both BLOBs. The first argument
// is the plaintext password supplied to the sqlite3_user_authenticate()
// interface. The second argument is the sqlite_user.pw value and is supplied
// so that the function can extract the "salt" used by the password encoder.
// The result of sqlite_crypt(X,Y) is another blob which is the value that
// ends up being stored in sqlite_user.pw. To verify credentials X supplied
// by the sqlite3_user_authenticate() routine, SQLite runs:
//
// sqlite_user.pw == sqlite_crypt(X, sqlite_user.pw)
//
// To compute an appropriate sqlite_user.pw value from a new or modified
// password X, sqlite_crypt(X,NULL) is run. A new random salt is selected
// when the second argument is NULL.
//
// The built-in version of of sqlite_crypt() uses a simple Caesar-cypher
// which prevents passwords from being revealed by searching the raw database
// for ASCII text, but is otherwise trivally broken. For better password
// security, the database should be encrypted using the SQLite Encryption
// Extension or similar technology. Or, the application can use the
// sqlite3_create_function() interface to provide an alternative
// implementation of sqlite_crypt() that computes a stronger password hash,
// perhaps using a cryptographic hash function like SHA1.
// CryptEncoderSHA1 encodes a password with SHA1
func CryptEncoderSHA1(pass []byte, hash interface{}) []byte {
h := sha1.Sum(pass)
return h[:]
}
// CryptEncoderSSHA1 encodes a password with SHA1 with the
// configured salt.
func CryptEncoderSSHA1(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha1.Sum(p)
return h[:]
}
}
// CryptEncoderSHA256 encodes a password with SHA256
func CryptEncoderSHA256(pass []byte, hash interface{}) []byte {
h := sha256.Sum256(pass)
return h[:]
}
// CryptEncoderSSHA256 encodes a password with SHA256
// with the configured salt
func CryptEncoderSSHA256(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha256.Sum256(p)
return h[:]
}
}
// CryptEncoderSHA384 encodes a password with SHA384
func CryptEncoderSHA384(pass []byte, hash interface{}) []byte {
h := sha512.Sum384(pass)
return h[:]
}
// CryptEncoderSSHA384 encodes a password with SHA384
// with the configured salt
func CryptEncoderSSHA384(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha512.Sum384(p)
return h[:]
}
}
// CryptEncoderSHA512 encodes a password with SHA512
func CryptEncoderSHA512(pass []byte, hash interface{}) []byte {
h := sha512.Sum512(pass)
return h[:]
}
// CryptEncoderSSHA512 encodes a password with SHA512
// with the configured salt
func CryptEncoderSSHA512(salt string) func(pass []byte, hash interface{}) []byte {
return func(pass []byte, hash interface{}) []byte {
s := []byte(salt)
p := append(pass, s...)
h := sha512.Sum512(p)
return h[:]
}
}
// EOF

View File

@@ -0,0 +1,70 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build cgo
// +build go1.8
package sqlite3
import (
"database/sql/driver"
"context"
)
// Ping implement Pinger.
func (c *SQLiteConn) Ping(ctx context.Context) error {
if c.db == nil {
// must be ErrBadConn for sql to close the database
return driver.ErrBadConn
}
return nil
}
// QueryContext implement QueryerContext.
func (c *SQLiteConn) QueryContext(ctx context.Context, query string, args []driver.NamedValue) (driver.Rows, error) {
list := make([]namedValue, len(args))
for i, nv := range args {
list[i] = namedValue(nv)
}
return c.query(ctx, query, list)
}
// ExecContext implement ExecerContext.
func (c *SQLiteConn) ExecContext(ctx context.Context, query string, args []driver.NamedValue) (driver.Result, error) {
list := make([]namedValue, len(args))
for i, nv := range args {
list[i] = namedValue(nv)
}
return c.exec(ctx, query, list)
}
// PrepareContext implement ConnPrepareContext.
func (c *SQLiteConn) PrepareContext(ctx context.Context, query string) (driver.Stmt, error) {
return c.prepare(ctx, query)
}
// BeginTx implement ConnBeginTx.
func (c *SQLiteConn) BeginTx(ctx context.Context, opts driver.TxOptions) (driver.Tx, error) {
return c.begin(ctx)
}
// QueryContext implement QueryerContext.
func (s *SQLiteStmt) QueryContext(ctx context.Context, args []driver.NamedValue) (driver.Rows, error) {
list := make([]namedValue, len(args))
for i, nv := range args {
list[i] = namedValue(nv)
}
return s.query(ctx, list)
}
// ExecContext implement ExecerContext.
func (s *SQLiteStmt) ExecContext(ctx context.Context, args []driver.NamedValue) (driver.Result, error) {
list := make([]namedValue, len(args))
for i, nv := range args {
list[i] = namedValue(nv)
}
return s.exec(ctx, list)
}

View File

@@ -0,0 +1,19 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build libsqlite3
package sqlite3
/*
#cgo CFLAGS: -DUSE_LIBSQLITE3
#cgo linux LDFLAGS: -lsqlite3
#cgo darwin LDFLAGS: -L/usr/local/opt/sqlite/lib -lsqlite3
#cgo darwin CFLAGS: -I/usr/local/opt/sqlite/include
#cgo openbsd LDFLAGS: -lsqlite3
#cgo solaris LDFLAGS: -lsqlite3
#cgo windows LDFLAGS: -lsqlite3
*/
import "C"

View File

@@ -0,0 +1,84 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build !sqlite_omit_load_extension
package sqlite3
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
*/
import "C"
import (
"errors"
"unsafe"
)
func (c *SQLiteConn) loadExtensions(extensions []string) error {
rv := C.sqlite3_enable_load_extension(c.db, 1)
if rv != C.SQLITE_OK {
return errors.New(C.GoString(C.sqlite3_errmsg(c.db)))
}
for _, extension := range extensions {
if err := c.loadExtension(extension, nil); err != nil {
C.sqlite3_enable_load_extension(c.db, 0)
return err
}
}
rv = C.sqlite3_enable_load_extension(c.db, 0)
if rv != C.SQLITE_OK {
return errors.New(C.GoString(C.sqlite3_errmsg(c.db)))
}
return nil
}
// LoadExtension load the sqlite3 extension.
func (c *SQLiteConn) LoadExtension(lib string, entry string) error {
rv := C.sqlite3_enable_load_extension(c.db, 1)
if rv != C.SQLITE_OK {
return errors.New(C.GoString(C.sqlite3_errmsg(c.db)))
}
if err := c.loadExtension(lib, &entry); err != nil {
C.sqlite3_enable_load_extension(c.db, 0)
return err
}
rv = C.sqlite3_enable_load_extension(c.db, 0)
if rv != C.SQLITE_OK {
return errors.New(C.GoString(C.sqlite3_errmsg(c.db)))
}
return nil
}
func (c *SQLiteConn) loadExtension(lib string, entry *string) error {
clib := C.CString(lib)
defer C.free(unsafe.Pointer(clib))
var centry *C.char
if entry != nil {
centry = C.CString(*entry)
defer C.free(unsafe.Pointer(centry))
}
var errMsg *C.char
defer C.sqlite3_free(unsafe.Pointer(errMsg))
rv := C.sqlite3_load_extension(c.db, clib, centry, &errMsg)
if rv != C.SQLITE_OK {
return errors.New(C.GoString(errMsg))
}
return nil
}

View File

@@ -0,0 +1,24 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_omit_load_extension
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_OMIT_LOAD_EXTENSION
*/
import "C"
import (
"errors"
)
func (c *SQLiteConn) loadExtensions(extensions []string) error {
return errors.New("Extensions have been disabled for static builds")
}
func (c *SQLiteConn) LoadExtension(lib string, entry string) error {
return errors.New("Extensions have been disabled for static builds")
}

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_allow_uri_authority
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_ALLOW_URI_AUTHORITY
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,16 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build !windows
// +build sqlite_app_armor
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_ENABLE_API_ARMOR
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_foreign_keys
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_DEFAULT_FOREIGN_KEYS=1
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,14 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_fts5 fts5
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_ENABLE_FTS5
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,17 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_icu icu
package sqlite3
/*
#cgo LDFLAGS: -licuuc -licui18n
#cgo CFLAGS: -DSQLITE_ENABLE_ICU
#cgo darwin CFLAGS: -I/usr/local/opt/icu4c/include
#cgo darwin LDFLAGS: -L/usr/local/opt/icu4c/lib
#cgo openbsd LDFLAGS: -lsqlite3
*/
import "C"

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_introspect
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_INTROSPECTION_PRAGMAS
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,13 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_json sqlite_json1 json1
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_ENABLE_JSON1
*/
import "C"

View File

@@ -0,0 +1,20 @@
// Copyright (C) 2019 G.J.R. Timmer <gjr.timmer@gmail.com>.
// Copyright (C) 2018 segment.com <friends@segment.com>
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build cgo
package sqlite3
// SQLitePreUpdateData represents all of the data available during a
// pre-update hook call.
type SQLitePreUpdateData struct {
Conn *SQLiteConn
Op int
DatabaseName string
TableName string
OldRowID int64
NewRowID int64
}

View File

@@ -0,0 +1,112 @@
// Copyright (C) 2019 G.J.R. Timmer <gjr.timmer@gmail.com>.
// Copyright (C) 2018 segment.com <friends@segment.com>
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_preupdate_hook
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_ENABLE_PREUPDATE_HOOK
#cgo LDFLAGS: -lm
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
#include <string.h>
void preUpdateHookTrampoline(void*, sqlite3 *, int, char *, char *, sqlite3_int64, sqlite3_int64);
*/
import "C"
import (
"errors"
"unsafe"
)
// RegisterPreUpdateHook sets the pre-update hook for a connection.
//
// The callback is passed a SQLitePreUpdateData struct with the data for
// the update, as well as methods for fetching copies of impacted data.
//
// If there is an existing update hook for this connection, it will be
// removed. If callback is nil the existing hook (if any) will be removed
// without creating a new one.
func (c *SQLiteConn) RegisterPreUpdateHook(callback func(SQLitePreUpdateData)) {
if callback == nil {
C.sqlite3_preupdate_hook(c.db, nil, nil)
} else {
C.sqlite3_preupdate_hook(c.db, (*[0]byte)(unsafe.Pointer(C.preUpdateHookTrampoline)), unsafe.Pointer(newHandle(c, callback)))
}
}
// Depth returns the source path of the write, see sqlite3_preupdate_depth()
func (d *SQLitePreUpdateData) Depth() int {
return int(C.sqlite3_preupdate_depth(d.Conn.db))
}
// Count returns the number of columns in the row
func (d *SQLitePreUpdateData) Count() int {
return int(C.sqlite3_preupdate_count(d.Conn.db))
}
func (d *SQLitePreUpdateData) row(dest []interface{}, new bool) error {
for i := 0; i < d.Count() && i < len(dest); i++ {
var val *C.sqlite3_value
var src interface{}
// Initially I tried making this just a function pointer argument, but
// it's absurdly complicated to pass C function pointers.
if new {
C.sqlite3_preupdate_new(d.Conn.db, C.int(i), &val)
} else {
C.sqlite3_preupdate_old(d.Conn.db, C.int(i), &val)
}
switch C.sqlite3_value_type(val) {
case C.SQLITE_INTEGER:
src = int64(C.sqlite3_value_int64(val))
case C.SQLITE_FLOAT:
src = float64(C.sqlite3_value_double(val))
case C.SQLITE_BLOB:
len := C.sqlite3_value_bytes(val)
blobptr := C.sqlite3_value_blob(val)
src = C.GoBytes(blobptr, len)
case C.SQLITE_TEXT:
len := C.sqlite3_value_bytes(val)
cstrptr := unsafe.Pointer(C.sqlite3_value_text(val))
src = C.GoBytes(cstrptr, len)
case C.SQLITE_NULL:
src = nil
}
err := convertAssign(&dest[i], src)
if err != nil {
return err
}
}
return nil
}
// Old populates dest with the row data to be replaced. This works similar to
// database/sql's Rows.Scan()
func (d *SQLitePreUpdateData) Old(dest ...interface{}) error {
if d.Op == SQLITE_INSERT {
return errors.New("There is no old row for INSERT operations")
}
return d.row(dest, false)
}
// New populates dest with the replacement row data. This works similar to
// database/sql's Rows.Scan()
func (d *SQLitePreUpdateData) New(dest ...interface{}) error {
if d.Op == SQLITE_DELETE {
return errors.New("There is no new row for DELETE operations")
}
return d.row(dest, true)
}

View File

@@ -0,0 +1,21 @@
// Copyright (C) 2019 G.J.R. Timmer <gjr.timmer@gmail.com>.
// Copyright (C) 2018 segment.com <friends@segment.com>
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build !sqlite_preupdate_hook,cgo
package sqlite3
// RegisterPreUpdateHook sets the pre-update hook for a connection.
//
// The callback is passed a SQLitePreUpdateData struct with the data for
// the update, as well as methods for fetching copies of impacted data.
//
// If there is an existing update hook for this connection, it will be
// removed. If callback is nil the existing hook (if any) will be removed
// without creating a new one.
func (c *SQLiteConn) RegisterPreUpdateHook(callback func(SQLitePreUpdateData)) {
// NOOP
}

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_secure_delete
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_SECURE_DELETE=1
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_secure_delete_fast
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_SECURE_DELETE=FAST
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_stat4
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_ENABLE_STAT4
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,85 @@
// Copyright (C) 2018 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
#include <stdio.h>
#include <sqlite3-binding.h>
extern int unlock_notify_wait(sqlite3 *db);
int
_sqlite3_step_blocking(sqlite3_stmt *stmt)
{
int rv;
sqlite3* db;
db = sqlite3_db_handle(stmt);
for (;;) {
rv = sqlite3_step(stmt);
if (rv != SQLITE_LOCKED) {
break;
}
if (sqlite3_extended_errcode(db) != SQLITE_LOCKED_SHAREDCACHE) {
break;
}
rv = unlock_notify_wait(db);
if (rv != SQLITE_OK) {
break;
}
sqlite3_reset(stmt);
}
return rv;
}
int
_sqlite3_step_row_blocking(sqlite3_stmt* stmt, long long* rowid, long long* changes)
{
int rv;
sqlite3* db;
db = sqlite3_db_handle(stmt);
for (;;) {
rv = sqlite3_step(stmt);
if (rv!=SQLITE_LOCKED) {
break;
}
if (sqlite3_extended_errcode(db) != SQLITE_LOCKED_SHAREDCACHE) {
break;
}
rv = unlock_notify_wait(db);
if (rv != SQLITE_OK) {
break;
}
sqlite3_reset(stmt);
}
*rowid = (long long) sqlite3_last_insert_rowid(db);
*changes = (long long) sqlite3_changes(db);
return rv;
}
int
_sqlite3_prepare_v2_blocking(sqlite3 *db, const char *zSql, int nBytes, sqlite3_stmt **ppStmt, const char **pzTail)
{
int rv;
for (;;) {
rv = sqlite3_prepare_v2(db, zSql, nBytes, ppStmt, pzTail);
if (rv!=SQLITE_LOCKED) {
break;
}
if (sqlite3_extended_errcode(db) != SQLITE_LOCKED_SHAREDCACHE) {
break;
}
rv = unlock_notify_wait(db);
if (rv != SQLITE_OK) {
break;
}
}
return rv;
}
#endif

View File

@@ -0,0 +1,93 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build cgo
// +build sqlite_unlock_notify
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_ENABLE_UNLOCK_NOTIFY
#include <stdlib.h>
#include <sqlite3-binding.h>
extern void unlock_notify_callback(void *arg, int argc);
*/
import "C"
import (
"fmt"
"math"
"sync"
"unsafe"
)
type unlock_notify_table struct {
sync.Mutex
seqnum uint
table map[uint]chan struct{}
}
var unt unlock_notify_table = unlock_notify_table{table: make(map[uint]chan struct{})}
func (t *unlock_notify_table) add(c chan struct{}) uint {
t.Lock()
defer t.Unlock()
h := t.seqnum
t.table[h] = c
t.seqnum++
return h
}
func (t *unlock_notify_table) remove(h uint) {
t.Lock()
defer t.Unlock()
delete(t.table, h)
}
func (t *unlock_notify_table) get(h uint) chan struct{} {
t.Lock()
defer t.Unlock()
c, ok := t.table[h]
if !ok {
panic(fmt.Sprintf("Non-existent key for unlcok-notify channel: %d", h))
}
return c
}
//export unlock_notify_callback
func unlock_notify_callback(argv unsafe.Pointer, argc C.int) {
for i := 0; i < int(argc); i++ {
parg := ((*(*[(math.MaxInt32 - 1) / unsafe.Sizeof((*C.uint)(nil))]*[1]uint)(argv))[i])
arg := *parg
h := arg[0]
c := unt.get(h)
c <- struct{}{}
}
}
//export unlock_notify_wait
func unlock_notify_wait(db *C.sqlite3) C.int {
// It has to be a bufferred channel to not block in sqlite_unlock_notify
// as sqlite_unlock_notify could invoke the callback before it returns.
c := make(chan struct{}, 1)
defer close(c)
h := unt.add(c)
defer unt.remove(h)
pargv := C.malloc(C.sizeof_uint)
defer C.free(pargv)
argv := (*[1]uint)(pargv)
argv[0] = h
if rv := C.sqlite3_unlock_notify(db, (*[0]byte)(C.unlock_notify_callback), unsafe.Pointer(pargv)); rv != C.SQLITE_OK {
return rv
}
<-c
return C.SQLITE_OK
}

View File

@@ -0,0 +1,289 @@
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_userauth
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_USER_AUTHENTICATION
#cgo LDFLAGS: -lm
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
static int
_sqlite3_user_authenticate(sqlite3* db, const char* zUsername, const char* aPW, int nPW)
{
return sqlite3_user_authenticate(db, zUsername, aPW, nPW);
}
static int
_sqlite3_user_add(sqlite3* db, const char* zUsername, const char* aPW, int nPW, int isAdmin)
{
return sqlite3_user_add(db, zUsername, aPW, nPW, isAdmin);
}
static int
_sqlite3_user_change(sqlite3* db, const char* zUsername, const char* aPW, int nPW, int isAdmin)
{
return sqlite3_user_change(db, zUsername, aPW, nPW, isAdmin);
}
static int
_sqlite3_user_delete(sqlite3* db, const char* zUsername)
{
return sqlite3_user_delete(db, zUsername);
}
static int
_sqlite3_auth_enabled(sqlite3* db)
{
int exists = -1;
sqlite3_stmt *stmt;
sqlite3_prepare_v2(db, "select count(type) from sqlite_master WHERE type='table' and name='sqlite_user';", -1, &stmt, NULL);
while ( sqlite3_step(stmt) == SQLITE_ROW) {
exists = sqlite3_column_int(stmt, 0);
}
sqlite3_finalize(stmt);
return exists;
}
*/
import "C"
import (
"errors"
"unsafe"
)
const (
SQLITE_AUTH = C.SQLITE_AUTH
)
var (
ErrUnauthorized = errors.New("SQLITE_AUTH: Unauthorized")
ErrAdminRequired = errors.New("SQLITE_AUTH: Unauthorized; Admin Privileges Required")
)
// Authenticate will perform an authentication of the provided username
// and password against the database.
//
// If a database contains the SQLITE_USER table, then the
// call to Authenticate must be invoked with an
// appropriate username and password prior to enable read and write
//access to the database.
//
// Return SQLITE_OK on success or SQLITE_ERROR if the username/password
// combination is incorrect or unknown.
//
// If the SQLITE_USER table is not present in the database file, then
// this interface is a harmless no-op returnning SQLITE_OK.
func (c *SQLiteConn) Authenticate(username, password string) error {
rv := c.authenticate(username, password)
switch rv {
case C.SQLITE_ERROR, C.SQLITE_AUTH:
return ErrUnauthorized
case C.SQLITE_OK:
return nil
default:
return c.lastError()
}
}
// authenticate provides the actual authentication to SQLite.
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authenticate(username, password string) int {
// Allocate C Variables
cuser := C.CString(username)
cpass := C.CString(password)
// Free C Variables
defer func() {
C.free(unsafe.Pointer(cuser))
C.free(unsafe.Pointer(cpass))
}()
return int(C._sqlite3_user_authenticate(c.db, cuser, cpass, C.int(len(password))))
}
// AuthUserAdd can be used (by an admin user only)
// to create a new user. When called on a no-authentication-required
// database, this routine converts the database into an authentication-
// required database, automatically makes the added user an
// administrator, and logs in the current connection as that user.
// The AuthUserAdd only works for the "main" database, not
// for any ATTACH-ed databases. Any call to AuthUserAdd by a
// non-admin user results in an error.
func (c *SQLiteConn) AuthUserAdd(username, password string, admin bool) error {
isAdmin := 0
if admin {
isAdmin = 1
}
rv := c.authUserAdd(username, password, isAdmin)
switch rv {
case C.SQLITE_ERROR, C.SQLITE_AUTH:
return ErrAdminRequired
case C.SQLITE_OK:
return nil
default:
return c.lastError()
}
}
// authUserAdd enables the User Authentication if not enabled.
// Otherwise it will add a user.
//
// When user authentication is already enabled then this function
// can only be called by an admin.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authUserAdd(username, password string, admin int) int {
// Allocate C Variables
cuser := C.CString(username)
cpass := C.CString(password)
// Free C Variables
defer func() {
C.free(unsafe.Pointer(cuser))
C.free(unsafe.Pointer(cpass))
}()
return int(C._sqlite3_user_add(c.db, cuser, cpass, C.int(len(password)), C.int(admin)))
}
// AuthUserChange can be used to change a users
// login credentials or admin privilege. Any user can change their own
// login credentials. Only an admin user can change another users login
// credentials or admin privilege setting. No user may change their own
// admin privilege setting.
func (c *SQLiteConn) AuthUserChange(username, password string, admin bool) error {
isAdmin := 0
if admin {
isAdmin = 1
}
rv := c.authUserChange(username, password, isAdmin)
switch rv {
case C.SQLITE_ERROR, C.SQLITE_AUTH:
return ErrAdminRequired
case C.SQLITE_OK:
return nil
default:
return c.lastError()
}
}
// authUserChange allows to modify a user.
// Users can change their own password.
//
// Only admins can change passwords for other users
// and modify the admin flag.
//
// The admin flag of the current logged in user cannot be changed.
// THis ensures that their is always an admin.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authUserChange(username, password string, admin int) int {
// Allocate C Variables
cuser := C.CString(username)
cpass := C.CString(password)
// Free C Variables
defer func() {
C.free(unsafe.Pointer(cuser))
C.free(unsafe.Pointer(cpass))
}()
return int(C._sqlite3_user_change(c.db, cuser, cpass, C.int(len(password)), C.int(admin)))
}
// AuthUserDelete can be used (by an admin user only)
// to delete a user. The currently logged-in user cannot be deleted,
// which guarantees that there is always an admin user and hence that
// the database cannot be converted into a no-authentication-required
// database.
func (c *SQLiteConn) AuthUserDelete(username string) error {
rv := c.authUserDelete(username)
switch rv {
case C.SQLITE_ERROR, C.SQLITE_AUTH:
return ErrAdminRequired
case C.SQLITE_OK:
return nil
default:
return c.lastError()
}
}
// authUserDelete can be used to delete a user.
//
// This function can only be executed by an admin.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authUserDelete(username string) int {
// Allocate C Variables
cuser := C.CString(username)
// Free C Variables
defer func() {
C.free(unsafe.Pointer(cuser))
}()
return int(C._sqlite3_user_delete(c.db, cuser))
}
// AuthEnabled checks if the database is protected by user authentication
func (c *SQLiteConn) AuthEnabled() (exists bool) {
rv := c.authEnabled()
if rv == 1 {
exists = true
}
return
}
// authEnabled perform the actual check for user authentication.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// 0 - Disabled
// 1 - Enabled
func (c *SQLiteConn) authEnabled() int {
return int(C._sqlite3_auth_enabled(c.db))
}
// EOF

View File

@@ -0,0 +1,152 @@
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build !sqlite_userauth
package sqlite3
import (
"C"
)
// Authenticate will perform an authentication of the provided username
// and password against the database.
//
// If a database contains the SQLITE_USER table, then the
// call to Authenticate must be invoked with an
// appropriate username and password prior to enable read and write
//access to the database.
//
// Return SQLITE_OK on success or SQLITE_ERROR if the username/password
// combination is incorrect or unknown.
//
// If the SQLITE_USER table is not present in the database file, then
// this interface is a harmless no-op returnning SQLITE_OK.
func (c *SQLiteConn) Authenticate(username, password string) error {
// NOOP
return nil
}
// authenticate provides the actual authentication to SQLite.
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authenticate(username, password string) int {
// NOOP
return 0
}
// AuthUserAdd can be used (by an admin user only)
// to create a new user. When called on a no-authentication-required
// database, this routine converts the database into an authentication-
// required database, automatically makes the added user an
// administrator, and logs in the current connection as that user.
// The AuthUserAdd only works for the "main" database, not
// for any ATTACH-ed databases. Any call to AuthUserAdd by a
// non-admin user results in an error.
func (c *SQLiteConn) AuthUserAdd(username, password string, admin bool) error {
// NOOP
return nil
}
// authUserAdd enables the User Authentication if not enabled.
// Otherwise it will add a user.
//
// When user authentication is already enabled then this function
// can only be called by an admin.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authUserAdd(username, password string, admin int) int {
// NOOP
return 0
}
// AuthUserChange can be used to change a users
// login credentials or admin privilege. Any user can change their own
// login credentials. Only an admin user can change another users login
// credentials or admin privilege setting. No user may change their own
// admin privilege setting.
func (c *SQLiteConn) AuthUserChange(username, password string, admin bool) error {
// NOOP
return nil
}
// authUserChange allows to modify a user.
// Users can change their own password.
//
// Only admins can change passwords for other users
// and modify the admin flag.
//
// The admin flag of the current logged in user cannot be changed.
// THis ensures that their is always an admin.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authUserChange(username, password string, admin int) int {
// NOOP
return 0
}
// AuthUserDelete can be used (by an admin user only)
// to delete a user. The currently logged-in user cannot be deleted,
// which guarantees that there is always an admin user and hence that
// the database cannot be converted into a no-authentication-required
// database.
func (c *SQLiteConn) AuthUserDelete(username string) error {
// NOOP
return nil
}
// authUserDelete can be used to delete a user.
//
// This function can only be executed by an admin.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// C.SQLITE_OK (0)
// C.SQLITE_ERROR (1)
// C.SQLITE_AUTH (23)
func (c *SQLiteConn) authUserDelete(username string) int {
// NOOP
return 0
}
// AuthEnabled checks if the database is protected by user authentication
func (c *SQLiteConn) AuthEnabled() (exists bool) {
// NOOP
return false
}
// authEnabled perform the actual check for user authentication.
//
// This is not exported for usage in Go.
// It is however exported for usage within SQL by the user.
//
// Returns:
// 0 - Disabled
// 1 - Enabled
func (c *SQLiteConn) authEnabled() int {
// NOOP
return 0
}
// EOF

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_vacuum_full
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_DEFAULT_AUTOVACUUM=1
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,15 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_vacuum_incr
package sqlite3
/*
#cgo CFLAGS: -DSQLITE_DEFAULT_AUTOVACUUM=2
#cgo LDFLAGS: -lm
*/
import "C"

View File

@@ -0,0 +1,660 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_vtable vtable
package sqlite3
/*
#cgo CFLAGS: -std=gnu99
#cgo CFLAGS: -DSQLITE_ENABLE_RTREE
#cgo CFLAGS: -DSQLITE_THREADSAFE
#cgo CFLAGS: -DSQLITE_ENABLE_FTS3
#cgo CFLAGS: -DSQLITE_ENABLE_FTS3_PARENTHESIS
#cgo CFLAGS: -DSQLITE_ENABLE_FTS4_UNICODE61
#cgo CFLAGS: -DSQLITE_TRACE_SIZE_LIMIT=15
#cgo CFLAGS: -DSQLITE_ENABLE_COLUMN_METADATA=1
#cgo CFLAGS: -Wno-deprecated-declarations
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
#include <stdint.h>
#include <memory.h>
static inline char *_sqlite3_mprintf(char *zFormat, char *arg) {
return sqlite3_mprintf(zFormat, arg);
}
typedef struct goVTab goVTab;
struct goVTab {
sqlite3_vtab base;
void *vTab;
};
uintptr_t goMInit(void *db, void *pAux, int argc, char **argv, char **pzErr, int isCreate);
static int cXInit(sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char **pzErr, int isCreate) {
void *vTab = (void *)goMInit(db, pAux, argc, (char**)argv, pzErr, isCreate);
if (!vTab || *pzErr) {
return SQLITE_ERROR;
}
goVTab *pvTab = (goVTab *)sqlite3_malloc(sizeof(goVTab));
if (!pvTab) {
*pzErr = sqlite3_mprintf("%s", "Out of memory");
return SQLITE_NOMEM;
}
memset(pvTab, 0, sizeof(goVTab));
pvTab->vTab = vTab;
*ppVTab = (sqlite3_vtab *)pvTab;
*pzErr = 0;
return SQLITE_OK;
}
static inline int cXCreate(sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char **pzErr) {
return cXInit(db, pAux, argc, argv, ppVTab, pzErr, 1);
}
static inline int cXConnect(sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char **pzErr) {
return cXInit(db, pAux, argc, argv, ppVTab, pzErr, 0);
}
char* goVBestIndex(void *pVTab, void *icp);
static inline int cXBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *info) {
char *pzErr = goVBestIndex(((goVTab*)pVTab)->vTab, info);
if (pzErr) {
if (pVTab->zErrMsg)
sqlite3_free(pVTab->zErrMsg);
pVTab->zErrMsg = pzErr;
return SQLITE_ERROR;
}
return SQLITE_OK;
}
char* goVRelease(void *pVTab, int isDestroy);
static int cXRelease(sqlite3_vtab *pVTab, int isDestroy) {
char *pzErr = goVRelease(((goVTab*)pVTab)->vTab, isDestroy);
if (pzErr) {
if (pVTab->zErrMsg)
sqlite3_free(pVTab->zErrMsg);
pVTab->zErrMsg = pzErr;
return SQLITE_ERROR;
}
if (pVTab->zErrMsg)
sqlite3_free(pVTab->zErrMsg);
sqlite3_free(pVTab);
return SQLITE_OK;
}
static inline int cXDisconnect(sqlite3_vtab *pVTab) {
return cXRelease(pVTab, 0);
}
static inline int cXDestroy(sqlite3_vtab *pVTab) {
return cXRelease(pVTab, 1);
}
typedef struct goVTabCursor goVTabCursor;
struct goVTabCursor {
sqlite3_vtab_cursor base;
void *vTabCursor;
};
uintptr_t goVOpen(void *pVTab, char **pzErr);
static int cXOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor) {
void *vTabCursor = (void *)goVOpen(((goVTab*)pVTab)->vTab, &(pVTab->zErrMsg));
goVTabCursor *pCursor = (goVTabCursor *)sqlite3_malloc(sizeof(goVTabCursor));
if (!pCursor) {
return SQLITE_NOMEM;
}
memset(pCursor, 0, sizeof(goVTabCursor));
pCursor->vTabCursor = vTabCursor;
*ppCursor = (sqlite3_vtab_cursor *)pCursor;
return SQLITE_OK;
}
static int setErrMsg(sqlite3_vtab_cursor *pCursor, char *pzErr) {
if (pCursor->pVtab->zErrMsg)
sqlite3_free(pCursor->pVtab->zErrMsg);
pCursor->pVtab->zErrMsg = pzErr;
return SQLITE_ERROR;
}
char* goVClose(void *pCursor);
static int cXClose(sqlite3_vtab_cursor *pCursor) {
char *pzErr = goVClose(((goVTabCursor*)pCursor)->vTabCursor);
if (pzErr) {
return setErrMsg(pCursor, pzErr);
}
sqlite3_free(pCursor);
return SQLITE_OK;
}
char* goVFilter(void *pCursor, int idxNum, char* idxName, int argc, sqlite3_value **argv);
static int cXFilter(sqlite3_vtab_cursor *pCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv) {
char *pzErr = goVFilter(((goVTabCursor*)pCursor)->vTabCursor, idxNum, (char*)idxStr, argc, argv);
if (pzErr) {
return setErrMsg(pCursor, pzErr);
}
return SQLITE_OK;
}
char* goVNext(void *pCursor);
static int cXNext(sqlite3_vtab_cursor *pCursor) {
char *pzErr = goVNext(((goVTabCursor*)pCursor)->vTabCursor);
if (pzErr) {
return setErrMsg(pCursor, pzErr);
}
return SQLITE_OK;
}
int goVEof(void *pCursor);
static inline int cXEof(sqlite3_vtab_cursor *pCursor) {
return goVEof(((goVTabCursor*)pCursor)->vTabCursor);
}
char* goVColumn(void *pCursor, void *cp, int col);
static int cXColumn(sqlite3_vtab_cursor *pCursor, sqlite3_context *ctx, int i) {
char *pzErr = goVColumn(((goVTabCursor*)pCursor)->vTabCursor, ctx, i);
if (pzErr) {
return setErrMsg(pCursor, pzErr);
}
return SQLITE_OK;
}
char* goVRowid(void *pCursor, sqlite3_int64 *pRowid);
static int cXRowid(sqlite3_vtab_cursor *pCursor, sqlite3_int64 *pRowid) {
char *pzErr = goVRowid(((goVTabCursor*)pCursor)->vTabCursor, pRowid);
if (pzErr) {
return setErrMsg(pCursor, pzErr);
}
return SQLITE_OK;
}
char* goVUpdate(void *pVTab, int argc, sqlite3_value **argv, sqlite3_int64 *pRowid);
static int cXUpdate(sqlite3_vtab *pVTab, int argc, sqlite3_value **argv, sqlite3_int64 *pRowid) {
char *pzErr = goVUpdate(((goVTab*)pVTab)->vTab, argc, argv, pRowid);
if (pzErr) {
if (pVTab->zErrMsg)
sqlite3_free(pVTab->zErrMsg);
pVTab->zErrMsg = pzErr;
return SQLITE_ERROR;
}
return SQLITE_OK;
}
static sqlite3_module goModule = {
0, // iVersion
cXCreate, // xCreate - create a table
cXConnect, // xConnect - connect to an existing table
cXBestIndex, // xBestIndex - Determine search strategy
cXDisconnect, // xDisconnect - Disconnect from a table
cXDestroy, // xDestroy - Drop a table
cXOpen, // xOpen - open a cursor
cXClose, // xClose - close a cursor
cXFilter, // xFilter - configure scan constraints
cXNext, // xNext - advance a cursor
cXEof, // xEof
cXColumn, // xColumn - read data
cXRowid, // xRowid - read data
cXUpdate, // xUpdate - write data
// Not implemented
0, // xBegin - begin transaction
0, // xSync - sync transaction
0, // xCommit - commit transaction
0, // xRollback - rollback transaction
0, // xFindFunction - function overloading
0, // xRename - rename the table
0, // xSavepoint
0, // xRelease
0 // xRollbackTo
};
void goMDestroy(void*);
static int _sqlite3_create_module(sqlite3 *db, const char *zName, uintptr_t pClientData) {
return sqlite3_create_module_v2(db, zName, &goModule, (void*) pClientData, goMDestroy);
}
*/
import "C"
import (
"fmt"
"math"
"reflect"
"unsafe"
)
type sqliteModule struct {
c *SQLiteConn
name string
module Module
}
type sqliteVTab struct {
module *sqliteModule
vTab VTab
}
type sqliteVTabCursor struct {
vTab *sqliteVTab
vTabCursor VTabCursor
}
// Op is type of operations.
type Op uint8
// Op mean identity of operations.
const (
OpEQ Op = 2
OpGT = 4
OpLE = 8
OpLT = 16
OpGE = 32
OpMATCH = 64
OpLIKE = 65 /* 3.10.0 and later only */
OpGLOB = 66 /* 3.10.0 and later only */
OpREGEXP = 67 /* 3.10.0 and later only */
OpScanUnique = 1 /* Scan visits at most 1 row */
)
// InfoConstraint give information of constraint.
type InfoConstraint struct {
Column int
Op Op
Usable bool
}
// InfoOrderBy give information of order-by.
type InfoOrderBy struct {
Column int
Desc bool
}
func constraints(info *C.sqlite3_index_info) []InfoConstraint {
slice := *(*[]C.struct_sqlite3_index_constraint)(unsafe.Pointer(&reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(info.aConstraint)),
Len: int(info.nConstraint),
Cap: int(info.nConstraint),
}))
cst := make([]InfoConstraint, 0, len(slice))
for _, c := range slice {
var usable bool
if c.usable > 0 {
usable = true
}
cst = append(cst, InfoConstraint{
Column: int(c.iColumn),
Op: Op(c.op),
Usable: usable,
})
}
return cst
}
func orderBys(info *C.sqlite3_index_info) []InfoOrderBy {
slice := *(*[]C.struct_sqlite3_index_orderby)(unsafe.Pointer(&reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(info.aOrderBy)),
Len: int(info.nOrderBy),
Cap: int(info.nOrderBy),
}))
ob := make([]InfoOrderBy, 0, len(slice))
for _, c := range slice {
var desc bool
if c.desc > 0 {
desc = true
}
ob = append(ob, InfoOrderBy{
Column: int(c.iColumn),
Desc: desc,
})
}
return ob
}
// IndexResult is a Go struct representation of what eventually ends up in the
// output fields for `sqlite3_index_info`
// See: https://www.sqlite.org/c3ref/index_info.html
type IndexResult struct {
Used []bool // aConstraintUsage
IdxNum int
IdxStr string
AlreadyOrdered bool // orderByConsumed
EstimatedCost float64
EstimatedRows float64
}
// mPrintf is a utility wrapper around sqlite3_mprintf
func mPrintf(format, arg string) *C.char {
cf := C.CString(format)
defer C.free(unsafe.Pointer(cf))
ca := C.CString(arg)
defer C.free(unsafe.Pointer(ca))
return C._sqlite3_mprintf(cf, ca)
}
//export goMInit
func goMInit(db, pClientData unsafe.Pointer, argc C.int, argv **C.char, pzErr **C.char, isCreate C.int) C.uintptr_t {
m := lookupHandle(pClientData).(*sqliteModule)
if m.c.db != (*C.sqlite3)(db) {
*pzErr = mPrintf("%s", "Inconsistent db handles")
return 0
}
args := make([]string, argc)
var A []*C.char
slice := reflect.SliceHeader{Data: uintptr(unsafe.Pointer(argv)), Len: int(argc), Cap: int(argc)}
a := reflect.NewAt(reflect.TypeOf(A), unsafe.Pointer(&slice)).Elem().Interface()
for i, s := range a.([]*C.char) {
args[i] = C.GoString(s)
}
var vTab VTab
var err error
if isCreate == 1 {
vTab, err = m.module.Create(m.c, args)
} else {
vTab, err = m.module.Connect(m.c, args)
}
if err != nil {
*pzErr = mPrintf("%s", err.Error())
return 0
}
vt := sqliteVTab{m, vTab}
*pzErr = nil
return C.uintptr_t(uintptr(newHandle(m.c, &vt)))
}
//export goVRelease
func goVRelease(pVTab unsafe.Pointer, isDestroy C.int) *C.char {
vt := lookupHandle(pVTab).(*sqliteVTab)
var err error
if isDestroy == 1 {
err = vt.vTab.Destroy()
} else {
err = vt.vTab.Disconnect()
}
if err != nil {
return mPrintf("%s", err.Error())
}
return nil
}
//export goVOpen
func goVOpen(pVTab unsafe.Pointer, pzErr **C.char) C.uintptr_t {
vt := lookupHandle(pVTab).(*sqliteVTab)
vTabCursor, err := vt.vTab.Open()
if err != nil {
*pzErr = mPrintf("%s", err.Error())
return 0
}
vtc := sqliteVTabCursor{vt, vTabCursor}
*pzErr = nil
return C.uintptr_t(uintptr(newHandle(vt.module.c, &vtc)))
}
//export goVBestIndex
func goVBestIndex(pVTab unsafe.Pointer, icp unsafe.Pointer) *C.char {
vt := lookupHandle(pVTab).(*sqliteVTab)
info := (*C.sqlite3_index_info)(icp)
csts := constraints(info)
res, err := vt.vTab.BestIndex(csts, orderBys(info))
if err != nil {
return mPrintf("%s", err.Error())
}
if len(res.Used) != len(csts) {
return mPrintf("Result.Used != expected value", "")
}
// Get a pointer to constraint_usage struct so we can update in place.
slice := *(*[]C.struct_sqlite3_index_constraint_usage)(unsafe.Pointer(&reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(info.aConstraintUsage)),
Len: int(info.nConstraint),
Cap: int(info.nConstraint),
}))
index := 1
for i := range slice {
if res.Used[i] {
slice[i].argvIndex = C.int(index)
slice[i].omit = C.uchar(1)
index++
}
}
info.idxNum = C.int(res.IdxNum)
idxStr := C.CString(res.IdxStr)
defer C.free(unsafe.Pointer(idxStr))
info.idxStr = idxStr
info.needToFreeIdxStr = C.int(0)
if res.AlreadyOrdered {
info.orderByConsumed = C.int(1)
}
info.estimatedCost = C.double(res.EstimatedCost)
info.estimatedRows = C.sqlite3_int64(res.EstimatedRows)
return nil
}
//export goVClose
func goVClose(pCursor unsafe.Pointer) *C.char {
vtc := lookupHandle(pCursor).(*sqliteVTabCursor)
err := vtc.vTabCursor.Close()
if err != nil {
return mPrintf("%s", err.Error())
}
return nil
}
//export goMDestroy
func goMDestroy(pClientData unsafe.Pointer) {
m := lookupHandle(pClientData).(*sqliteModule)
m.module.DestroyModule()
}
//export goVFilter
func goVFilter(pCursor unsafe.Pointer, idxNum C.int, idxName *C.char, argc C.int, argv **C.sqlite3_value) *C.char {
vtc := lookupHandle(pCursor).(*sqliteVTabCursor)
args := (*[(math.MaxInt32 - 1) / unsafe.Sizeof((*C.sqlite3_value)(nil))]*C.sqlite3_value)(unsafe.Pointer(argv))[:argc:argc]
vals := make([]interface{}, 0, argc)
for _, v := range args {
conv, err := callbackArgGeneric(v)
if err != nil {
return mPrintf("%s", err.Error())
}
vals = append(vals, conv.Interface())
}
err := vtc.vTabCursor.Filter(int(idxNum), C.GoString(idxName), vals)
if err != nil {
return mPrintf("%s", err.Error())
}
return nil
}
//export goVNext
func goVNext(pCursor unsafe.Pointer) *C.char {
vtc := lookupHandle(pCursor).(*sqliteVTabCursor)
err := vtc.vTabCursor.Next()
if err != nil {
return mPrintf("%s", err.Error())
}
return nil
}
//export goVEof
func goVEof(pCursor unsafe.Pointer) C.int {
vtc := lookupHandle(pCursor).(*sqliteVTabCursor)
err := vtc.vTabCursor.EOF()
if err {
return 1
}
return 0
}
//export goVColumn
func goVColumn(pCursor, cp unsafe.Pointer, col C.int) *C.char {
vtc := lookupHandle(pCursor).(*sqliteVTabCursor)
c := (*SQLiteContext)(cp)
err := vtc.vTabCursor.Column(c, int(col))
if err != nil {
return mPrintf("%s", err.Error())
}
return nil
}
//export goVRowid
func goVRowid(pCursor unsafe.Pointer, pRowid *C.sqlite3_int64) *C.char {
vtc := lookupHandle(pCursor).(*sqliteVTabCursor)
rowid, err := vtc.vTabCursor.Rowid()
if err != nil {
return mPrintf("%s", err.Error())
}
*pRowid = C.sqlite3_int64(rowid)
return nil
}
//export goVUpdate
func goVUpdate(pVTab unsafe.Pointer, argc C.int, argv **C.sqlite3_value, pRowid *C.sqlite3_int64) *C.char {
vt := lookupHandle(pVTab).(*sqliteVTab)
var tname string
if n, ok := vt.vTab.(interface {
TableName() string
}); ok {
tname = n.TableName() + " "
}
err := fmt.Errorf("virtual %s table %sis read-only", vt.module.name, tname)
if v, ok := vt.vTab.(VTabUpdater); ok {
// convert argv
args := (*[(math.MaxInt32 - 1) / unsafe.Sizeof((*C.sqlite3_value)(nil))]*C.sqlite3_value)(unsafe.Pointer(argv))[:argc:argc]
vals := make([]interface{}, 0, argc)
for _, v := range args {
conv, err := callbackArgGeneric(v)
if err != nil {
return mPrintf("%s", err.Error())
}
// work around for SQLITE_NULL
x := conv.Interface()
if z, ok := x.([]byte); ok && z == nil {
x = nil
}
vals = append(vals, x)
}
switch {
case argc == 1:
err = v.Delete(vals[0])
case argc > 1 && vals[0] == nil:
var id int64
id, err = v.Insert(vals[1], vals[2:])
if err == nil {
*pRowid = C.sqlite3_int64(id)
}
case argc > 1:
err = v.Update(vals[1], vals[2:])
}
}
if err != nil {
return mPrintf("%s", err.Error())
}
return nil
}
// Module is a "virtual table module", it defines the implementation of a
// virtual tables. See: http://sqlite.org/c3ref/module.html
type Module interface {
// http://sqlite.org/vtab.html#xcreate
Create(c *SQLiteConn, args []string) (VTab, error)
// http://sqlite.org/vtab.html#xconnect
Connect(c *SQLiteConn, args []string) (VTab, error)
// http://sqlite.org/c3ref/create_module.html
DestroyModule()
}
// VTab describes a particular instance of the virtual table.
// See: http://sqlite.org/c3ref/vtab.html
type VTab interface {
// http://sqlite.org/vtab.html#xbestindex
BestIndex([]InfoConstraint, []InfoOrderBy) (*IndexResult, error)
// http://sqlite.org/vtab.html#xdisconnect
Disconnect() error
// http://sqlite.org/vtab.html#sqlite3_module.xDestroy
Destroy() error
// http://sqlite.org/vtab.html#xopen
Open() (VTabCursor, error)
}
// VTabUpdater is a type that allows a VTab to be inserted, updated, or
// deleted.
// See: https://sqlite.org/vtab.html#xupdate
type VTabUpdater interface {
Delete(interface{}) error
Insert(interface{}, []interface{}) (int64, error)
Update(interface{}, []interface{}) error
}
// VTabCursor describes cursors that point into the virtual table and are used
// to loop through the virtual table. See: http://sqlite.org/c3ref/vtab_cursor.html
type VTabCursor interface {
// http://sqlite.org/vtab.html#xclose
Close() error
// http://sqlite.org/vtab.html#xfilter
Filter(idxNum int, idxStr string, vals []interface{}) error
// http://sqlite.org/vtab.html#xnext
Next() error
// http://sqlite.org/vtab.html#xeof
EOF() bool
// http://sqlite.org/vtab.html#xcolumn
Column(c *SQLiteContext, col int) error
// http://sqlite.org/vtab.html#xrowid
Rowid() (int64, error)
}
// DeclareVTab declares the Schema of a virtual table.
// See: http://sqlite.org/c3ref/declare_vtab.html
func (c *SQLiteConn) DeclareVTab(sql string) error {
zSQL := C.CString(sql)
defer C.free(unsafe.Pointer(zSQL))
rv := C.sqlite3_declare_vtab(c.db, zSQL)
if rv != C.SQLITE_OK {
return c.lastError()
}
return nil
}
// CreateModule registers a virtual table implementation.
// See: http://sqlite.org/c3ref/create_module.html
func (c *SQLiteConn) CreateModule(moduleName string, module Module) error {
mname := C.CString(moduleName)
defer C.free(unsafe.Pointer(mname))
udm := sqliteModule{c, moduleName, module}
rv := C._sqlite3_create_module(c.db, mname, C.uintptr_t(uintptr(newHandle(c, &udm))))
if rv != C.SQLITE_OK {
return c.lastError()
}
return nil
}

View File

@@ -0,0 +1,17 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build !windows
package sqlite3
/*
#cgo CFLAGS: -I.
#cgo linux LDFLAGS: -ldl
#cgo linux,ppc LDFLAGS: -lpthread
#cgo linux,ppc64 LDFLAGS: -lpthread
#cgo linux,ppc64le LDFLAGS: -lpthread
*/
import "C"

View File

@@ -0,0 +1,14 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build solaris
package sqlite3
/*
#cgo CFLAGS: -D__EXTENSIONS__=1
#cgo LDFLAGS: -lc
*/
import "C"

View File

@@ -0,0 +1,287 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build sqlite_trace trace
package sqlite3
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
#include <stdlib.h>
int traceCallbackTrampoline(unsigned int traceEventCode, void *ctx, void *p, void *x);
*/
import "C"
import (
"fmt"
"strings"
"sync"
"unsafe"
)
// Trace... constants identify the possible events causing callback invocation.
// Values are same as the corresponding SQLite Trace Event Codes.
const (
TraceStmt = uint32(C.SQLITE_TRACE_STMT)
TraceProfile = uint32(C.SQLITE_TRACE_PROFILE)
TraceRow = uint32(C.SQLITE_TRACE_ROW)
TraceClose = uint32(C.SQLITE_TRACE_CLOSE)
)
type TraceInfo struct {
// Pack together the shorter fields, to keep the struct smaller.
// On a 64-bit machine there would be padding
// between EventCode and ConnHandle; having AutoCommit here is "free":
EventCode uint32
AutoCommit bool
ConnHandle uintptr
// Usually filled, unless EventCode = TraceClose = SQLITE_TRACE_CLOSE:
// identifier for a prepared statement:
StmtHandle uintptr
// Two strings filled when EventCode = TraceStmt = SQLITE_TRACE_STMT:
// (1) either the unexpanded SQL text of the prepared statement, or
// an SQL comment that indicates the invocation of a trigger;
// (2) expanded SQL, if requested and if (1) is not an SQL comment.
StmtOrTrigger string
ExpandedSQL string // only if requested (TraceConfig.WantExpandedSQL = true)
// filled when EventCode = TraceProfile = SQLITE_TRACE_PROFILE:
// estimated number of nanoseconds that the prepared statement took to run:
RunTimeNanosec int64
DBError Error
}
// TraceUserCallback gives the signature for a trace function
// provided by the user (Go application programmer).
// SQLite 3.14 documentation (as of September 2, 2016)
// for SQL Trace Hook = sqlite3_trace_v2():
// The integer return value from the callback is currently ignored,
// though this may change in future releases. Callback implementations
// should return zero to ensure future compatibility.
type TraceUserCallback func(TraceInfo) int
type TraceConfig struct {
Callback TraceUserCallback
EventMask uint32
WantExpandedSQL bool
}
func fillDBError(dbErr *Error, db *C.sqlite3) {
// See SQLiteConn.lastError(), in file 'sqlite3.go' at the time of writing (Sept 5, 2016)
dbErr.Code = ErrNo(C.sqlite3_errcode(db))
dbErr.ExtendedCode = ErrNoExtended(C.sqlite3_extended_errcode(db))
dbErr.err = C.GoString(C.sqlite3_errmsg(db))
}
func fillExpandedSQL(info *TraceInfo, db *C.sqlite3, pStmt unsafe.Pointer) {
if pStmt == nil {
panic("No SQLite statement pointer in P arg of trace_v2 callback")
}
expSQLiteCStr := C.sqlite3_expanded_sql((*C.sqlite3_stmt)(pStmt))
defer C.sqlite3_free(unsafe.Pointer(expSQLiteCStr))
if expSQLiteCStr == nil {
fillDBError(&info.DBError, db)
return
}
info.ExpandedSQL = C.GoString(expSQLiteCStr)
}
//export traceCallbackTrampoline
func traceCallbackTrampoline(
traceEventCode C.uint,
// Parameter named 'C' in SQLite docs = Context given at registration:
ctx unsafe.Pointer,
// Parameter named 'P' in SQLite docs (Primary event data?):
p unsafe.Pointer,
// Parameter named 'X' in SQLite docs (eXtra event data?):
xValue unsafe.Pointer) C.int {
eventCode := uint32(traceEventCode)
if ctx == nil {
panic(fmt.Sprintf("No context (ev 0x%x)", traceEventCode))
}
contextDB := (*C.sqlite3)(ctx)
connHandle := uintptr(ctx)
var traceConf TraceConfig
var found bool
if eventCode == TraceClose {
// clean up traceMap: 'pop' means get and delete
traceConf, found = popTraceMapping(connHandle)
} else {
traceConf, found = lookupTraceMapping(connHandle)
}
if !found {
panic(fmt.Sprintf("Mapping not found for handle 0x%x (ev 0x%x)",
connHandle, eventCode))
}
var info TraceInfo
info.EventCode = eventCode
info.AutoCommit = (int(C.sqlite3_get_autocommit(contextDB)) != 0)
info.ConnHandle = connHandle
switch eventCode {
case TraceStmt:
info.StmtHandle = uintptr(p)
var xStr string
if xValue != nil {
xStr = C.GoString((*C.char)(xValue))
}
info.StmtOrTrigger = xStr
if !strings.HasPrefix(xStr, "--") {
// Not SQL comment, therefore the current event
// is not related to a trigger.
// The user might want to receive the expanded SQL;
// let's check:
if traceConf.WantExpandedSQL {
fillExpandedSQL(&info, contextDB, p)
}
}
case TraceProfile:
info.StmtHandle = uintptr(p)
if xValue == nil {
panic("NULL pointer in X arg of trace_v2 callback for SQLITE_TRACE_PROFILE event")
}
info.RunTimeNanosec = *(*int64)(xValue)
// sample the error //TODO: is it safe? is it useful?
fillDBError(&info.DBError, contextDB)
case TraceRow:
info.StmtHandle = uintptr(p)
case TraceClose:
handle := uintptr(p)
if handle != info.ConnHandle {
panic(fmt.Sprintf("Different conn handle 0x%x (expected 0x%x) in SQLITE_TRACE_CLOSE event.",
handle, info.ConnHandle))
}
default:
// Pass unsupported events to the user callback (if configured);
// let the user callback decide whether to panic or ignore them.
}
// Do not execute user callback when the event was not requested by user!
// Remember that the Close event is always selected when
// registering this callback trampoline with SQLite --- for cleanup.
// In the future there may be more events forced to "selected" in SQLite
// for the driver's needs.
if traceConf.EventMask&eventCode == 0 {
return 0
}
r := 0
if traceConf.Callback != nil {
r = traceConf.Callback(info)
}
return C.int(r)
}
type traceMapEntry struct {
config TraceConfig
}
var traceMapLock sync.Mutex
var traceMap = make(map[uintptr]traceMapEntry)
func addTraceMapping(connHandle uintptr, traceConf TraceConfig) {
traceMapLock.Lock()
defer traceMapLock.Unlock()
oldEntryCopy, found := traceMap[connHandle]
if found {
panic(fmt.Sprintf("Adding trace config %v: handle 0x%x already registered (%v).",
traceConf, connHandle, oldEntryCopy.config))
}
traceMap[connHandle] = traceMapEntry{config: traceConf}
}
func lookupTraceMapping(connHandle uintptr) (TraceConfig, bool) {
traceMapLock.Lock()
defer traceMapLock.Unlock()
entryCopy, found := traceMap[connHandle]
return entryCopy.config, found
}
// 'pop' = get and delete from map before returning the value to the caller
func popTraceMapping(connHandle uintptr) (TraceConfig, bool) {
traceMapLock.Lock()
defer traceMapLock.Unlock()
entryCopy, found := traceMap[connHandle]
if found {
delete(traceMap, connHandle)
}
return entryCopy.config, found
}
// SetTrace installs or removes the trace callback for the given database connection.
// It's not named 'RegisterTrace' because only one callback can be kept and called.
// Calling SetTrace a second time on same database connection
// overrides (cancels) any prior callback and all its settings:
// event mask, etc.
func (c *SQLiteConn) SetTrace(requested *TraceConfig) error {
connHandle := uintptr(unsafe.Pointer(c.db))
_, _ = popTraceMapping(connHandle)
if requested == nil {
// The traceMap entry was deleted already by popTraceMapping():
// can disable all events now, no need to watch for TraceClose.
err := c.setSQLiteTrace(0)
return err
}
reqCopy := *requested
// Disable potentially expensive operations
// if their result will not be used. We are doing this
// just in case the caller provided nonsensical input.
if reqCopy.EventMask&TraceStmt == 0 {
reqCopy.WantExpandedSQL = false
}
addTraceMapping(connHandle, reqCopy)
// The callback trampoline function does cleanup on Close event,
// regardless of the presence or absence of the user callback.
// Therefore it needs the Close event to be selected:
actualEventMask := uint(reqCopy.EventMask | TraceClose)
err := c.setSQLiteTrace(actualEventMask)
return err
}
func (c *SQLiteConn) setSQLiteTrace(sqliteEventMask uint) error {
rv := C.sqlite3_trace_v2(c.db,
C.uint(sqliteEventMask),
(*[0]byte)(unsafe.Pointer(C.traceCallbackTrampoline)),
unsafe.Pointer(c.db)) // Fourth arg is same as first: we are
// passing the database connection handle as callback context.
if rv != C.SQLITE_OK {
return c.lastError()
}
return nil
}

View File

@@ -0,0 +1,62 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
package sqlite3
/*
#ifndef USE_LIBSQLITE3
#include <sqlite3-binding.h>
#else
#include <sqlite3.h>
#endif
*/
import "C"
import (
"reflect"
"time"
)
// ColumnTypeDatabaseTypeName implement RowsColumnTypeDatabaseTypeName.
func (rc *SQLiteRows) ColumnTypeDatabaseTypeName(i int) string {
return C.GoString(C.sqlite3_column_decltype(rc.s.s, C.int(i)))
}
/*
func (rc *SQLiteRows) ColumnTypeLength(index int) (length int64, ok bool) {
return 0, false
}
func (rc *SQLiteRows) ColumnTypePrecisionScale(index int) (precision, scale int64, ok bool) {
return 0, 0, false
}
*/
// ColumnTypeNullable implement RowsColumnTypeNullable.
func (rc *SQLiteRows) ColumnTypeNullable(i int) (nullable, ok bool) {
return true, true
}
// ColumnTypeScanType implement RowsColumnTypeScanType.
func (rc *SQLiteRows) ColumnTypeScanType(i int) reflect.Type {
switch C.sqlite3_column_type(rc.s.s, C.int(i)) {
case C.SQLITE_INTEGER:
switch C.GoString(C.sqlite3_column_decltype(rc.s.s, C.int(i))) {
case "timestamp", "datetime", "date":
return reflect.TypeOf(time.Time{})
case "boolean":
return reflect.TypeOf(false)
}
return reflect.TypeOf(int64(0))
case C.SQLITE_FLOAT:
return reflect.TypeOf(float64(0))
case C.SQLITE_BLOB:
return reflect.SliceOf(reflect.TypeOf(byte(0)))
case C.SQLITE_NULL:
return reflect.TypeOf(nil)
case C.SQLITE_TEXT:
return reflect.TypeOf("")
}
return reflect.SliceOf(reflect.TypeOf(byte(0)))
}

View File

@@ -0,0 +1,39 @@
// Copyright (C) 2018 G.J.R. Timmer <gjr.timmer@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build cgo
package sqlite3
// usleep is a function available on *nix based systems.
// This function is not present in Windows.
// Windows has a sleep function but this works with seconds
// and not with microseconds as usleep.
//
// This code should improve performance on windows because
// without the presence of usleep SQLite waits 1 second.
//
// Source: https://stackoverflow.com/questions/5801813/c-usleep-is-obsolete-workarounds-for-windows-mingw?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
/*
#include <windows.h>
void usleep(__int64 usec)
{
HANDLE timer;
LARGE_INTEGER ft;
// Convert to 100 nanosecond interval, negative value indicates relative time
ft.QuadPart = -(10*usec);
timer = CreateWaitableTimer(NULL, TRUE, NULL);
SetWaitableTimer(timer, &ft, 0, NULL, NULL, 0);
WaitForSingleObject(timer, INFINITE);
CloseHandle(timer);
}
*/
import "C"
// EOF

View File

@@ -0,0 +1,18 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build windows
package sqlite3
/*
#cgo CFLAGS: -I.
#cgo CFLAGS: -fno-stack-check
#cgo CFLAGS: -fno-stack-protector
#cgo CFLAGS: -mno-stack-arg-probe
#cgo LDFLAGS: -lmingwex -lmingw32
#cgo windows,386 CFLAGS: -D_USE_32BIT_TIME_T
*/
import "C"

View File

@@ -0,0 +1,37 @@
// Copyright (C) 2019 Yasuhiro Matsumoto <mattn.jp@gmail.com>.
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
// +build !cgo
package sqlite3
import (
"database/sql"
"database/sql/driver"
"errors"
)
var errorMsg = errors.New("Binary was compiled with 'CGO_ENABLED=0', go-sqlite3 requires cgo to work. This is a stub")
func init() {
sql.Register("sqlite3", &SQLiteDriver{})
}
type (
SQLiteDriver struct {
Extensions []string
ConnectHook func(*SQLiteConn) error
}
SQLiteConn struct{}
)
func (SQLiteDriver) Open(s string) (driver.Conn, error) { return nil, errorMsg }
func (c *SQLiteConn) RegisterAggregator(string, interface{}, bool) error { return errorMsg }
func (c *SQLiteConn) RegisterAuthorizer(func(int, string, string, string) int) {}
func (c *SQLiteConn) RegisterCollation(string, func(string, string) int) error { return errorMsg }
func (c *SQLiteConn) RegisterCommitHook(func() int) {}
func (c *SQLiteConn) RegisterFunc(string, interface{}, bool) error { return errorMsg }
func (c *SQLiteConn) RegisterRollbackHook(func()) {}
func (c *SQLiteConn) RegisterUpdateHook(func(int, string, string, int64)) {}

95
vendor/github.com/mutecomm/go-sqlcipher/v4/tomcrypt.h generated vendored Normal file
View File

@@ -0,0 +1,95 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifndef TOMCRYPT_H_
#define TOMCRYPT_H_
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stddef.h>
#include <time.h>
#include <ctype.h>
#include <limits.h>
/* use configuration data */
#include "tomcrypt_custom.h"
#ifdef __cplusplus
extern "C" {
#endif
/* version */
#define CRYPT 0x0118
#define SCRYPT "1.18.2-develop"
/* max size of either a cipher/hash block or symmetric key [largest of the two] */
#define MAXBLOCKSIZE 144
#ifndef TAB_SIZE
/* descriptor table size */
#define TAB_SIZE 34
#endif
/* error codes [will be expanded in future releases] */
enum {
CRYPT_OK=0, /* Result OK */
CRYPT_ERROR, /* Generic Error */
CRYPT_NOP, /* Not a failure but no operation was performed */
CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
CRYPT_INVALID_PACKET, /* Invalid input packet given */
CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
CRYPT_INVALID_HASH, /* Invalid hash specified */
CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
CRYPT_MEM, /* Out of memory */
CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
CRYPT_INVALID_ARG, /* Generic invalid argument */
CRYPT_FILE_NOTFOUND, /* File Not Found */
CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
CRYPT_OVERFLOW, /* An overflow of a value was detected/prevented */
CRYPT_PK_ASN1_ERROR, /* An error occurred while en- or decoding ASN.1 data */
CRYPT_INPUT_TOO_LONG, /* The input was longer than expected. */
CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
CRYPT_INVALID_PRIME_SIZE,/* Invalid size of prime requested */
CRYPT_PK_INVALID_PADDING, /* Invalid padding on input */
CRYPT_HASH_OVERFLOW /* Hash applied to too many bits */
};
#include "tomcrypt_cfg.h"
#include "tomcrypt_macros.h"
#include "tomcrypt_cipher.h"
#include "tomcrypt_hash.h"
#include "tomcrypt_mac.h"
#include "tomcrypt_prng.h"
#include "tomcrypt_pk.h"
#include "tomcrypt_math.h"
#include "tomcrypt_misc.h"
#include "tomcrypt_argchk.h"
#include "tomcrypt_pkcs.h"
#ifdef __cplusplus
}
#endif
#endif /* TOMCRYPT_H_ */

View File

@@ -0,0 +1,38 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Defines the LTC_ARGCHK macro used within the library */
/* ARGTYPE is defined in tomcrypt_cfg.h */
/* ARGTYPE is per default defined to 0 */
#if ARGTYPE == 0
#include <signal.h>
LTC_NORETURN void crypt_argchk(const char *v, const char *s, int d);
#define LTC_ARGCHK(x) do { if (!(x)) { crypt_argchk(#x, __FILE__, __LINE__); } }while(0)
#define LTC_ARGCHKVD(x) do { if (!(x)) { crypt_argchk(#x, __FILE__, __LINE__); } }while(0)
#elif ARGTYPE == 1
/* fatal type of error */
#define LTC_ARGCHK(x) assert((x))
#define LTC_ARGCHKVD(x) LTC_ARGCHK(x)
#elif ARGTYPE == 2
#define LTC_ARGCHK(x) if (!(x)) { fprintf(stderr, "\nwarning: ARGCHK failed at %s:%d\n", __FILE__, __LINE__); }
#define LTC_ARGCHKVD(x) LTC_ARGCHK(x)
#elif ARGTYPE == 3
#define LTC_ARGCHK(x) LTC_UNUSED_PARAM(x)
#define LTC_ARGCHKVD(x) LTC_ARGCHK(x)
#elif ARGTYPE == 4
#define LTC_ARGCHK(x) if (!(x)) return CRYPT_INVALID_ARG;
#define LTC_ARGCHKVD(x) if (!(x)) return;
#endif

View File

@@ -0,0 +1,305 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* This is the build config file.
*
* With this you can setup what to inlcude/exclude automatically during any build. Just comment
* out the line that #define's the word for the thing you want to remove. phew!
*/
#ifndef TOMCRYPT_CFG_H
#define TOMCRYPT_CFG_H
#if defined(_WIN32) || defined(_MSC_VER)
#define LTC_CALL __cdecl
#elif !defined(LTC_CALL)
#define LTC_CALL
#endif
#ifndef LTC_EXPORT
#define LTC_EXPORT
#endif
/* certain platforms use macros for these, making the prototypes broken */
#ifndef LTC_NO_PROTOTYPES
/* you can change how memory allocation works ... */
LTC_EXPORT void * LTC_CALL XMALLOC(size_t n);
LTC_EXPORT void * LTC_CALL XREALLOC(void *p, size_t n);
LTC_EXPORT void * LTC_CALL XCALLOC(size_t n, size_t s);
LTC_EXPORT void LTC_CALL XFREE(void *p);
LTC_EXPORT void LTC_CALL XQSORT(void *base, size_t nmemb, size_t size, int(*compar)(const void *, const void *));
/* change the clock function too */
LTC_EXPORT clock_t LTC_CALL XCLOCK(void);
/* various other functions */
LTC_EXPORT void * LTC_CALL XMEMCPY(void *dest, const void *src, size_t n);
LTC_EXPORT int LTC_CALL XMEMCMP(const void *s1, const void *s2, size_t n);
LTC_EXPORT void * LTC_CALL XMEMSET(void *s, int c, size_t n);
LTC_EXPORT int LTC_CALL XSTRCMP(const char *s1, const char *s2);
#endif
/* some compilers do not like "inline" (or maybe "static inline"), namely: HP cc, IBM xlc */
#if defined(__GNUC__) || defined(__xlc__)
#define LTC_INLINE __inline__
#elif defined(_MSC_VER) || defined(__HP_cc)
#define LTC_INLINE __inline
#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
#define LTC_INLINE inline
#else
#define LTC_INLINE
#endif
#if defined(__clang__) || defined(__GNUC_MINOR__)
#define LTC_NORETURN __attribute__ ((noreturn))
#elif defined(_MSC_VER)
#define LTC_NORETURN __declspec(noreturn)
#else
#define LTC_NORETURN
#endif
/* type of argument checking, 0=default, 1=fatal and 2=error+continue, 3=nothing */
#ifndef ARGTYPE
#define ARGTYPE 0
#endif
#undef LTC_ENCRYPT
#define LTC_ENCRYPT 0
#undef LTC_DECRYPT
#define LTC_DECRYPT 1
/* Controls endianess and size of registers. Leave uncommented to get platform neutral [slower] code
*
* Note: in order to use the optimized macros your platform must support unaligned 32 and 64 bit read/writes.
* The x86 platforms allow this but some others [ARM for instance] do not. On those platforms you **MUST**
* use the portable [slower] macros.
*/
/* detect x86/i386 32bit */
#if defined(__i386__) || defined(__i386) || defined(_M_IX86)
#define ENDIAN_LITTLE
#define ENDIAN_32BITWORD
#define LTC_FAST
#endif
/* detect amd64/x64 */
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64)
#define ENDIAN_LITTLE
#define ENDIAN_64BITWORD
#define LTC_FAST
#endif
/* detect PPC32 */
#if defined(LTC_PPC32)
#define ENDIAN_BIG
#define ENDIAN_32BITWORD
#define LTC_FAST
#endif
/* detects MIPS R5900 processors (PS2) */
#if (defined(__R5900) || defined(R5900) || defined(__R5900__)) && (defined(_mips) || defined(__mips__) || defined(mips))
#define ENDIAN_64BITWORD
#if defined(_MIPSEB) || defined(__MIPSEB) || defined(__MIPSEB__)
#define ENDIAN_BIG
#endif
#define ENDIAN_LITTLE
#endif
#endif
/* detect AIX */
#if defined(_AIX) && defined(_BIG_ENDIAN)
#define ENDIAN_BIG
#if defined(__LP64__) || defined(_ARCH_PPC64)
#define ENDIAN_64BITWORD
#else
#define ENDIAN_32BITWORD
#endif
#endif
/* detect HP-UX */
#if defined(__hpux) || defined(__hpux__)
#define ENDIAN_BIG
#if defined(__ia64) || defined(__ia64__) || defined(__LP64__)
#define ENDIAN_64BITWORD
#else
#define ENDIAN_32BITWORD
#endif
#endif
/* detect Apple OS X */
#if defined(__APPLE__) && defined(__MACH__)
#if defined(__LITTLE_ENDIAN__) || defined(__x86_64__)
#define ENDIAN_LITTLE
#else
#define ENDIAN_BIG
#endif
#if defined(__LP64__) || defined(__x86_64__)
#define ENDIAN_64BITWORD
#else
#define ENDIAN_32BITWORD
#endif
#endif
/* detect SPARC and SPARC64 */
#if defined(__sparc__) || defined(__sparc)
#define ENDIAN_BIG
#if defined(__arch64__) || defined(__sparcv9) || defined(__sparc_v9__)
#define ENDIAN_64BITWORD
#else
#define ENDIAN_32BITWORD
#endif
#endif
/* detect IBM S390(x) */
#if defined(__s390x__) || defined(__s390__)
#define ENDIAN_BIG
#if defined(__s390x__)
#define ENDIAN_64BITWORD
#else
#define ENDIAN_32BITWORD
#endif
#endif
/* detect PPC64 */
#if defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__)
#define ENDIAN_64BITWORD
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define ENDIAN_BIG
#elif __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define ENDIAN_LITTLE
#endif
#define LTC_FAST
#endif
/* endianness fallback */
#if !defined(ENDIAN_BIG) && !defined(ENDIAN_LITTLE)
#if defined(_BYTE_ORDER) && _BYTE_ORDER == _BIG_ENDIAN || \
defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN || \
defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ || \
defined(__BIG_ENDIAN__) || \
defined(__ARMEB__) || defined(__THUMBEB__) || defined(__AARCH64EB__) || \
defined(_MIPSEB) || defined(__MIPSEB) || defined(__MIPSEB__)
#define ENDIAN_BIG
#elif defined(_BYTE_ORDER) && _BYTE_ORDER == _LITTLE_ENDIAN || \
defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN || \
defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || \
defined(__LITTLE_ENDIAN__) || \
defined(__ARMEL__) || defined(__THUMBEL__) || defined(__AARCH64EL__) || \
defined(_MIPSEL) || defined(__MIPSEL) || defined(__MIPSEL__)
#define ENDIAN_LITTLE
#else
#error Cannot detect endianness
#endif
#endif
/* ulong64: 64-bit data type */
#ifdef _MSC_VER
#define CONST64(n) n ## ui64
typedef unsigned __int64 ulong64;
typedef __int64 long64;
#else
#define CONST64(n) n ## ULL
typedef unsigned long long ulong64;
typedef long long long64;
#endif
/* ulong32: "32-bit at least" data type */
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
typedef unsigned ulong32;
#if !defined(ENDIAN_64BITWORD) && !defined(ENDIAN_32BITWORD)
#define ENDIAN_64BITWORD
#endif
#else
typedef unsigned long ulong32;
#if !defined(ENDIAN_64BITWORD) && !defined(ENDIAN_32BITWORD)
#define ENDIAN_32BITWORD
#endif
#endif
#if defined(ENDIAN_64BITWORD) && !defined(_MSC_VER)
typedef unsigned long long ltc_mp_digit;
#else
typedef unsigned long ltc_mp_digit;
#endif
/* No asm is a quick way to disable anything "not portable" */
#ifdef LTC_NO_ASM
#define ENDIAN_NEUTRAL
#undef ENDIAN_32BITWORD
#undef ENDIAN_64BITWORD
#undef LTC_FAST
#define LTC_NO_BSWAP
#define LTC_NO_ROLC
#define LTC_NO_ROTATE
#endif
/* No LTC_FAST if: explicitly disabled OR non-gcc/non-clang compiler OR old gcc OR using -ansi -std=c99 */
#if defined(LTC_NO_FAST) || (__GNUC__ < 4) || defined(__STRICT_ANSI__)
#undef LTC_FAST
#endif
#ifdef LTC_FAST
#define LTC_FAST_TYPE_PTR_CAST(x) ((LTC_FAST_TYPE*)(void*)(x))
#ifdef ENDIAN_64BITWORD
typedef ulong64 __attribute__((__may_alias__)) LTC_FAST_TYPE;
#else
typedef ulong32 __attribute__((__may_alias__)) LTC_FAST_TYPE;
#endif
#endif
#if !defined(ENDIAN_NEUTRAL) && (defined(ENDIAN_BIG) || defined(ENDIAN_LITTLE)) && !(defined(ENDIAN_32BITWORD) || defined(ENDIAN_64BITWORD))
#error You must specify a word size as well as endianess in tomcrypt_cfg.h
#endif
#if !(defined(ENDIAN_BIG) || defined(ENDIAN_LITTLE))
#define ENDIAN_NEUTRAL
#endif
#if (defined(ENDIAN_32BITWORD) && defined(ENDIAN_64BITWORD))
#error Cannot be 32 and 64 bit words...
#endif
/* gcc 4.3 and up has a bswap builtin; detect it by gcc version.
* clang also supports the bswap builtin, and although clang pretends
* to be gcc (macro-wise, anyway), clang pretends to be a version
* prior to gcc 4.3, so we can't detect bswap that way. Instead,
* clang has a __has_builtin mechanism that can be used to check
* for builtins:
* http://clang.llvm.org/docs/LanguageExtensions.html#feature_check */
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#if !defined(LTC_NO_BSWAP) && defined(__GNUC__) && \
((__GNUC__ * 100 + __GNUC_MINOR__ >= 403) || \
(__has_builtin(__builtin_bswap32) && __has_builtin(__builtin_bswap64)))
#define LTC_HAVE_BSWAP_BUILTIN
#endif
#if !defined(LTC_NO_ROTATE) && (__has_builtin(__builtin_rotateleft32) && __has_builtin(__builtin_rotateright32))
#define LTC_HAVE_ROTATE_BUILTIN
#endif
#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 405)
# define LTC_DEPRECATED(s) __attribute__((deprecated("replaced by " #s)))
# define PRIVATE_LTC_DEPRECATED_PRAGMA(s) _Pragma(#s)
# define LTC_DEPRECATED_PRAGMA(s) PRIVATE_LTC_DEPRECATED_PRAGMA(GCC warning s)
#elif defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301)
# define LTC_DEPRECATED(s) __attribute__((deprecated))
# define LTC_DEPRECATED_PRAGMA(s)
#elif defined(_MSC_VER) && _MSC_VER >= 1500
/* supported since Visual Studio 2008 */
# define LTC_DEPRECATED(s) __declspec(deprecated("replaced by " #s))
# define LTC_DEPRECATED_PRAGMA(s) __pragma(message(s))
#else
# define LTC_DEPRECATED(s)
# define LTC_DEPRECATED_PRAGMA(s)
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,736 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifndef TOMCRYPT_CUSTOM_H_
#define TOMCRYPT_CUSTOM_H_
/* macros for various libc functions you can change for embedded targets */
#ifndef XMALLOC
#define XMALLOC malloc
#endif
#ifndef XREALLOC
#define XREALLOC realloc
#endif
#ifndef XCALLOC
#define XCALLOC calloc
#endif
#ifndef XFREE
#define XFREE free
#endif
#ifndef XMEMSET
#define XMEMSET memset
#endif
#ifndef XMEMCPY
#define XMEMCPY memcpy
#endif
#ifndef XMEMMOVE
#define XMEMMOVE memmove
#endif
#ifndef XMEMCMP
#define XMEMCMP memcmp
#endif
/* A memory compare function that has to run in constant time,
* c.f. mem_neq() API summary.
*/
#ifndef XMEM_NEQ
#define XMEM_NEQ mem_neq
#endif
#ifndef XSTRCMP
#define XSTRCMP strcmp
#endif
#ifndef XSTRLEN
#define XSTRLEN strlen
#endif
#ifndef XSTRNCPY
#define XSTRNCPY strncpy
#endif
#ifndef XCLOCK
#define XCLOCK clock
#endif
#ifndef XQSORT
#define XQSORT qsort
#endif
#if ( defined(malloc) || defined(realloc) || defined(calloc) || defined(free) || \
defined(memset) || defined(memcpy) || defined(memcmp) || defined(strcmp) || \
defined(strlen) || defined(strncpy) || defined(clock) || defined(qsort) ) \
&& !defined(LTC_NO_PROTOTYPES)
#define LTC_NO_PROTOTYPES
#endif
/* shortcut to disable automatic inclusion */
#if defined LTC_NOTHING && !defined LTC_EASY
#define LTC_NO_CIPHERS
#define LTC_NO_MODES
#define LTC_NO_HASHES
#define LTC_NO_MACS
#define LTC_NO_PRNGS
#define LTC_NO_PK
#define LTC_NO_PKCS
#define LTC_NO_MISC
#endif /* LTC_NOTHING */
/* Easy button? */
#ifdef LTC_EASY
#define LTC_NO_CIPHERS
#define LTC_RIJNDAEL
#define LTC_BLOWFISH
#define LTC_DES
#define LTC_CAST5
#define LTC_NO_MODES
#define LTC_ECB_MODE
#define LTC_CBC_MODE
#define LTC_CTR_MODE
#define LTC_NO_HASHES
#define LTC_SHA1
#define LTC_SHA3
#define LTC_SHA512
#define LTC_SHA384
#define LTC_SHA256
#define LTC_SHA224
#define LTC_HASH_HELPERS
#define LTC_NO_MACS
#define LTC_HMAC
#define LTC_OMAC
#define LTC_CCM_MODE
#define LTC_NO_PRNGS
#define LTC_SPRNG
#define LTC_YARROW
#define LTC_DEVRANDOM
#define LTC_TRY_URANDOM_FIRST
#define LTC_RNG_GET_BYTES
#define LTC_RNG_MAKE_PRNG
#define LTC_NO_PK
#define LTC_MRSA
#define LTC_MECC
#define LTC_NO_MISC
#define LTC_BASE64
#endif
/* The minimal set of functionality to run the tests */
#ifdef LTC_MINIMAL
#define LTC_RIJNDAEL
#define LTC_SHA256
#define LTC_YARROW
#define LTC_CTR_MODE
#define LTC_RNG_MAKE_PRNG
#define LTC_RNG_GET_BYTES
#define LTC_DEVRANDOM
#define LTC_TRY_URANDOM_FIRST
#undef LTC_NO_FILE
#endif
/* Enable self-test test vector checking */
#ifndef LTC_NO_TEST
#define LTC_TEST
#endif
/* Enable extended self-tests */
/* #define LTC_TEST_EXT */
/* Use small code where possible */
/* #define LTC_SMALL_CODE */
/* clean the stack of functions which put private information on stack */
/* #define LTC_CLEAN_STACK */
/* disable all file related functions */
/* #define LTC_NO_FILE */
/* disable all forms of ASM */
/* #define LTC_NO_ASM */
/* disable FAST mode */
/* #define LTC_NO_FAST */
/* disable BSWAP on x86 */
/* #define LTC_NO_BSWAP */
/* ---> math provider? <--- */
#ifndef LTC_NO_MATH
/* LibTomMath */
/* #define LTM_DESC */
/* TomsFastMath */
/* #define TFM_DESC */
/* GNU Multiple Precision Arithmetic Library */
/* #define GMP_DESC */
#endif /* LTC_NO_MATH */
/* ---> Symmetric Block Ciphers <--- */
#ifndef LTC_NO_CIPHERS
#define LTC_BLOWFISH
#define LTC_RC2
#define LTC_RC5
#define LTC_RC6
#define LTC_SAFERP
#define LTC_RIJNDAEL
#define LTC_XTEA
/* _TABLES tells it to use tables during setup, _SMALL means to use the smaller scheduled key format
* (saves 4KB of ram), _ALL_TABLES enables all tables during setup */
#define LTC_TWOFISH
#ifndef LTC_NO_TABLES
#define LTC_TWOFISH_TABLES
/* #define LTC_TWOFISH_ALL_TABLES */
#else
#define LTC_TWOFISH_SMALL
#endif
/* #define LTC_TWOFISH_SMALL */
/* LTC_DES includes EDE triple-DES */
#define LTC_DES
#define LTC_CAST5
#define LTC_NOEKEON
#define LTC_SKIPJACK
#define LTC_SAFER
#define LTC_KHAZAD
#define LTC_ANUBIS
#define LTC_ANUBIS_TWEAK
#define LTC_KSEED
#define LTC_KASUMI
#define LTC_MULTI2
#define LTC_CAMELLIA
#define LTC_IDEA
#define LTC_SERPENT
#define LTC_TEA
/* stream ciphers */
#define LTC_CHACHA
#define LTC_SALSA20
#define LTC_XSALSA20
#define LTC_SOSEMANUK
#define LTC_RABBIT
#define LTC_RC4_STREAM
#define LTC_SOBER128_STREAM
#endif /* LTC_NO_CIPHERS */
/* ---> Block Cipher Modes of Operation <--- */
#ifndef LTC_NO_MODES
#define LTC_CFB_MODE
#define LTC_OFB_MODE
#define LTC_ECB_MODE
#define LTC_CBC_MODE
#define LTC_CTR_MODE
/* F8 chaining mode */
#define LTC_F8_MODE
/* LRW mode */
#define LTC_LRW_MODE
#ifndef LTC_NO_TABLES
/* like GCM mode this will enable 16 8x128 tables [64KB] that make
* seeking very fast.
*/
#define LTC_LRW_TABLES
#endif
/* XTS mode */
#define LTC_XTS_MODE
#endif /* LTC_NO_MODES */
/* ---> One-Way Hash Functions <--- */
#ifndef LTC_NO_HASHES
#define LTC_CHC_HASH
#define LTC_WHIRLPOOL
#define LTC_SHA3
#define LTC_KECCAK
#define LTC_SHA512
#define LTC_SHA512_256
#define LTC_SHA512_224
#define LTC_SHA384
#define LTC_SHA256
#define LTC_SHA224
#define LTC_TIGER
#define LTC_SHA1
#define LTC_MD5
#define LTC_MD4
#define LTC_MD2
#define LTC_RIPEMD128
#define LTC_RIPEMD160
#define LTC_RIPEMD256
#define LTC_RIPEMD320
#define LTC_BLAKE2S
#define LTC_BLAKE2B
#define LTC_HASH_HELPERS
#endif /* LTC_NO_HASHES */
/* ---> MAC functions <--- */
#ifndef LTC_NO_MACS
#define LTC_HMAC
#define LTC_OMAC
#define LTC_PMAC
#define LTC_XCBC
#define LTC_F9_MODE
#define LTC_PELICAN
#define LTC_POLY1305
#define LTC_BLAKE2SMAC
#define LTC_BLAKE2BMAC
/* ---> Encrypt + Authenticate Modes <--- */
#define LTC_EAX_MODE
#define LTC_OCB_MODE
#define LTC_OCB3_MODE
#define LTC_CCM_MODE
#define LTC_GCM_MODE
#define LTC_CHACHA20POLY1305_MODE
/* Use 64KiB tables */
#ifndef LTC_NO_TABLES
#define LTC_GCM_TABLES
#endif
/* USE SSE2? requires GCC works on x86_32 and x86_64*/
#ifdef LTC_GCM_TABLES
/* #define LTC_GCM_TABLES_SSE2 */
#endif
#endif /* LTC_NO_MACS */
/* --> Pseudo Random Number Generators <--- */
#ifndef LTC_NO_PRNGS
/* Yarrow */
#define LTC_YARROW
/* a PRNG that simply reads from an available system source */
#define LTC_SPRNG
/* The RC4 stream cipher based PRNG */
#define LTC_RC4
/* The ChaCha20 stream cipher based PRNG */
#define LTC_CHACHA20_PRNG
/* Fortuna PRNG */
#define LTC_FORTUNA
/* Greg's SOBER128 stream cipher based PRNG */
#define LTC_SOBER128
/* the *nix style /dev/random device */
#define LTC_DEVRANDOM
/* try /dev/urandom before trying /dev/random
* are you sure you want to disable this? http://www.2uo.de/myths-about-urandom/ */
#define LTC_TRY_URANDOM_FIRST
/* rng_get_bytes() */
#define LTC_RNG_GET_BYTES
/* rng_make_prng() */
#define LTC_RNG_MAKE_PRNG
/* enable the ltc_rng hook to integrate e.g. embedded hardware RNG's easily */
/* #define LTC_PRNG_ENABLE_LTC_RNG */
#endif /* LTC_NO_PRNGS */
#ifdef LTC_YARROW
/* which descriptor of AES to use? */
/* 0 = rijndael_enc 1 = aes_enc, 2 = rijndael [full], 3 = aes [full] */
#ifdef ENCRYPT_ONLY
#define LTC_YARROW_AES 0
#else
#define LTC_YARROW_AES 2
#endif
#endif
#ifdef LTC_FORTUNA
#if !defined(LTC_FORTUNA_RESEED_RATELIMIT_STATIC) && \
((defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L) || defined(_WIN32))
/* time-based rate limit of the reseeding */
#define LTC_FORTUNA_RESEED_RATELIMIT_TIMED
/* with non-glibc or glibc 2.17+ prefer clock_gettime over gettimeofday */
#if defined(__GLIBC__) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2, 17)
#define LTC_CLOCK_GETTIME
#endif
#elif defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L
#define LTC_CLOCK_GETTIME
#endif
#else
#ifndef LTC_FORTUNA_WD
/* reseed every N calls to the read function */
#define LTC_FORTUNA_WD 10
#endif
#ifdef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
/* make sure only one of
* LTC_FORTUNA_RESEED_RATELIMIT_STATIC
* and
* LTC_FORTUNA_RESEED_RATELIMIT_TIMED
* is defined.
*/
#undef LTC_FORTUNA_RESEED_RATELIMIT_TIMED
#warning "undef'ed LTC_FORTUNA_RESEED_RATELIMIT_TIMED, looks like your architecture doesn't support it"
#endif
#endif
#ifndef LTC_FORTUNA_POOLS
/* number of pools (4..32) can save a bit of ram by lowering the count */
#define LTC_FORTUNA_POOLS 32
#endif
#endif /* LTC_FORTUNA */
/* ---> Public Key Crypto <--- */
#ifndef LTC_NO_PK
/* Include RSA support */
#define LTC_MRSA
/* Include Diffie-Hellman support */
/* is_prime fails for GMP */
#define LTC_MDH
/* Supported Key Sizes */
#define LTC_DH768
#define LTC_DH1024
#define LTC_DH1536
#define LTC_DH2048
#if defined(LTM_DESC) || defined(GMP_DESC)
/* tfm has a problem in fp_isprime for larger key sizes */
#define LTC_DH3072
#define LTC_DH4096
#define LTC_DH6144
#define LTC_DH8192
#endif
/* Digital Signature Algorithm */
#define LTC_MDSA
/* Ed25519 & X25519 */
#define LTC_CURVE25519
/* ECC */
#define LTC_MECC
/* use Shamir's trick for point mul (speeds up signature verification) */
#define LTC_ECC_SHAMIR
#if defined(TFM_DESC) && defined(LTC_MECC)
#define LTC_MECC_ACCEL
#endif
/* do we want fixed point ECC */
/* #define LTC_MECC_FP */
#endif /* LTC_NO_PK */
#if defined(LTC_MRSA) && !defined(LTC_NO_RSA_BLINDING)
/* Enable RSA blinding when doing private key operations by default */
#define LTC_RSA_BLINDING
#endif /* LTC_NO_RSA_BLINDING */
#if defined(LTC_MRSA) && !defined(LTC_NO_RSA_CRT_HARDENING)
/* Enable RSA CRT hardening when doing private key operations by default */
#define LTC_RSA_CRT_HARDENING
#endif /* LTC_NO_RSA_CRT_HARDENING */
#if defined(LTC_MECC) && !defined(LTC_NO_ECC_TIMING_RESISTANT)
/* Enable ECC timing resistant version by default */
#define LTC_ECC_TIMING_RESISTANT
#endif
/* PKCS #1 (RSA) and #5 (Password Handling) stuff */
#ifndef LTC_NO_PKCS
#define LTC_PKCS_1
#define LTC_PKCS_5
#define LTC_PKCS_8
#define LTC_PKCS_12
/* Include ASN.1 DER (required by DSA/RSA) */
#define LTC_DER
#endif /* LTC_NO_PKCS */
/* misc stuff */
#ifndef LTC_NO_MISC
/* Various tidbits of modern neatoness */
#define LTC_BASE64
/* ... and it's URL safe version */
#define LTC_BASE64_URL
/* Base32 encoding/decoding */
#define LTC_BASE32
/* Base16/hex encoding/decoding */
#define LTC_BASE16
#define LTC_BCRYPT
#ifndef LTC_BCRYPT_DEFAULT_ROUNDS
#define LTC_BCRYPT_DEFAULT_ROUNDS 10
#endif
/* Keep LTC_NO_HKDF for compatibility reasons
* superseeded by LTC_NO_MISC*/
#ifndef LTC_NO_HKDF
/* HKDF Key Derivation/Expansion stuff */
#define LTC_HKDF
#endif /* LTC_NO_HKDF */
#define LTC_ADLER32
#define LTC_CRC32
#define LTC_SSH
#define LTC_PADDING
#define LTC_PBES
#endif /* LTC_NO_MISC */
/* cleanup */
#ifdef LTC_MECC
/* Supported ECC Key Sizes */
#ifndef LTC_NO_CURVES
#define LTC_ECC_BRAINPOOLP160R1
#define LTC_ECC_BRAINPOOLP160T1
#define LTC_ECC_BRAINPOOLP192R1
#define LTC_ECC_BRAINPOOLP192T1
#define LTC_ECC_BRAINPOOLP224R1
#define LTC_ECC_BRAINPOOLP224T1
#define LTC_ECC_BRAINPOOLP256R1
#define LTC_ECC_BRAINPOOLP256T1
#define LTC_ECC_BRAINPOOLP320R1
#define LTC_ECC_BRAINPOOLP320T1
#define LTC_ECC_BRAINPOOLP384R1
#define LTC_ECC_BRAINPOOLP384T1
#define LTC_ECC_BRAINPOOLP512R1
#define LTC_ECC_BRAINPOOLP512T1
#define LTC_ECC_PRIME192V2
#define LTC_ECC_PRIME192V3
#define LTC_ECC_PRIME239V1
#define LTC_ECC_PRIME239V2
#define LTC_ECC_PRIME239V3
#define LTC_ECC_SECP112R1
#define LTC_ECC_SECP112R2
#define LTC_ECC_SECP128R1
#define LTC_ECC_SECP128R2
#define LTC_ECC_SECP160K1
#define LTC_ECC_SECP160R1
#define LTC_ECC_SECP160R2
#define LTC_ECC_SECP192K1
#define LTC_ECC_SECP192R1
#define LTC_ECC_SECP224K1
#define LTC_ECC_SECP224R1
#define LTC_ECC_SECP256K1
#define LTC_ECC_SECP256R1
#define LTC_ECC_SECP384R1
#define LTC_ECC_SECP521R1
#endif
#endif
#if defined(LTC_DER)
#ifndef LTC_DER_MAX_RECURSION
/* Maximum recursion limit when processing nested ASN.1 types. */
#define LTC_DER_MAX_RECURSION 30
#endif
#endif
#if defined(LTC_MECC) || defined(LTC_MRSA) || defined(LTC_MDSA) || defined(LTC_SSH)
/* Include the MPI functionality? (required by the PK algorithms) */
#define LTC_MPI
#ifndef LTC_PK_MAX_RETRIES
/* iterations limit for retry-loops */
#define LTC_PK_MAX_RETRIES 20
#endif
#endif
#ifdef LTC_MRSA
#define LTC_PKCS_1
#endif
#if defined(LTC_MRSA) || defined(LTC_MECC)
#define LTC_PKCS_8
#endif
#ifdef LTC_PKCS_8
#define LTC_PADDING
#define LTC_PBES
#endif
#if defined(LTC_PBES) && !defined(LTC_PKCS_5)
#error LTC_PBES requires LTC_PKCS_5
#endif
#if defined(LTC_PBES) && !defined(LTC_PKCS_12)
#error LTC_PBES requires LTC_PKCS_12
#endif
#if defined(LTC_PKCS_5) && !defined(LTC_HMAC)
#error LTC_PKCS_5 requires LTC_HMAC
#endif
#if defined(LTC_PKCS_5) && !defined(LTC_HASH_HELPERS)
#error LTC_PKCS_5 requires LTC_HASH_HELPERS
#endif
#if defined(LTC_PELICAN) && !defined(LTC_RIJNDAEL)
#error Pelican-MAC requires LTC_RIJNDAEL
#endif
#if defined(LTC_EAX_MODE) && !(defined(LTC_CTR_MODE) && defined(LTC_OMAC))
#error LTC_EAX_MODE requires CTR and LTC_OMAC mode
#endif
#if defined(LTC_YARROW) && !defined(LTC_CTR_MODE)
#error LTC_YARROW requires LTC_CTR_MODE chaining mode to be defined!
#endif
#if defined(LTC_DER) && !defined(LTC_MPI)
#error ASN.1 DER requires MPI functionality
#endif
#if (defined(LTC_MDSA) || defined(LTC_MRSA) || defined(LTC_MECC)) && !defined(LTC_DER)
#error PK requires ASN.1 DER functionality, make sure LTC_DER is enabled
#endif
#if defined(LTC_BCRYPT) && !defined(LTC_BLOWFISH)
#error LTC_BCRYPT requires LTC_BLOWFISH
#endif
#if defined(LTC_CHACHA20POLY1305_MODE) && (!defined(LTC_CHACHA) || !defined(LTC_POLY1305))
#error LTC_CHACHA20POLY1305_MODE requires LTC_CHACHA + LTC_POLY1305
#endif
#if defined(LTC_CHACHA20_PRNG) && !defined(LTC_CHACHA)
#error LTC_CHACHA20_PRNG requires LTC_CHACHA
#endif
#if defined(LTC_XSALSA20) && !defined(LTC_SALSA20)
#error LTC_XSALSA20 requires LTC_SALSA20
#endif
#if defined(LTC_RC4) && !defined(LTC_RC4_STREAM)
#error LTC_RC4 requires LTC_RC4_STREAM
#endif
#if defined(LTC_SOBER128) && !defined(LTC_SOBER128_STREAM)
#error LTC_SOBER128 requires LTC_SOBER128_STREAM
#endif
#if defined(LTC_BLAKE2SMAC) && !defined(LTC_BLAKE2S)
#error LTC_BLAKE2SMAC requires LTC_BLAKE2S
#endif
#if defined(LTC_BLAKE2BMAC) && !defined(LTC_BLAKE2B)
#error LTC_BLAKE2BMAC requires LTC_BLAKE2B
#endif
#if defined(LTC_SPRNG) && !defined(LTC_RNG_GET_BYTES)
#error LTC_SPRNG requires LTC_RNG_GET_BYTES
#endif
#if defined(LTC_NO_MATH) && (defined(LTM_DESC) || defined(TFM_DESC) || defined(GMP_DESC))
#error LTC_NO_MATH defined, but also a math descriptor
#endif
/* THREAD management */
#ifdef LTC_PTHREAD
#include <pthread.h>
#define LTC_MUTEX_GLOBAL(x) pthread_mutex_t x = PTHREAD_MUTEX_INITIALIZER;
#define LTC_MUTEX_PROTO(x) extern pthread_mutex_t x;
#define LTC_MUTEX_TYPE(x) pthread_mutex_t x;
#define LTC_MUTEX_INIT(x) LTC_ARGCHK(pthread_mutex_init(x, NULL) == 0);
#define LTC_MUTEX_LOCK(x) LTC_ARGCHK(pthread_mutex_lock(x) == 0);
#define LTC_MUTEX_UNLOCK(x) LTC_ARGCHK(pthread_mutex_unlock(x) == 0);
#define LTC_MUTEX_DESTROY(x) LTC_ARGCHK(pthread_mutex_destroy(x) == 0);
#else
/* default no functions */
#define LTC_MUTEX_GLOBAL(x)
#define LTC_MUTEX_PROTO(x)
#define LTC_MUTEX_TYPE(x)
#define LTC_MUTEX_INIT(x)
#define LTC_MUTEX_LOCK(x)
#define LTC_MUTEX_UNLOCK(x)
#define LTC_MUTEX_DESTROY(x)
#endif
/* Debuggers */
/* define this if you use Valgrind, note: it CHANGES the way SOBER-128 and RC4 work (see the code) */
/* #define LTC_VALGRIND */
#endif
#ifndef LTC_NO_FILE
/* buffer size for reading from a file via fread(..) */
#ifndef LTC_FILE_READ_BUFSIZE
#define LTC_FILE_READ_BUFSIZE 8192
#endif
#endif
/* ECC backwards compatibility */
#if !defined(LTC_ECC_SECP112R1) && defined(LTC_ECC112)
#define LTC_ECC_SECP112R1
#undef LTC_ECC112
#endif
#if !defined(LTC_ECC_SECP128R1) && defined(LTC_ECC128)
#define LTC_ECC_SECP128R1
#undef LTC_ECC128
#endif
#if !defined(LTC_ECC_SECP160R1) && defined(LTC_ECC160)
#define LTC_ECC_SECP160R1
#undef LTC_ECC160
#endif
#if !defined(LTC_ECC_SECP192R1) && defined(LTC_ECC192)
#define LTC_ECC_SECP192R1
#undef LTC_ECC192
#endif
#if !defined(LTC_ECC_SECP224R1) && defined(LTC_ECC224)
#define LTC_ECC_SECP224R1
#undef LTC_ECC224
#endif
#if !defined(LTC_ECC_SECP256R1) && defined(LTC_ECC256)
#define LTC_ECC_SECP256R1
#undef LTC_ECC256
#endif
#if !defined(LTC_ECC_SECP384R1) && defined(LTC_ECC384)
#define LTC_ECC_SECP384R1
#undef LTC_ECC384
#endif
#if !defined(LTC_ECC_SECP512R1) && defined(LTC_ECC521)
#define LTC_ECC_SECP521R1
#undef LTC_ECC521
#endif

View File

@@ -0,0 +1,502 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* ---- HASH FUNCTIONS ---- */
#if defined(LTC_SHA3) || defined(LTC_KECCAK)
struct sha3_state {
ulong64 saved; /* the portion of the input message that we didn't consume yet */
ulong64 s[25];
unsigned char sb[25 * 8]; /* used for storing `ulong64 s[25]` as little-endian bytes */
unsigned short byte_index; /* 0..7--the next byte after the set one (starts from 0; 0--none are buffered) */
unsigned short word_index; /* 0..24--the next word to integrate input (starts from 0) */
unsigned short capacity_words; /* the double size of the hash output in words (e.g. 16 for Keccak 512) */
unsigned short xof_flag;
};
#endif
#ifdef LTC_SHA512
struct sha512_state {
ulong64 length, state[8];
unsigned long curlen;
unsigned char buf[128];
};
#endif
#ifdef LTC_SHA256
struct sha256_state {
ulong64 length;
ulong32 state[8], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_SHA1
struct sha1_state {
ulong64 length;
ulong32 state[5], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_MD5
struct md5_state {
ulong64 length;
ulong32 state[4], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_MD4
struct md4_state {
ulong64 length;
ulong32 state[4], curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_TIGER
struct tiger_state {
ulong64 state[3], length;
unsigned long curlen;
unsigned char buf[64];
};
#endif
#ifdef LTC_MD2
struct md2_state {
unsigned char chksum[16], X[48], buf[16];
unsigned long curlen;
};
#endif
#ifdef LTC_RIPEMD128
struct rmd128_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[4];
};
#endif
#ifdef LTC_RIPEMD160
struct rmd160_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[5];
};
#endif
#ifdef LTC_RIPEMD256
struct rmd256_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[8];
};
#endif
#ifdef LTC_RIPEMD320
struct rmd320_state {
ulong64 length;
unsigned char buf[64];
ulong32 curlen, state[10];
};
#endif
#ifdef LTC_WHIRLPOOL
struct whirlpool_state {
ulong64 length, state[8];
unsigned char buf[64];
ulong32 curlen;
};
#endif
#ifdef LTC_CHC_HASH
struct chc_state {
ulong64 length;
unsigned char state[MAXBLOCKSIZE], buf[MAXBLOCKSIZE];
ulong32 curlen;
};
#endif
#ifdef LTC_BLAKE2S
struct blake2s_state {
ulong32 h[8];
ulong32 t[2];
ulong32 f[2];
unsigned char buf[64];
unsigned long curlen;
unsigned long outlen;
unsigned char last_node;
};
#endif
#ifdef LTC_BLAKE2B
struct blake2b_state {
ulong64 h[8];
ulong64 t[2];
ulong64 f[2];
unsigned char buf[128];
unsigned long curlen;
unsigned long outlen;
unsigned char last_node;
};
#endif
typedef union Hash_state {
char dummy[1];
#ifdef LTC_CHC_HASH
struct chc_state chc;
#endif
#ifdef LTC_WHIRLPOOL
struct whirlpool_state whirlpool;
#endif
#if defined(LTC_SHA3) || defined(LTC_KECCAK)
struct sha3_state sha3;
#endif
#ifdef LTC_SHA512
struct sha512_state sha512;
#endif
#ifdef LTC_SHA256
struct sha256_state sha256;
#endif
#ifdef LTC_SHA1
struct sha1_state sha1;
#endif
#ifdef LTC_MD5
struct md5_state md5;
#endif
#ifdef LTC_MD4
struct md4_state md4;
#endif
#ifdef LTC_MD2
struct md2_state md2;
#endif
#ifdef LTC_TIGER
struct tiger_state tiger;
#endif
#ifdef LTC_RIPEMD128
struct rmd128_state rmd128;
#endif
#ifdef LTC_RIPEMD160
struct rmd160_state rmd160;
#endif
#ifdef LTC_RIPEMD256
struct rmd256_state rmd256;
#endif
#ifdef LTC_RIPEMD320
struct rmd320_state rmd320;
#endif
#ifdef LTC_BLAKE2S
struct blake2s_state blake2s;
#endif
#ifdef LTC_BLAKE2B
struct blake2b_state blake2b;
#endif
void *data;
} hash_state;
/** hash descriptor */
extern struct ltc_hash_descriptor {
/** name of hash */
const char *name;
/** internal ID */
unsigned char ID;
/** Size of digest in octets */
unsigned long hashsize;
/** Input block size in octets */
unsigned long blocksize;
/** ASN.1 OID */
unsigned long OID[16];
/** Length of DER encoding */
unsigned long OIDlen;
/** Init a hash state
@param hash The hash to initialize
@return CRYPT_OK if successful
*/
int (*init)(hash_state *hash);
/** Process a block of data
@param hash The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int (*process)(hash_state *hash, const unsigned char *in, unsigned long inlen);
/** Produce the digest and store it
@param hash The hash state
@param out [out] The destination of the digest
@return CRYPT_OK if successful
*/
int (*done)(hash_state *hash, unsigned char *out);
/** Self-test
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int (*test)(void);
/* accelerated hmac callback: if you need to-do multiple packets just use the generic hmac_memory and provide a hash callback */
int (*hmac_block)(const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
} hash_descriptor[];
#ifdef LTC_CHC_HASH
int chc_register(int cipher);
int chc_init(hash_state * md);
int chc_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int chc_done(hash_state * md, unsigned char *out);
int chc_test(void);
extern const struct ltc_hash_descriptor chc_desc;
#endif
#ifdef LTC_WHIRLPOOL
int whirlpool_init(hash_state * md);
int whirlpool_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int whirlpool_done(hash_state * md, unsigned char *out);
int whirlpool_test(void);
extern const struct ltc_hash_descriptor whirlpool_desc;
#endif
#if defined(LTC_SHA3) || defined(LTC_KECCAK)
/* sha3_NNN_init are shared by SHA3 and KECCAK */
int sha3_512_init(hash_state * md);
int sha3_384_init(hash_state * md);
int sha3_256_init(hash_state * md);
int sha3_224_init(hash_state * md);
/* sha3_process is the same for all variants of SHA3 + KECCAK */
int sha3_process(hash_state * md, const unsigned char *in, unsigned long inlen);
#endif
#ifdef LTC_SHA3
int sha3_512_test(void);
extern const struct ltc_hash_descriptor sha3_512_desc;
int sha3_384_test(void);
extern const struct ltc_hash_descriptor sha3_384_desc;
int sha3_256_test(void);
extern const struct ltc_hash_descriptor sha3_256_desc;
int sha3_224_test(void);
extern const struct ltc_hash_descriptor sha3_224_desc;
int sha3_done(hash_state *md, unsigned char *out);
/* SHAKE128 + SHAKE256 */
int sha3_shake_init(hash_state *md, int num);
#define sha3_shake_process(a,b,c) sha3_process(a,b,c)
int sha3_shake_done(hash_state *md, unsigned char *out, unsigned long outlen);
int sha3_shake_test(void);
int sha3_shake_memory(int num, const unsigned char *in, unsigned long inlen, unsigned char *out, const unsigned long *outlen);
#endif
#ifdef LTC_KECCAK
#define keccak_512_init(a) sha3_512_init(a)
#define keccak_384_init(a) sha3_384_init(a)
#define keccak_256_init(a) sha3_256_init(a)
#define keccak_224_init(a) sha3_224_init(a)
#define keccak_process(a,b,c) sha3_process(a,b,c)
extern const struct ltc_hash_descriptor keccak_512_desc;
int keccak_512_test(void);
extern const struct ltc_hash_descriptor keccak_384_desc;
int keccak_384_test(void);
extern const struct ltc_hash_descriptor keccak_256_desc;
int keccak_256_test(void);
extern const struct ltc_hash_descriptor keccak_224_desc;
int keccak_224_test(void);
int keccak_done(hash_state *md, unsigned char *out);
#endif
#ifdef LTC_SHA512
int sha512_init(hash_state * md);
int sha512_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int sha512_done(hash_state * md, unsigned char *out);
int sha512_test(void);
extern const struct ltc_hash_descriptor sha512_desc;
#endif
#ifdef LTC_SHA384
#ifndef LTC_SHA512
#error LTC_SHA512 is required for LTC_SHA384
#endif
int sha384_init(hash_state * md);
#define sha384_process sha512_process
int sha384_done(hash_state * md, unsigned char *out);
int sha384_test(void);
extern const struct ltc_hash_descriptor sha384_desc;
#endif
#ifdef LTC_SHA512_256
#ifndef LTC_SHA512
#error LTC_SHA512 is required for LTC_SHA512_256
#endif
int sha512_256_init(hash_state * md);
#define sha512_256_process sha512_process
int sha512_256_done(hash_state * md, unsigned char *out);
int sha512_256_test(void);
extern const struct ltc_hash_descriptor sha512_256_desc;
#endif
#ifdef LTC_SHA512_224
#ifndef LTC_SHA512
#error LTC_SHA512 is required for LTC_SHA512_224
#endif
int sha512_224_init(hash_state * md);
#define sha512_224_process sha512_process
int sha512_224_done(hash_state * md, unsigned char *out);
int sha512_224_test(void);
extern const struct ltc_hash_descriptor sha512_224_desc;
#endif
#ifdef LTC_SHA256
int sha256_init(hash_state * md);
int sha256_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int sha256_done(hash_state * md, unsigned char *out);
int sha256_test(void);
extern const struct ltc_hash_descriptor sha256_desc;
#ifdef LTC_SHA224
#ifndef LTC_SHA256
#error LTC_SHA256 is required for LTC_SHA224
#endif
int sha224_init(hash_state * md);
#define sha224_process sha256_process
int sha224_done(hash_state * md, unsigned char *out);
int sha224_test(void);
extern const struct ltc_hash_descriptor sha224_desc;
#endif
#endif
#ifdef LTC_SHA1
int sha1_init(hash_state * md);
int sha1_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int sha1_done(hash_state * md, unsigned char *out);
int sha1_test(void);
extern const struct ltc_hash_descriptor sha1_desc;
#endif
#ifdef LTC_BLAKE2S
extern const struct ltc_hash_descriptor blake2s_256_desc;
int blake2s_256_init(hash_state * md);
int blake2s_256_test(void);
extern const struct ltc_hash_descriptor blake2s_224_desc;
int blake2s_224_init(hash_state * md);
int blake2s_224_test(void);
extern const struct ltc_hash_descriptor blake2s_160_desc;
int blake2s_160_init(hash_state * md);
int blake2s_160_test(void);
extern const struct ltc_hash_descriptor blake2s_128_desc;
int blake2s_128_init(hash_state * md);
int blake2s_128_test(void);
int blake2s_init(hash_state * md, unsigned long outlen, const unsigned char *key, unsigned long keylen);
int blake2s_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int blake2s_done(hash_state * md, unsigned char *out);
#endif
#ifdef LTC_BLAKE2B
extern const struct ltc_hash_descriptor blake2b_512_desc;
int blake2b_512_init(hash_state * md);
int blake2b_512_test(void);
extern const struct ltc_hash_descriptor blake2b_384_desc;
int blake2b_384_init(hash_state * md);
int blake2b_384_test(void);
extern const struct ltc_hash_descriptor blake2b_256_desc;
int blake2b_256_init(hash_state * md);
int blake2b_256_test(void);
extern const struct ltc_hash_descriptor blake2b_160_desc;
int blake2b_160_init(hash_state * md);
int blake2b_160_test(void);
int blake2b_init(hash_state * md, unsigned long outlen, const unsigned char *key, unsigned long keylen);
int blake2b_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int blake2b_done(hash_state * md, unsigned char *out);
#endif
#ifdef LTC_MD5
int md5_init(hash_state * md);
int md5_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int md5_done(hash_state * md, unsigned char *out);
int md5_test(void);
extern const struct ltc_hash_descriptor md5_desc;
#endif
#ifdef LTC_MD4
int md4_init(hash_state * md);
int md4_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int md4_done(hash_state * md, unsigned char *out);
int md4_test(void);
extern const struct ltc_hash_descriptor md4_desc;
#endif
#ifdef LTC_MD2
int md2_init(hash_state * md);
int md2_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int md2_done(hash_state * md, unsigned char *out);
int md2_test(void);
extern const struct ltc_hash_descriptor md2_desc;
#endif
#ifdef LTC_TIGER
int tiger_init(hash_state * md);
int tiger_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int tiger_done(hash_state * md, unsigned char *out);
int tiger_test(void);
extern const struct ltc_hash_descriptor tiger_desc;
#endif
#ifdef LTC_RIPEMD128
int rmd128_init(hash_state * md);
int rmd128_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd128_done(hash_state * md, unsigned char *out);
int rmd128_test(void);
extern const struct ltc_hash_descriptor rmd128_desc;
#endif
#ifdef LTC_RIPEMD160
int rmd160_init(hash_state * md);
int rmd160_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd160_done(hash_state * md, unsigned char *out);
int rmd160_test(void);
extern const struct ltc_hash_descriptor rmd160_desc;
#endif
#ifdef LTC_RIPEMD256
int rmd256_init(hash_state * md);
int rmd256_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd256_done(hash_state * md, unsigned char *out);
int rmd256_test(void);
extern const struct ltc_hash_descriptor rmd256_desc;
#endif
#ifdef LTC_RIPEMD320
int rmd320_init(hash_state * md);
int rmd320_process(hash_state * md, const unsigned char *in, unsigned long inlen);
int rmd320_done(hash_state * md, unsigned char *out);
int rmd320_test(void);
extern const struct ltc_hash_descriptor rmd320_desc;
#endif
int find_hash(const char *name);
int find_hash_id(unsigned char ID);
int find_hash_oid(const unsigned long *ID, unsigned long IDlen);
int find_hash_any(const char *name, int digestlen);
int register_hash(const struct ltc_hash_descriptor *hash);
int unregister_hash(const struct ltc_hash_descriptor *hash);
int register_all_hashes(void);
int hash_is_valid(int idx);
LTC_MUTEX_PROTO(ltc_hash_mutex)
int hash_memory(int hash,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int hash_memory_multi(int hash, unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
#ifndef LTC_NO_FILE
int hash_filehandle(int hash, FILE *in, unsigned char *out, unsigned long *outlen);
int hash_file(int hash, const char *fname, unsigned char *out, unsigned long *outlen);
#endif

View File

@@ -0,0 +1,553 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#ifdef LTC_HMAC
typedef struct Hmac_state {
hash_state md;
int hash;
unsigned char key[MAXBLOCKSIZE];
} hmac_state;
int hmac_init(hmac_state *hmac, int hash, const unsigned char *key, unsigned long keylen);
int hmac_process(hmac_state *hmac, const unsigned char *in, unsigned long inlen);
int hmac_done(hmac_state *hmac, unsigned char *out, unsigned long *outlen);
int hmac_test(void);
int hmac_memory(int hash,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int hmac_memory_multi(int hash,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int hmac_file(int hash, const char *fname, const unsigned char *key,
unsigned long keylen,
unsigned char *out, unsigned long *outlen);
#endif
#ifdef LTC_OMAC
typedef struct {
int cipher_idx,
buflen,
blklen;
unsigned char block[MAXBLOCKSIZE],
prev[MAXBLOCKSIZE],
Lu[2][MAXBLOCKSIZE];
symmetric_key key;
} omac_state;
int omac_init(omac_state *omac, int cipher, const unsigned char *key, unsigned long keylen);
int omac_process(omac_state *omac, const unsigned char *in, unsigned long inlen);
int omac_done(omac_state *omac, unsigned char *out, unsigned long *outlen);
int omac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int omac_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int omac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);
int omac_test(void);
#endif /* LTC_OMAC */
#ifdef LTC_PMAC
typedef struct {
unsigned char Ls[32][MAXBLOCKSIZE], /* L shifted by i bits to the left */
Li[MAXBLOCKSIZE], /* value of Li [current value, we calc from previous recall] */
Lr[MAXBLOCKSIZE], /* L * x^-1 */
block[MAXBLOCKSIZE], /* currently accumulated block */
checksum[MAXBLOCKSIZE]; /* current checksum */
symmetric_key key; /* scheduled key for cipher */
unsigned long block_index; /* index # for current block */
int cipher_idx, /* cipher idx */
block_len, /* length of block */
buflen; /* number of bytes in the buffer */
} pmac_state;
int pmac_init(pmac_state *pmac, int cipher, const unsigned char *key, unsigned long keylen);
int pmac_process(pmac_state *pmac, const unsigned char *in, unsigned long inlen);
int pmac_done(pmac_state *pmac, unsigned char *out, unsigned long *outlen);
int pmac_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int pmac_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int pmac_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);
int pmac_test(void);
/* internal functions */
int pmac_ntz(unsigned long x);
void pmac_shift_xor(pmac_state *pmac);
#endif /* PMAC */
#ifdef LTC_POLY1305
typedef struct {
ulong32 r[5];
ulong32 h[5];
ulong32 pad[4];
unsigned long leftover;
unsigned char buffer[16];
int final;
} poly1305_state;
int poly1305_init(poly1305_state *st, const unsigned char *key, unsigned long keylen);
int poly1305_process(poly1305_state *st, const unsigned char *in, unsigned long inlen);
int poly1305_done(poly1305_state *st, unsigned char *mac, unsigned long *maclen);
int poly1305_memory(const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *mac, unsigned long *maclen);
int poly1305_memory_multi(const unsigned char *key, unsigned long keylen, unsigned char *mac, unsigned long *maclen, const unsigned char *in, unsigned long inlen, ...);
int poly1305_file(const char *fname, const unsigned char *key, unsigned long keylen, unsigned char *mac, unsigned long *maclen);
int poly1305_test(void);
#endif /* LTC_POLY1305 */
#ifdef LTC_BLAKE2SMAC
typedef hash_state blake2smac_state;
int blake2smac_init(blake2smac_state *st, unsigned long outlen, const unsigned char *key, unsigned long keylen);
int blake2smac_process(blake2smac_state *st, const unsigned char *in, unsigned long inlen);
int blake2smac_done(blake2smac_state *st, unsigned char *mac, unsigned long *maclen);
int blake2smac_memory(const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *mac, unsigned long *maclen);
int blake2smac_memory_multi(const unsigned char *key, unsigned long keylen, unsigned char *mac, unsigned long *maclen, const unsigned char *in, unsigned long inlen, ...);
int blake2smac_file(const char *fname, const unsigned char *key, unsigned long keylen, unsigned char *mac, unsigned long *maclen);
int blake2smac_test(void);
#endif /* LTC_BLAKE2SMAC */
#ifdef LTC_BLAKE2BMAC
typedef hash_state blake2bmac_state;
int blake2bmac_init(blake2bmac_state *st, unsigned long outlen, const unsigned char *key, unsigned long keylen);
int blake2bmac_process(blake2bmac_state *st, const unsigned char *in, unsigned long inlen);
int blake2bmac_done(blake2bmac_state *st, unsigned char *mac, unsigned long *maclen);
int blake2bmac_memory(const unsigned char *key, unsigned long keylen, const unsigned char *in, unsigned long inlen, unsigned char *mac, unsigned long *maclen);
int blake2bmac_memory_multi(const unsigned char *key, unsigned long keylen, unsigned char *mac, unsigned long *maclen, const unsigned char *in, unsigned long inlen, ...);
int blake2bmac_file(const char *fname, const unsigned char *key, unsigned long keylen, unsigned char *mac, unsigned long *maclen);
int blake2bmac_test(void);
#endif /* LTC_BLAKE2BMAC */
#ifdef LTC_PELICAN
typedef struct pelican_state
{
symmetric_key K;
unsigned char state[16];
int buflen;
} pelican_state;
int pelican_init(pelican_state *pelmac, const unsigned char *key, unsigned long keylen);
int pelican_process(pelican_state *pelmac, const unsigned char *in, unsigned long inlen);
int pelican_done(pelican_state *pelmac, unsigned char *out);
int pelican_test(void);
int pelican_memory(const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out);
#endif
#ifdef LTC_XCBC
/* add this to "keylen" to xcbc_init to use a pure three-key XCBC MAC */
#define LTC_XCBC_PURE 0x8000UL
typedef struct {
unsigned char K[3][MAXBLOCKSIZE],
IV[MAXBLOCKSIZE];
symmetric_key key;
int cipher,
buflen,
blocksize;
} xcbc_state;
int xcbc_init(xcbc_state *xcbc, int cipher, const unsigned char *key, unsigned long keylen);
int xcbc_process(xcbc_state *xcbc, const unsigned char *in, unsigned long inlen);
int xcbc_done(xcbc_state *xcbc, unsigned char *out, unsigned long *outlen);
int xcbc_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int xcbc_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int xcbc_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *filename,
unsigned char *out, unsigned long *outlen);
int xcbc_test(void);
#endif
#ifdef LTC_F9_MODE
typedef struct {
unsigned char akey[MAXBLOCKSIZE],
ACC[MAXBLOCKSIZE],
IV[MAXBLOCKSIZE];
symmetric_key key;
int cipher,
buflen,
keylen,
blocksize;
} f9_state;
int f9_init(f9_state *f9, int cipher, const unsigned char *key, unsigned long keylen);
int f9_process(f9_state *f9, const unsigned char *in, unsigned long inlen);
int f9_done(f9_state *f9, unsigned char *out, unsigned long *outlen);
int f9_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int f9_memory_multi(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...);
int f9_file(int cipher,
const unsigned char *key, unsigned long keylen,
const char *fname,
unsigned char *out, unsigned long *outlen);
int f9_test(void);
#endif
/*
* ENC+AUTH modes
*/
#ifdef LTC_EAX_MODE
#if !(defined(LTC_OMAC) && defined(LTC_CTR_MODE))
#error LTC_EAX_MODE requires LTC_OMAC and CTR
#endif
typedef struct {
unsigned char N[MAXBLOCKSIZE];
symmetric_CTR ctr;
omac_state headeromac, ctomac;
} eax_state;
int eax_init(eax_state *eax, int cipher, const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen);
int eax_encrypt(eax_state *eax, const unsigned char *pt, unsigned char *ct, unsigned long length);
int eax_decrypt(eax_state *eax, const unsigned char *ct, unsigned char *pt, unsigned long length);
int eax_addheader(eax_state *eax, const unsigned char *header, unsigned long length);
int eax_done(eax_state *eax, unsigned char *tag, unsigned long *taglen);
int eax_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);
int eax_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *stat);
int eax_test(void);
#endif /* EAX MODE */
#ifdef LTC_OCB_MODE
typedef struct {
unsigned char L[MAXBLOCKSIZE], /* L value */
Ls[32][MAXBLOCKSIZE], /* L shifted by i bits to the left */
Li[MAXBLOCKSIZE], /* value of Li [current value, we calc from previous recall] */
Lr[MAXBLOCKSIZE], /* L * x^-1 */
R[MAXBLOCKSIZE], /* R value */
checksum[MAXBLOCKSIZE]; /* current checksum */
symmetric_key key; /* scheduled key for cipher */
unsigned long block_index; /* index # for current block */
int cipher, /* cipher idx */
block_len; /* length of block */
} ocb_state;
int ocb_init(ocb_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen, const unsigned char *nonce);
int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct);
int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt);
int ocb_done_encrypt(ocb_state *ocb,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);
int ocb_done_decrypt(ocb_state *ocb,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen, int *stat);
int ocb_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);
int ocb_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *stat);
int ocb_test(void);
/* internal functions */
void ocb_shift_xor(ocb_state *ocb, unsigned char *Z);
int ocb_ntz(unsigned long x);
int s_ocb_done(ocb_state *ocb, const unsigned char *pt, unsigned long ptlen,
unsigned char *ct, unsigned char *tag, unsigned long *taglen, int mode);
#endif /* LTC_OCB_MODE */
#ifdef LTC_OCB3_MODE
typedef struct {
unsigned char Offset_0[MAXBLOCKSIZE], /* Offset_0 value */
Offset_current[MAXBLOCKSIZE], /* Offset_{current_block_index} value */
L_dollar[MAXBLOCKSIZE], /* L_$ value */
L_star[MAXBLOCKSIZE], /* L_* value */
L_[32][MAXBLOCKSIZE], /* L_{i} values */
tag_part[MAXBLOCKSIZE], /* intermediate result of tag calculation */
checksum[MAXBLOCKSIZE]; /* current checksum */
/* AAD related members */
unsigned char aSum_current[MAXBLOCKSIZE], /* AAD related helper variable */
aOffset_current[MAXBLOCKSIZE], /* AAD related helper variable */
adata_buffer[MAXBLOCKSIZE]; /* AAD buffer */
int adata_buffer_bytes; /* bytes in AAD buffer */
unsigned long ablock_index; /* index # for current adata (AAD) block */
symmetric_key key; /* scheduled key for cipher */
unsigned long block_index; /* index # for current data block */
int cipher, /* cipher idx */
tag_len, /* length of tag */
block_len; /* length of block */
} ocb3_state;
int ocb3_init(ocb3_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
unsigned long taglen);
int ocb3_encrypt(ocb3_state *ocb, const unsigned char *pt, unsigned long ptlen, unsigned char *ct);
int ocb3_decrypt(ocb3_state *ocb, const unsigned char *ct, unsigned long ctlen, unsigned char *pt);
int ocb3_encrypt_last(ocb3_state *ocb, const unsigned char *pt, unsigned long ptlen, unsigned char *ct);
int ocb3_decrypt_last(ocb3_state *ocb, const unsigned char *ct, unsigned long ctlen, unsigned char *pt);
int ocb3_add_aad(ocb3_state *ocb, const unsigned char *aad, unsigned long aadlen);
int ocb3_done(ocb3_state *ocb, unsigned char *tag, unsigned long *taglen);
int ocb3_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *adata, unsigned long adatalen,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen);
int ocb3_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *adata, unsigned long adatalen,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *stat);
int ocb3_test(void);
#endif /* LTC_OCB3_MODE */
#ifdef LTC_CCM_MODE
#define CCM_ENCRYPT LTC_ENCRYPT
#define CCM_DECRYPT LTC_DECRYPT
typedef struct {
symmetric_key K;
int cipher, /* which cipher */
taglen, /* length of the tag */
x; /* index in PAD */
unsigned long L, /* L value */
ptlen, /* length that will be enc / dec */
current_ptlen, /* current processed length */
aadlen, /* length of the aad */
current_aadlen, /* length of the currently provided add */
noncelen; /* length of the nonce */
unsigned char PAD[16],
ctr[16],
CTRPAD[16],
CTRlen;
} ccm_state;
int ccm_init(ccm_state *ccm, int cipher,
const unsigned char *key, int keylen, int ptlen, int taglen, int aadlen);
int ccm_reset(ccm_state *ccm);
int ccm_add_nonce(ccm_state *ccm,
const unsigned char *nonce, unsigned long noncelen);
int ccm_add_aad(ccm_state *ccm,
const unsigned char *adata, unsigned long adatalen);
int ccm_process(ccm_state *ccm,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
int direction);
int ccm_done(ccm_state *ccm,
unsigned char *tag, unsigned long *taglen);
int ccm_memory(int cipher,
const unsigned char *key, unsigned long keylen,
symmetric_key *uskey,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
int ccm_test(void);
#endif /* LTC_CCM_MODE */
#if defined(LRW_MODE) || defined(LTC_GCM_MODE)
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c);
#endif
/* table shared between GCM and LRW */
#if defined(LTC_GCM_TABLES) || defined(LTC_LRW_TABLES) || ((defined(LTC_GCM_MODE) || defined(LTC_GCM_MODE)) && defined(LTC_FAST))
extern const unsigned char gcm_shift_table[];
#endif
#ifdef LTC_GCM_MODE
#define GCM_ENCRYPT LTC_ENCRYPT
#define GCM_DECRYPT LTC_DECRYPT
#define LTC_GCM_MODE_IV 0
#define LTC_GCM_MODE_AAD 1
#define LTC_GCM_MODE_TEXT 2
typedef struct {
symmetric_key K;
unsigned char H[16], /* multiplier */
X[16], /* accumulator */
Y[16], /* counter */
Y_0[16], /* initial counter */
buf[16]; /* buffer for stuff */
int cipher, /* which cipher */
ivmode, /* Which mode is the IV in? */
mode, /* mode the GCM code is in */
buflen; /* length of data in buf */
ulong64 totlen, /* 64-bit counter used for IV and AAD */
pttotlen; /* 64-bit counter for the PT */
#ifdef LTC_GCM_TABLES
unsigned char PC[16][256][16] /* 16 tables of 8x128 */
#ifdef LTC_GCM_TABLES_SSE2
__attribute__ ((aligned (16)))
#endif
;
#endif
} gcm_state;
void gcm_mult_h(const gcm_state *gcm, unsigned char *I);
int gcm_init(gcm_state *gcm, int cipher,
const unsigned char *key, int keylen);
int gcm_reset(gcm_state *gcm);
int gcm_add_iv(gcm_state *gcm,
const unsigned char *IV, unsigned long IVlen);
int gcm_add_aad(gcm_state *gcm,
const unsigned char *adata, unsigned long adatalen);
int gcm_process(gcm_state *gcm,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
int direction);
int gcm_done(gcm_state *gcm,
unsigned char *tag, unsigned long *taglen);
int gcm_memory( int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *IV, unsigned long IVlen,
const unsigned char *adata, unsigned long adatalen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
int gcm_test(void);
#endif /* LTC_GCM_MODE */
#ifdef LTC_CHACHA20POLY1305_MODE
typedef struct {
poly1305_state poly;
chacha_state chacha;
ulong64 aadlen;
ulong64 ctlen;
int aadflg;
} chacha20poly1305_state;
#define CHACHA20POLY1305_ENCRYPT LTC_ENCRYPT
#define CHACHA20POLY1305_DECRYPT LTC_DECRYPT
int chacha20poly1305_init(chacha20poly1305_state *st, const unsigned char *key, unsigned long keylen);
int chacha20poly1305_setiv(chacha20poly1305_state *st, const unsigned char *iv, unsigned long ivlen);
int chacha20poly1305_setiv_rfc7905(chacha20poly1305_state *st, const unsigned char *iv, unsigned long ivlen, ulong64 sequence_number);
int chacha20poly1305_add_aad(chacha20poly1305_state *st, const unsigned char *in, unsigned long inlen);
int chacha20poly1305_encrypt(chacha20poly1305_state *st, const unsigned char *in, unsigned long inlen, unsigned char *out);
int chacha20poly1305_decrypt(chacha20poly1305_state *st, const unsigned char *in, unsigned long inlen, unsigned char *out);
int chacha20poly1305_done(chacha20poly1305_state *st, unsigned char *tag, unsigned long *taglen);
int chacha20poly1305_memory(const unsigned char *key, unsigned long keylen,
const unsigned char *iv, unsigned long ivlen,
const unsigned char *aad, unsigned long aadlen,
const unsigned char *in, unsigned long inlen,
unsigned char *out,
unsigned char *tag, unsigned long *taglen,
int direction);
int chacha20poly1305_test(void);
#endif /* LTC_CHACHA20POLY1305_MODE */

View File

@@ -0,0 +1,451 @@
/* ---- HELPER MACROS ---- */
#ifdef ENDIAN_NEUTRAL
#define STORE32L(x, y) \
do { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } while(0)
#define LOAD32L(x, y) \
do { x = ((ulong32)((y)[3] & 255)<<24) | \
((ulong32)((y)[2] & 255)<<16) | \
((ulong32)((y)[1] & 255)<<8) | \
((ulong32)((y)[0] & 255)); } while(0)
#define STORE64L(x, y) \
do { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } while(0)
#define LOAD64L(x, y) \
do { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } while(0)
#define STORE32H(x, y) \
do { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } while(0)
#define LOAD32H(x, y) \
do { x = ((ulong32)((y)[0] & 255)<<24) | \
((ulong32)((y)[1] & 255)<<16) | \
((ulong32)((y)[2] & 255)<<8) | \
((ulong32)((y)[3] & 255)); } while(0)
#define STORE64H(x, y) \
do { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } while(0)
#define LOAD64H(x, y) \
do { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); } while(0)
#elif defined(ENDIAN_LITTLE)
#ifdef LTC_HAVE_BSWAP_BUILTIN
#define STORE32H(x, y) \
do { ulong32 ttt = __builtin_bswap32 ((x)); \
XMEMCPY ((y), &ttt, 4); } while(0)
#define LOAD32H(x, y) \
do { XMEMCPY (&(x), (y), 4); \
(x) = __builtin_bswap32 ((x)); } while(0)
#elif !defined(LTC_NO_BSWAP) && (defined(INTEL_CC) || (defined(__GNUC__) && (defined(__DJGPP__) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__i386__) || defined(__x86_64__))))
#define STORE32H(x, y) \
asm __volatile__ ( \
"bswapl %0 \n\t" \
"movl %0,(%1)\n\t" \
"bswapl %0 \n\t" \
::"r"(x), "r"(y): "memory");
#define LOAD32H(x, y) \
asm __volatile__ ( \
"movl (%1),%0\n\t" \
"bswapl %0\n\t" \
:"=r"(x): "r"(y): "memory");
#else
#define STORE32H(x, y) \
do { (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); } while(0)
#define LOAD32H(x, y) \
do { x = ((ulong32)((y)[0] & 255)<<24) | \
((ulong32)((y)[1] & 255)<<16) | \
((ulong32)((y)[2] & 255)<<8) | \
((ulong32)((y)[3] & 255)); } while(0)
#endif
#ifdef LTC_HAVE_BSWAP_BUILTIN
#define STORE64H(x, y) \
do { ulong64 ttt = __builtin_bswap64 ((x)); \
XMEMCPY ((y), &ttt, 8); } while(0)
#define LOAD64H(x, y) \
do { XMEMCPY (&(x), (y), 8); \
(x) = __builtin_bswap64 ((x)); } while(0)
/* x86_64 processor */
#elif !defined(LTC_NO_BSWAP) && (defined(__GNUC__) && defined(__x86_64__))
#define STORE64H(x, y) \
asm __volatile__ ( \
"bswapq %0 \n\t" \
"movq %0,(%1)\n\t" \
"bswapq %0 \n\t" \
::"r"(x), "r"(y): "memory");
#define LOAD64H(x, y) \
asm __volatile__ ( \
"movq (%1),%0\n\t" \
"bswapq %0\n\t" \
:"=r"(x): "r"(y): "memory");
#else
#define STORE64H(x, y) \
do { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } while(0)
#define LOAD64H(x, y) \
do { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48) | \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32) | \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16) | \
(((ulong64)((y)[6] & 255))<<8)|(((ulong64)((y)[7] & 255))); } while(0)
#endif
#ifdef ENDIAN_32BITWORD
#define STORE32L(x, y) \
do { ulong32 ttt = (x); XMEMCPY(y, &ttt, 4); } while(0)
#define LOAD32L(x, y) \
do { XMEMCPY(&(x), y, 4); } while(0)
#define STORE64L(x, y) \
do { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } while(0)
#define LOAD64L(x, y) \
do { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48)| \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32)| \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16)| \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } while(0)
#else /* 64-bit words then */
#define STORE32L(x, y) \
do { ulong32 ttt = (x); XMEMCPY(y, &ttt, 4); } while(0)
#define LOAD32L(x, y) \
do { XMEMCPY(&(x), y, 4); x &= 0xFFFFFFFF; } while(0)
#define STORE64L(x, y) \
do { ulong64 ttt = (x); XMEMCPY(y, &ttt, 8); } while(0)
#define LOAD64L(x, y) \
do { XMEMCPY(&(x), y, 8); } while(0)
#endif /* ENDIAN_64BITWORD */
#elif defined(ENDIAN_BIG)
#define STORE32L(x, y) \
do { (y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } while(0)
#define LOAD32L(x, y) \
do { x = ((ulong32)((y)[3] & 255)<<24) | \
((ulong32)((y)[2] & 255)<<16) | \
((ulong32)((y)[1] & 255)<<8) | \
((ulong32)((y)[0] & 255)); } while(0)
#define STORE64L(x, y) \
do { (y)[7] = (unsigned char)(((x)>>56)&255); (y)[6] = (unsigned char)(((x)>>48)&255); \
(y)[5] = (unsigned char)(((x)>>40)&255); (y)[4] = (unsigned char)(((x)>>32)&255); \
(y)[3] = (unsigned char)(((x)>>24)&255); (y)[2] = (unsigned char)(((x)>>16)&255); \
(y)[1] = (unsigned char)(((x)>>8)&255); (y)[0] = (unsigned char)((x)&255); } while(0)
#define LOAD64L(x, y) \
do { x = (((ulong64)((y)[7] & 255))<<56)|(((ulong64)((y)[6] & 255))<<48) | \
(((ulong64)((y)[5] & 255))<<40)|(((ulong64)((y)[4] & 255))<<32) | \
(((ulong64)((y)[3] & 255))<<24)|(((ulong64)((y)[2] & 255))<<16) | \
(((ulong64)((y)[1] & 255))<<8)|(((ulong64)((y)[0] & 255))); } while(0)
#ifdef ENDIAN_32BITWORD
#define STORE32H(x, y) \
do { ulong32 ttt = (x); XMEMCPY(y, &ttt, 4); } while(0)
#define LOAD32H(x, y) \
do { XMEMCPY(&(x), y, 4); } while(0)
#define STORE64H(x, y) \
do { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
(y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
(y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
(y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); } while(0)
#define LOAD64H(x, y) \
do { x = (((ulong64)((y)[0] & 255))<<56)|(((ulong64)((y)[1] & 255))<<48)| \
(((ulong64)((y)[2] & 255))<<40)|(((ulong64)((y)[3] & 255))<<32)| \
(((ulong64)((y)[4] & 255))<<24)|(((ulong64)((y)[5] & 255))<<16)| \
(((ulong64)((y)[6] & 255))<<8)| (((ulong64)((y)[7] & 255))); } while(0)
#else /* 64-bit words then */
#define STORE32H(x, y) \
do { ulong32 ttt = (x); XMEMCPY(y, &ttt, 4); } while(0)
#define LOAD32H(x, y) \
do { XMEMCPY(&(x), y, 4); x &= 0xFFFFFFFF; } while(0)
#define STORE64H(x, y) \
do { ulong64 ttt = (x); XMEMCPY(y, &ttt, 8); } while(0)
#define LOAD64H(x, y) \
do { XMEMCPY(&(x), y, 8); } while(0)
#endif /* ENDIAN_64BITWORD */
#endif /* ENDIAN_BIG */
#define BSWAP(x) ( ((x>>24)&0x000000FFUL) | ((x<<24)&0xFF000000UL) | \
((x>>8)&0x0000FF00UL) | ((x<<8)&0x00FF0000UL) )
/* 32-bit Rotates */
#if defined(_MSC_VER)
#define LTC_ROx_BUILTIN
/* instrinsic rotate */
#include <stdlib.h>
#pragma intrinsic(_rotr,_rotl)
#define ROR(x,n) _rotr(x,n)
#define ROL(x,n) _rotl(x,n)
#define RORc(x,n) ROR(x,n)
#define ROLc(x,n) ROL(x,n)
#elif defined(LTC_HAVE_ROTATE_BUILTIN)
#define LTC_ROx_BUILTIN
#define ROR(x,n) __builtin_rotateright32(x,n)
#define ROL(x,n) __builtin_rotateleft32(x,n)
#define ROLc(x,n) ROL(x,n)
#define RORc(x,n) ROR(x,n)
#elif !defined(__STRICT_ANSI__) && defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC) && !defined(LTC_NO_ASM)
#define LTC_ROx_ASM
static inline ulong32 ROL(ulong32 word, int i)
{
asm ("roll %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
static inline ulong32 ROR(ulong32 word, int i)
{
asm ("rorl %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
#ifndef LTC_NO_ROLC
#define ROLc(word,i) ({ \
ulong32 ROLc_tmp = (word); \
__asm__ ("roll %2, %0" : \
"=r" (ROLc_tmp) : \
"0" (ROLc_tmp), \
"I" (i)); \
ROLc_tmp; \
})
#define RORc(word,i) ({ \
ulong32 RORc_tmp = (word); \
__asm__ ("rorl %2, %0" : \
"=r" (RORc_tmp) : \
"0" (RORc_tmp), \
"I" (i)); \
RORc_tmp; \
})
#else
#define ROLc ROL
#define RORc ROR
#endif
#elif !defined(__STRICT_ANSI__) && defined(LTC_PPC32)
#define LTC_ROx_ASM
static inline ulong32 ROL(ulong32 word, int i)
{
asm ("rotlw %0,%0,%2"
:"=r" (word)
:"0" (word),"r" (i));
return word;
}
static inline ulong32 ROR(ulong32 word, int i)
{
asm ("rotlw %0,%0,%2"
:"=r" (word)
:"0" (word),"r" (32-i));
return word;
}
#ifndef LTC_NO_ROLC
static inline ulong32 ROLc(ulong32 word, const int i)
{
asm ("rotlwi %0,%0,%2"
:"=r" (word)
:"0" (word),"I" (i));
return word;
}
static inline ulong32 RORc(ulong32 word, const int i)
{
asm ("rotrwi %0,%0,%2"
:"=r" (word)
:"0" (word),"I" (i));
return word;
}
#else
#define ROLc ROL
#define RORc ROR
#endif
#else
/* rotates the hard way */
#define ROL(x, y) ( (((ulong32)(x)<<(ulong32)((y)&31)) | (((ulong32)(x)&0xFFFFFFFFUL)>>(ulong32)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
#define ROR(x, y) ( ((((ulong32)(x)&0xFFFFFFFFUL)>>(ulong32)((y)&31)) | ((ulong32)(x)<<(ulong32)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
#define ROLc(x, y) ( (((ulong32)(x)<<(ulong32)((y)&31)) | (((ulong32)(x)&0xFFFFFFFFUL)>>(ulong32)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
#define RORc(x, y) ( ((((ulong32)(x)&0xFFFFFFFFUL)>>(ulong32)((y)&31)) | ((ulong32)(x)<<(ulong32)((32-((y)&31))&31))) & 0xFFFFFFFFUL)
#endif
/* 64-bit Rotates */
#if defined(_MSC_VER)
/* instrinsic rotate */
#include <stdlib.h>
#pragma intrinsic(_rotr64,_rotr64)
#define ROR64(x,n) _rotr64(x,n)
#define ROL64(x,n) _rotl64(x,n)
#define ROR64c(x,n) ROR64(x,n)
#define ROL64c(x,n) ROL64(x,n)
#elif defined(LTC_HAVE_ROTATE_BUILTIN)
#define ROR64(x,n) __builtin_rotateright64(x,n)
#define ROL64(x,n) __builtin_rotateleft64(x,n)
#define ROR64c(x,n) ROR64(x,n)
#define ROL64c(x,n) ROL64(x,n)
#elif !defined(__STRICT_ANSI__) && defined(__GNUC__) && defined(__x86_64__) && !defined(INTEL_CC) && !defined(LTC_NO_ASM)
static inline ulong64 ROL64(ulong64 word, int i)
{
asm("rolq %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
static inline ulong64 ROR64(ulong64 word, int i)
{
asm("rorq %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
#ifndef LTC_NO_ROLC
#define ROL64c(word,i) ({ \
ulong64 ROL64c_tmp = word; \
__asm__ ("rolq %2, %0" : \
"=r" (ROL64c_tmp) : \
"0" (ROL64c_tmp), \
"J" (i)); \
ROL64c_tmp; \
})
#define ROR64c(word,i) ({ \
ulong64 ROR64c_tmp = word; \
__asm__ ("rorq %2, %0" : \
"=r" (ROR64c_tmp) : \
"0" (ROR64c_tmp), \
"J" (i)); \
ROR64c_tmp; \
})
#else /* LTC_NO_ROLC */
#define ROL64c ROL64
#define ROR64c ROR64
#endif
#else /* Not x86_64 */
#define ROL64(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>(((ulong64)64-((y)&63))&63))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<(((ulong64)64-((y)&63))&63))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROL64c(x, y) \
( (((x)<<((ulong64)(y)&63)) | \
(((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>(((ulong64)64-((y)&63))&63))) & CONST64(0xFFFFFFFFFFFFFFFF))
#define ROR64c(x, y) \
( ((((x)&CONST64(0xFFFFFFFFFFFFFFFF))>>((ulong64)(y)&CONST64(63))) | \
((x)<<(((ulong64)64-((y)&63))&63))) & CONST64(0xFFFFFFFFFFFFFFFF))
#endif
#ifndef MAX
#define MAX(x, y) ( ((x)>(y))?(x):(y) )
#endif
#ifndef MIN
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
#endif
#ifndef LTC_UNUSED_PARAM
#define LTC_UNUSED_PARAM(x) (void)(x)
#endif
/* there is no snprintf before Visual C++ 2015 */
#if defined(_MSC_VER) && _MSC_VER < 1900
#define snprintf _snprintf
#endif

View File

@@ -0,0 +1,519 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/** math functions **/
#define LTC_MP_LT -1
#define LTC_MP_EQ 0
#define LTC_MP_GT 1
#define LTC_MP_NO 0
#define LTC_MP_YES 1
#ifndef LTC_MECC
typedef void ecc_point;
#endif
#ifndef LTC_MRSA
typedef void rsa_key;
#endif
#ifndef LTC_MILLER_RABIN_REPS
/* Number of rounds of the Miller-Rabin test
* "Reasonable values of reps are between 15 and 50." c.f. gmp doc of mpz_probab_prime_p()
* As of https://security.stackexchange.com/a/4546 we should use 40 rounds */
#define LTC_MILLER_RABIN_REPS 40
#endif
int radix_to_bin(const void *in, int radix, void *out, unsigned long *len);
/** math descriptor */
typedef struct {
/** Name of the math provider */
const char *name;
/** Bits per digit, amount of bits must fit in an unsigned long */
int bits_per_digit;
/* ---- init/deinit functions ---- */
/** initialize a bignum
@param a The number to initialize
@return CRYPT_OK on success
*/
int (*init)(void **a);
/** init copy
@param dst The number to initialize and write to
@param src The number to copy from
@return CRYPT_OK on success
*/
int (*init_copy)(void **dst, void *src);
/** deinit
@param a The number to free
@return CRYPT_OK on success
*/
void (*deinit)(void *a);
/* ---- data movement ---- */
/** negate
@param src The number to negate
@param dst The destination
@return CRYPT_OK on success
*/
int (*neg)(void *src, void *dst);
/** copy
@param src The number to copy from
@param dst The number to write to
@return CRYPT_OK on success
*/
int (*copy)(void *src, void *dst);
/* ---- trivial low level functions ---- */
/** set small constant
@param a Number to write to
@param n Source upto bits_per_digit (actually meant for very small constants)
@return CRYPT_OK on success
*/
int (*set_int)(void *a, ltc_mp_digit n);
/** get small constant
@param a Small number to read,
only fetches up to bits_per_digit from the number
@return The lower bits_per_digit of the integer (unsigned)
*/
unsigned long (*get_int)(void *a);
/** get digit n
@param a The number to read from
@param n The number of the digit to fetch
@return The bits_per_digit sized n'th digit of a
*/
ltc_mp_digit (*get_digit)(void *a, int n);
/** Get the number of digits that represent the number
@param a The number to count
@return The number of digits used to represent the number
*/
int (*get_digit_count)(void *a);
/** compare two integers
@param a The left side integer
@param b The right side integer
@return LTC_MP_LT if a < b,
LTC_MP_GT if a > b and
LTC_MP_EQ otherwise. (signed comparison)
*/
int (*compare)(void *a, void *b);
/** compare against int
@param a The left side integer
@param b The right side integer (upto bits_per_digit)
@return LTC_MP_LT if a < b,
LTC_MP_GT if a > b and
LTC_MP_EQ otherwise. (signed comparison)
*/
int (*compare_d)(void *a, ltc_mp_digit n);
/** Count the number of bits used to represent the integer
@param a The integer to count
@return The number of bits required to represent the integer
*/
int (*count_bits)(void * a);
/** Count the number of LSB bits which are zero
@param a The integer to count
@return The number of contiguous zero LSB bits
*/
int (*count_lsb_bits)(void *a);
/** Compute a power of two
@param a The integer to store the power in
@param n The power of two you want to store (a = 2^n)
@return CRYPT_OK on success
*/
int (*twoexpt)(void *a , int n);
/* ---- radix conversions ---- */
/** read ascii string
@param a The integer to store into
@param str The string to read
@param radix The radix the integer has been represented in (2-64)
@return CRYPT_OK on success
*/
int (*read_radix)(void *a, const char *str, int radix);
/** write number to string
@param a The integer to store
@param str The destination for the string
@param radix The radix the integer is to be represented in (2-64)
@return CRYPT_OK on success
*/
int (*write_radix)(void *a, char *str, int radix);
/** get size as unsigned char string
@param a The integer to get the size (when stored in array of octets)
@return The length of the integer in octets
*/
unsigned long (*unsigned_size)(void *a);
/** store an integer as an array of octets
@param src The integer to store
@param dst The buffer to store the integer in
@return CRYPT_OK on success
*/
int (*unsigned_write)(void *src, unsigned char *dst);
/** read an array of octets and store as integer
@param dst The integer to load
@param src The array of octets
@param len The number of octets
@return CRYPT_OK on success
*/
int (*unsigned_read)( void *dst,
unsigned char *src,
unsigned long len);
/* ---- basic math ---- */
/** add two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int (*add)(void *a, void *b, void *c);
/** add two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a + b"
@return CRYPT_OK on success
*/
int (*addi)(void *a, ltc_mp_digit b, void *c);
/** subtract two integers
@param a The first source integer
@param b The second source integer
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int (*sub)(void *a, void *b, void *c);
/** subtract two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a - b"
@return CRYPT_OK on success
*/
int (*subi)(void *a, ltc_mp_digit b, void *c);
/** multiply two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int (*mul)(void *a, void *b, void *c);
/** multiply two integers
@param a The first source integer
@param b The second source integer
(single digit of upto bits_per_digit in length)
@param c The destination of "a * b"
@return CRYPT_OK on success
*/
int (*muli)(void *a, ltc_mp_digit b, void *c);
/** Square an integer
@param a The integer to square
@param b The destination
@return CRYPT_OK on success
*/
int (*sqr)(void *a, void *b);
/** Square root (mod prime)
@param a The integer to compute square root mod prime from
@param b The prime
@param c The destination
@return CRYPT_OK on success
*/
int (*sqrtmod_prime)(void *a, void *b, void *c);
/** Divide an integer
@param a The dividend
@param b The divisor
@param c The quotient (can be NULL to signify don't care)
@param d The remainder (can be NULL to signify don't care)
@return CRYPT_OK on success
*/
int (*mpdiv)(void *a, void *b, void *c, void *d);
/** divide by two
@param a The integer to divide (shift right)
@param b The destination
@return CRYPT_OK on success
*/
int (*div_2)(void *a, void *b);
/** Get remainder (small value)
@param a The integer to reduce
@param b The modulus (upto bits_per_digit in length)
@param c The destination for the residue
@return CRYPT_OK on success
*/
int (*modi)(void *a, ltc_mp_digit b, ltc_mp_digit *c);
/** gcd
@param a The first integer
@param b The second integer
@param c The destination for (a, b)
@return CRYPT_OK on success
*/
int (*gcd)(void *a, void *b, void *c);
/** lcm
@param a The first integer
@param b The second integer
@param c The destination for [a, b]
@return CRYPT_OK on success
*/
int (*lcm)(void *a, void *b, void *c);
/** Modular multiplication
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a*b mod c)
@return CRYPT_OK on success
*/
int (*mulmod)(void *a, void *b, void *c, void *d);
/** Modular squaring
@param a The first source
@param b The modulus
@param c The destination (a*a mod b)
@return CRYPT_OK on success
*/
int (*sqrmod)(void *a, void *b, void *c);
/** Modular inversion
@param a The value to invert
@param b The modulus
@param c The destination (1/a mod b)
@return CRYPT_OK on success
*/
int (*invmod)(void *, void *, void *);
/* ---- reduction ---- */
/** setup Montgomery
@param a The modulus
@param b The destination for the reduction digit
@return CRYPT_OK on success
*/
int (*montgomery_setup)(void *a, void **b);
/** get normalization value
@param a The destination for the normalization value
@param b The modulus
@return CRYPT_OK on success
*/
int (*montgomery_normalization)(void *a, void *b);
/** reduce a number
@param a The number [and dest] to reduce
@param b The modulus
@param c The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
int (*montgomery_reduce)(void *a, void *b, void *c);
/** clean up (frees memory)
@param a The value "b" from montgomery_setup()
@return CRYPT_OK on success
*/
void (*montgomery_deinit)(void *a);
/* ---- exponentiation ---- */
/** Modular exponentiation
@param a The base integer
@param b The power (can be negative) integer
@param c The modulus integer
@param d The destination
@return CRYPT_OK on success
*/
int (*exptmod)(void *a, void *b, void *c, void *d);
/** Primality testing
@param a The integer to test
@param b The number of Miller-Rabin tests that shall be executed
@param c The destination of the result (FP_YES if prime)
@return CRYPT_OK on success
*/
int (*isprime)(void *a, int b, int *c);
/* ---- (optional) ecc point math ---- */
/** ECC GF(p) point multiplication (from the NIST curves)
@param k The integer to multiply the point by
@param G The point to multiply
@param R The destination for kG
@param a ECC curve parameter a
@param modulus The modulus for the field
@param map Boolean indicated whether to map back to affine or not
(can be ignored if you work in affine only)
@return CRYPT_OK on success
*/
int (*ecc_ptmul)( void *k,
const ecc_point *G,
ecc_point *R,
void *a,
void *modulus,
int map);
/** ECC GF(p) point addition
@param P The first point
@param Q The second point
@param R The destination of P + Q
@param ma The curve parameter "a" in montgomery form
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int (*ecc_ptadd)(const ecc_point *P,
const ecc_point *Q,
ecc_point *R,
void *ma,
void *modulus,
void *mp);
/** ECC GF(p) point double
@param P The first point
@param R The destination of 2P
@param ma The curve parameter "a" in montgomery form
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
int (*ecc_ptdbl)(const ecc_point *P,
ecc_point *R,
void *ma,
void *modulus,
void *mp);
/** ECC mapping from projective to affine,
currently uses (x,y,z) => (x/z^2, y/z^3, 1)
@param P The point to map
@param modulus The modulus
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
@remark The mapping can be different but keep in mind a
ecc_point only has three integers (x,y,z) so if
you use a different mapping you have to make it fit.
*/
int (*ecc_map)(ecc_point *P, void *modulus, void *mp);
/** Computes kA*A + kB*B = C using Shamir's Trick
@param A First point to multiply
@param kA What to multiple A by
@param B Second point to multiply
@param kB What to multiple B by
@param C [out] Destination point (can overlap with A or B)
@param ma The curve parameter "a" in montgomery form
@param modulus Modulus for curve
@return CRYPT_OK on success
*/
int (*ecc_mul2add)(const ecc_point *A, void *kA,
const ecc_point *B, void *kB,
ecc_point *C,
void *ma,
void *modulus);
/* ---- (optional) rsa optimized math (for internal CRT) ---- */
/** RSA Key Generation
@param prng An active PRNG state
@param wprng The index of the PRNG desired
@param size The size of the key in octets
@param e The "e" value (public key).
e==65537 is a good choice
@param key [out] Destination of a newly created private key pair
@return CRYPT_OK if successful, upon error all allocated ram is freed
*/
int (*rsa_keygen)(prng_state *prng,
int wprng,
int size,
long e,
rsa_key *key);
/** RSA exponentiation
@param in The octet array representing the base
@param inlen The length of the input
@param out The destination (to be stored in an octet array format)
@param outlen The length of the output buffer and the resulting size
(zero padded to the size of the modulus)
@param which PK_PUBLIC for public RSA and PK_PRIVATE for private RSA
@param key The RSA key to use
@return CRYPT_OK on success
*/
int (*rsa_me)(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
const rsa_key *key);
/* ---- basic math continued ---- */
/** Modular addition
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a + b mod c)
@return CRYPT_OK on success
*/
int (*addmod)(void *a, void *b, void *c, void *d);
/** Modular substraction
@param a The first source
@param b The second source
@param c The modulus
@param d The destination (a - b mod c)
@return CRYPT_OK on success
*/
int (*submod)(void *a, void *b, void *c, void *d);
/* ---- misc stuff ---- */
/** Make a pseudo-random mpi
@param a The mpi to make random
@param size The desired length
@return CRYPT_OK on success
*/
int (*rand)(void *a, int size);
} ltc_math_descriptor;
extern ltc_math_descriptor ltc_mp;
int ltc_init_multi(void **a, ...);
void ltc_deinit_multi(void *a, ...);
void ltc_cleanup_multi(void **a, ...);
#ifdef LTM_DESC
extern const ltc_math_descriptor ltm_desc;
#endif
#ifdef TFM_DESC
extern const ltc_math_descriptor tfm_desc;
#endif
#ifdef GMP_DESC
extern const ltc_math_descriptor gmp_desc;
#endif

View File

@@ -0,0 +1,175 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* ---- LTC_BASE64 Routines ---- */
#ifdef LTC_BASE64
int base64_encode(const unsigned char *in, unsigned long inlen,
char *out, unsigned long *outlen);
int base64_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int base64_strict_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int base64_sane_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
#endif
#ifdef LTC_BASE64_URL
int base64url_encode(const unsigned char *in, unsigned long inlen,
char *out, unsigned long *outlen);
int base64url_strict_encode(const unsigned char *in, unsigned long inlen,
char *out, unsigned long *outlen);
int base64url_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int base64url_strict_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int base64url_sane_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
#endif
/* ---- BASE32 Routines ---- */
#ifdef LTC_BASE32
typedef enum {
BASE32_RFC4648 = 0,
BASE32_BASE32HEX = 1,
BASE32_ZBASE32 = 2,
BASE32_CROCKFORD = 3
} base32_alphabet;
int base32_encode(const unsigned char *in, unsigned long inlen,
char *out, unsigned long *outlen,
base32_alphabet id);
int base32_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
base32_alphabet id);
#endif
/* ---- BASE16 Routines ---- */
#ifdef LTC_BASE16
int base16_encode(const unsigned char *in, unsigned long inlen,
char *out, unsigned long *outlen,
unsigned int options);
int base16_decode(const char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
#endif
#ifdef LTC_BCRYPT
int bcrypt_pbkdf_openbsd(const void *secret, unsigned long secret_len,
const unsigned char *salt, unsigned long salt_len,
unsigned int rounds, int hash_idx,
unsigned char *out, unsigned long *outlen);
#endif
/* ===> LTC_HKDF -- RFC5869 HMAC-based Key Derivation Function <=== */
#ifdef LTC_HKDF
int hkdf_test(void);
int hkdf_extract(int hash_idx,
const unsigned char *salt, unsigned long saltlen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int hkdf_expand(int hash_idx,
const unsigned char *info, unsigned long infolen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long outlen);
int hkdf(int hash_idx,
const unsigned char *salt, unsigned long saltlen,
const unsigned char *info, unsigned long infolen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long outlen);
#endif /* LTC_HKDF */
/* ---- MEM routines ---- */
int mem_neq(const void *a, const void *b, size_t len);
void zeromem(volatile void *out, size_t outlen);
void burn_stack(unsigned long len);
const char *error_to_string(int err);
extern const char *crypt_build_settings;
/* ---- HMM ---- */
int crypt_fsa(void *mp, ...);
/* ---- Dynamic language support ---- */
int crypt_get_constant(const char* namein, int *valueout);
int crypt_list_all_constants(char *names_list, unsigned int *names_list_size);
int crypt_get_size(const char* namein, unsigned int *sizeout);
int crypt_list_all_sizes(char *names_list, unsigned int *names_list_size);
#ifdef LTM_DESC
LTC_DEPRECATED(crypt_mp_init) void init_LTM(void);
#endif
#ifdef TFM_DESC
LTC_DEPRECATED(crypt_mp_init) void init_TFM(void);
#endif
#ifdef GMP_DESC
LTC_DEPRECATED(crypt_mp_init) void init_GMP(void);
#endif
int crypt_mp_init(const char* mpi);
#ifdef LTC_ADLER32
typedef struct adler32_state_s
{
unsigned short s[2];
} adler32_state;
void adler32_init(adler32_state *ctx);
void adler32_update(adler32_state *ctx, const unsigned char *input, unsigned long length);
void adler32_finish(const adler32_state *ctx, void *hash, unsigned long size);
int adler32_test(void);
#endif
#ifdef LTC_CRC32
typedef struct crc32_state_s
{
ulong32 crc;
} crc32_state;
void crc32_init(crc32_state *ctx);
void crc32_update(crc32_state *ctx, const unsigned char *input, unsigned long length);
void crc32_finish(const crc32_state *ctx, void *hash, unsigned long size);
int crc32_test(void);
#endif
#ifdef LTC_PADDING
enum padding_type {
LTC_PAD_PKCS7 = 0x0000U,
#ifdef LTC_RNG_GET_BYTES
LTC_PAD_ISO_10126 = 0x1000U,
#endif
LTC_PAD_ANSI_X923 = 0x2000U,
LTC_PAD_ONE_AND_ZERO = 0x8000U,
LTC_PAD_ZERO = 0x9000U,
LTC_PAD_ZERO_ALWAYS = 0xA000U,
};
int padding_pad(unsigned char *data, unsigned long length, unsigned long* padded_length, unsigned long mode);
int padding_depad(const unsigned char *data, unsigned long *length, unsigned long mode);
#endif /* LTC_PADDING */
#ifdef LTC_SSH
typedef enum ssh_data_type_ {
LTC_SSHDATA_EOL,
LTC_SSHDATA_BYTE,
LTC_SSHDATA_BOOLEAN,
LTC_SSHDATA_UINT32,
LTC_SSHDATA_UINT64,
LTC_SSHDATA_STRING,
LTC_SSHDATA_MPINT,
LTC_SSHDATA_NAMELIST,
} ssh_data_type;
/* VA list handy helpers with tuples of <type, data> */
int ssh_encode_sequence_multi(unsigned char *out, unsigned long *outlen, ...);
int ssh_decode_sequence_multi(const unsigned char *in, unsigned long *inlen, ...);
#endif /* LTC_SSH */
int compare_testvector(const void* is, const unsigned long is_len, const void* should, const unsigned long should_len, const char* what, int which);

View File

@@ -0,0 +1,781 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* ---- NUMBER THEORY ---- */
enum public_key_type {
/* Refers to the public key */
PK_PUBLIC = 0x0000,
/* Refers to the private key */
PK_PRIVATE = 0x0001,
/* Indicates standard output formats that can be read e.g. by OpenSSL or GnuTLS */
PK_STD = 0x1000,
/* Indicates compressed public ECC key */
PK_COMPRESSED = 0x2000,
/* Indicates ECC key with the curve specified by OID */
PK_CURVEOID = 0x4000
};
int rand_prime(void *N, long len, prng_state *prng, int wprng);
/* ---- RSA ---- */
#ifdef LTC_MRSA
/** RSA PKCS style key */
typedef struct Rsa_key {
/** Type of key, PK_PRIVATE or PK_PUBLIC */
int type;
/** The public exponent */
void *e;
/** The private exponent */
void *d;
/** The modulus */
void *N;
/** The p factor of N */
void *p;
/** The q factor of N */
void *q;
/** The 1/q mod p CRT param */
void *qP;
/** The d mod (p - 1) CRT param */
void *dP;
/** The d mod (q - 1) CRT param */
void *dQ;
} rsa_key;
int rsa_make_key(prng_state *prng, int wprng, int size, long e, rsa_key *key);
int rsa_get_size(const rsa_key *key);
int rsa_exptmod(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
const rsa_key *key);
void rsa_free(rsa_key *key);
/* These use PKCS #1 v2.0 padding */
#define rsa_encrypt_key(in, inlen, out, outlen, lparam, lparamlen, prng, prng_idx, hash_idx, key) \
rsa_encrypt_key_ex(in, inlen, out, outlen, lparam, lparamlen, prng, prng_idx, hash_idx, LTC_PKCS_1_OAEP, key)
#define rsa_decrypt_key(in, inlen, out, outlen, lparam, lparamlen, hash_idx, stat, key) \
rsa_decrypt_key_ex(in, inlen, out, outlen, lparam, lparamlen, hash_idx, LTC_PKCS_1_OAEP, stat, key)
#define rsa_sign_hash(in, inlen, out, outlen, prng, prng_idx, hash_idx, saltlen, key) \
rsa_sign_hash_ex(in, inlen, out, outlen, LTC_PKCS_1_PSS, prng, prng_idx, hash_idx, saltlen, key)
#define rsa_verify_hash(sig, siglen, hash, hashlen, hash_idx, saltlen, stat, key) \
rsa_verify_hash_ex(sig, siglen, hash, hashlen, LTC_PKCS_1_PSS, hash_idx, saltlen, stat, key)
#define rsa_sign_saltlen_get_max(hash_idx, key) \
rsa_sign_saltlen_get_max_ex(LTC_PKCS_1_PSS, hash_idx, key)
/* These can be switched between PKCS #1 v2.x and PKCS #1 v1.5 paddings */
int rsa_encrypt_key_ex(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
prng_state *prng, int prng_idx,
int hash_idx, int padding,
const rsa_key *key);
int rsa_decrypt_key_ex(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const unsigned char *lparam, unsigned long lparamlen,
int hash_idx, int padding,
int *stat, const rsa_key *key);
int rsa_sign_hash_ex(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
int padding,
prng_state *prng, int prng_idx,
int hash_idx, unsigned long saltlen,
const rsa_key *key);
int rsa_verify_hash_ex(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int padding,
int hash_idx, unsigned long saltlen,
int *stat, const rsa_key *key);
int rsa_sign_saltlen_get_max_ex(int padding, int hash_idx, const rsa_key *key);
/* PKCS #1 import/export */
int rsa_export(unsigned char *out, unsigned long *outlen, int type, const rsa_key *key);
int rsa_import(const unsigned char *in, unsigned long inlen, rsa_key *key);
int rsa_import_x509(const unsigned char *in, unsigned long inlen, rsa_key *key);
int rsa_import_pkcs8(const unsigned char *in, unsigned long inlen,
const void *passwd, unsigned long passwdlen, rsa_key *key);
int rsa_set_key(const unsigned char *N, unsigned long Nlen,
const unsigned char *e, unsigned long elen,
const unsigned char *d, unsigned long dlen,
rsa_key *key);
int rsa_set_factors(const unsigned char *p, unsigned long plen,
const unsigned char *q, unsigned long qlen,
rsa_key *key);
int rsa_set_crt_params(const unsigned char *dP, unsigned long dPlen,
const unsigned char *dQ, unsigned long dQlen,
const unsigned char *qP, unsigned long qPlen,
rsa_key *key);
#endif
/* ---- DH Routines ---- */
#ifdef LTC_MDH
typedef struct {
int type;
void *x;
void *y;
void *base;
void *prime;
} dh_key;
int dh_get_groupsize(const dh_key *key);
int dh_export(unsigned char *out, unsigned long *outlen, int type, const dh_key *key);
int dh_import(const unsigned char *in, unsigned long inlen, dh_key *key);
int dh_set_pg(const unsigned char *p, unsigned long plen,
const unsigned char *g, unsigned long glen,
dh_key *key);
int dh_set_pg_dhparam(const unsigned char *dhparam, unsigned long dhparamlen, dh_key *key);
int dh_set_pg_groupsize(int groupsize, dh_key *key);
int dh_set_key(const unsigned char *in, unsigned long inlen, int type, dh_key *key);
int dh_generate_key(prng_state *prng, int wprng, dh_key *key);
int dh_shared_secret(const dh_key *private_key, const dh_key *public_key,
unsigned char *out, unsigned long *outlen);
void dh_free(dh_key *key);
int dh_export_key(void *out, unsigned long *outlen, int type, const dh_key *key);
#endif /* LTC_MDH */
/* ---- ECC Routines ---- */
#ifdef LTC_MECC
/* size of our temp buffers for exported keys */
#define ECC_BUF_SIZE 256
/* max private key size */
#define ECC_MAXSIZE 66
/** Structure defines a GF(p) curve */
typedef struct {
/** The prime that defines the field the curve is in (encoded in hex) */
const char *prime;
/** The fields A param (hex) */
const char *A;
/** The fields B param (hex) */
const char *B;
/** The order of the curve (hex) */
const char *order;
/** The x co-ordinate of the base point on the curve (hex) */
const char *Gx;
/** The y co-ordinate of the base point on the curve (hex) */
const char *Gy;
/** The co-factor */
unsigned long cofactor;
/** The OID */
const char *OID;
} ltc_ecc_curve;
/** A point on a ECC curve, stored in Jacbobian format such that (x,y,z) => (x/z^2, y/z^3, 1) when interpretted as affine */
typedef struct {
/** The x co-ordinate */
void *x;
/** The y co-ordinate */
void *y;
/** The z co-ordinate */
void *z;
} ecc_point;
/** ECC key's domain parameters */
typedef struct {
/** The size of the curve in octets */
int size;
/** The prime that defines the field the curve is in */
void *prime;
/** The fields A param */
void *A;
/** The fields B param */
void *B;
/** The order of the curve */
void *order;
/** The base point G on the curve */
ecc_point base;
/** The co-factor */
unsigned long cofactor;
/** The OID */
unsigned long oid[16];
unsigned long oidlen;
} ltc_ecc_dp;
/** An ECC key */
typedef struct {
/** Type of key, PK_PRIVATE or PK_PUBLIC */
int type;
/** Structure with domain parameters */
ltc_ecc_dp dp;
/** Structure with the public key */
ecc_point pubkey;
/** The private key */
void *k;
} ecc_key;
/** Formats of ECC signatures */
typedef enum ecc_signature_type_ {
/* ASN.1 encoded, ANSI X9.62 */
LTC_ECCSIG_ANSIX962 = 0x0,
/* raw R, S values */
LTC_ECCSIG_RFC7518 = 0x1,
/* raw R, S, V (+27) values */
LTC_ECCSIG_ETH27 = 0x2,
/* SSH + ECDSA signature format defined by RFC5656 */
LTC_ECCSIG_RFC5656 = 0x3,
} ecc_signature_type;
/** the ECC params provided */
extern const ltc_ecc_curve ltc_ecc_curves[];
void ecc_sizes(int *low, int *high);
int ecc_get_size(const ecc_key *key);
int ecc_find_curve(const char* name_or_oid, const ltc_ecc_curve** cu);
int ecc_set_curve(const ltc_ecc_curve *cu, ecc_key *key);
int ecc_generate_key(prng_state *prng, int wprng, ecc_key *key);
int ecc_set_key(const unsigned char *in, unsigned long inlen, int type, ecc_key *key);
int ecc_get_key(unsigned char *out, unsigned long *outlen, int type, const ecc_key *key);
int ecc_get_oid_str(char *out, unsigned long *outlen, const ecc_key *key);
int ecc_make_key(prng_state *prng, int wprng, int keysize, ecc_key *key);
int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_curve *cu);
void ecc_free(ecc_key *key);
int ecc_export(unsigned char *out, unsigned long *outlen, int type, const ecc_key *key);
int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key);
int ecc_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, const ltc_ecc_curve *cu);
int ecc_ansi_x963_export(const ecc_key *key, unsigned char *out, unsigned long *outlen);
int ecc_ansi_x963_import(const unsigned char *in, unsigned long inlen, ecc_key *key);
int ecc_ansi_x963_import_ex(const unsigned char *in, unsigned long inlen, ecc_key *key, const ltc_ecc_curve *cu);
int ecc_export_openssl(unsigned char *out, unsigned long *outlen, int type, const ecc_key *key);
int ecc_import_openssl(const unsigned char *in, unsigned long inlen, ecc_key *key);
int ecc_import_pkcs8(const unsigned char *in, unsigned long inlen, const void *pwd, unsigned long pwdlen, ecc_key *key);
int ecc_import_x509(const unsigned char *in, unsigned long inlen, ecc_key *key);
int ecc_shared_secret(const ecc_key *private_key, const ecc_key *public_key,
unsigned char *out, unsigned long *outlen);
int ecc_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
const ecc_key *key);
int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const ecc_key *key);
#define ecc_sign_hash_rfc7518(in_, inlen_, out_, outlen_, prng_, wprng_, key_) \
ecc_sign_hash_ex(in_, inlen_, out_, outlen_, prng_, wprng_, LTC_ECCSIG_RFC7518, NULL, key_)
#define ecc_sign_hash(in_, inlen_, out_, outlen_, prng_, wprng_, key_) \
ecc_sign_hash_ex(in_, inlen_, out_, outlen_, prng_, wprng_, LTC_ECCSIG_ANSIX962, NULL, key_)
#define ecc_verify_hash_rfc7518(sig_, siglen_, hash_, hashlen_, stat_, key_) \
ecc_verify_hash_ex(sig_, siglen_, hash_, hashlen_, LTC_ECCSIG_RFC7518, stat_, key_)
#define ecc_verify_hash(sig_, siglen_, hash_, hashlen_, stat_, key_) \
ecc_verify_hash_ex(sig_, siglen_, hash_, hashlen_, LTC_ECCSIG_ANSIX962, stat_, key_)
int ecc_sign_hash_ex(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_signature_type sigformat,
int *recid, const ecc_key *key);
int ecc_verify_hash_ex(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
ecc_signature_type sigformat, int *stat, const ecc_key *key);
int ecc_recover_key(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int recid, ecc_signature_type sigformat, ecc_key *key);
#endif
#ifdef LTC_CURVE25519
typedef struct {
/** The key type, PK_PRIVATE or PK_PUBLIC */
enum public_key_type type;
/** The PK-algorithm, PKA_ED25519 or PKA_X25519 */
/** This was supposed to be:
* enum public_key_algorithms algo;
* but that enum is now in tomcrypt_private.h
*/
int algo;
/** The private key */
unsigned char priv[32];
/** The public key */
unsigned char pub[32];
} curve25519_key;
/** Ed25519 Signature API */
int ed25519_make_key(prng_state *prng, int wprng, curve25519_key *key);
int ed25519_export( unsigned char *out, unsigned long *outlen,
int which,
const curve25519_key *key);
int ed25519_import(const unsigned char *in, unsigned long inlen, curve25519_key *key);
int ed25519_import_raw(const unsigned char *in, unsigned long inlen, int which, curve25519_key *key);
int ed25519_import_x509(const unsigned char *in, unsigned long inlen, curve25519_key *key);
int ed25519_import_pkcs8(const unsigned char *in, unsigned long inlen,
const void *pwd, unsigned long pwdlen,
curve25519_key *key);
int ed25519_sign(const unsigned char *msg, unsigned long msglen,
unsigned char *sig, unsigned long *siglen,
const curve25519_key *private_key);
int ed25519_verify(const unsigned char *msg, unsigned long msglen,
const unsigned char *sig, unsigned long siglen,
int *stat, const curve25519_key *public_key);
/** X25519 Key-Exchange API */
int x25519_make_key(prng_state *prng, int wprng, curve25519_key *key);
int x25519_export( unsigned char *out, unsigned long *outlen,
int which,
const curve25519_key *key);
int x25519_import(const unsigned char *in, unsigned long inlen, curve25519_key *key);
int x25519_import_raw(const unsigned char *in, unsigned long inlen, int which, curve25519_key *key);
int x25519_import_x509(const unsigned char *in, unsigned long inlen, curve25519_key *key);
int x25519_import_pkcs8(const unsigned char *in, unsigned long inlen,
const void *pwd, unsigned long pwdlen,
curve25519_key *key);
int x25519_shared_secret(const curve25519_key *private_key,
const curve25519_key *public_key,
unsigned char *out, unsigned long *outlen);
#endif /* LTC_CURVE25519 */
#ifdef LTC_MDSA
/* Max diff between group and modulus size in bytes */
#define LTC_MDSA_DELTA 512
/* Max DSA group size in bytes (default allows 4k-bit groups) */
#define LTC_MDSA_MAX_GROUP 512
/** DSA key structure */
typedef struct {
/** The key type, PK_PRIVATE or PK_PUBLIC */
int type;
/** The order of the sub-group used in octets */
int qord;
/** The generator */
void *g;
/** The prime used to generate the sub-group */
void *q;
/** The large prime that generats the field the contains the sub-group */
void *p;
/** The private key */
void *x;
/** The public key */
void *y;
} dsa_key;
int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key);
int dsa_set_pqg(const unsigned char *p, unsigned long plen,
const unsigned char *q, unsigned long qlen,
const unsigned char *g, unsigned long glen,
dsa_key *key);
int dsa_set_pqg_dsaparam(const unsigned char *dsaparam, unsigned long dsaparamlen, dsa_key *key);
int dsa_generate_pqg(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key);
int dsa_set_key(const unsigned char *in, unsigned long inlen, int type, dsa_key *key);
int dsa_generate_key(prng_state *prng, int wprng, dsa_key *key);
void dsa_free(dsa_key *key);
int dsa_sign_hash_raw(const unsigned char *in, unsigned long inlen,
void *r, void *s,
prng_state *prng, int wprng, const dsa_key *key);
int dsa_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, const dsa_key *key);
int dsa_verify_hash_raw( void *r, void *s,
const unsigned char *hash, unsigned long hashlen,
int *stat, const dsa_key *key);
int dsa_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, const dsa_key *key);
int dsa_encrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash,
const dsa_key *key);
int dsa_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
const dsa_key *key);
int dsa_import(const unsigned char *in, unsigned long inlen, dsa_key *key);
int dsa_export(unsigned char *out, unsigned long *outlen, int type, const dsa_key *key);
int dsa_verify_key(const dsa_key *key, int *stat);
int dsa_shared_secret(void *private_key, void *base,
const dsa_key *public_key,
unsigned char *out, unsigned long *outlen);
#endif /* LTC_MDSA */
#ifdef LTC_DER
/* DER handling */
typedef enum ltc_asn1_type_ {
/* 0 */
LTC_ASN1_EOL,
LTC_ASN1_BOOLEAN,
LTC_ASN1_INTEGER,
LTC_ASN1_SHORT_INTEGER,
LTC_ASN1_BIT_STRING,
/* 5 */
LTC_ASN1_OCTET_STRING,
LTC_ASN1_NULL,
LTC_ASN1_OBJECT_IDENTIFIER,
LTC_ASN1_IA5_STRING,
LTC_ASN1_PRINTABLE_STRING,
/* 10 */
LTC_ASN1_UTF8_STRING,
LTC_ASN1_UTCTIME,
LTC_ASN1_CHOICE,
LTC_ASN1_SEQUENCE,
LTC_ASN1_SET,
/* 15 */
LTC_ASN1_SETOF,
LTC_ASN1_RAW_BIT_STRING,
LTC_ASN1_TELETEX_STRING,
LTC_ASN1_GENERALIZEDTIME,
LTC_ASN1_CUSTOM_TYPE,
} ltc_asn1_type;
typedef enum {
LTC_ASN1_CL_UNIVERSAL = 0x0,
LTC_ASN1_CL_APPLICATION = 0x1,
LTC_ASN1_CL_CONTEXT_SPECIFIC = 0x2,
LTC_ASN1_CL_PRIVATE = 0x3,
} ltc_asn1_class;
typedef enum {
LTC_ASN1_PC_PRIMITIVE = 0x0,
LTC_ASN1_PC_CONSTRUCTED = 0x1,
} ltc_asn1_pc;
/** A LTC ASN.1 list type */
typedef struct ltc_asn1_list_ {
/** The LTC ASN.1 enumerated type identifier */
ltc_asn1_type type;
/** The data to encode or place for decoding */
void *data;
/** The size of the input or resulting output */
unsigned long size;
/** The used flag
* 1. This is used by the CHOICE ASN.1 type to indicate which choice was made
* 2. This is used by the ASN.1 decoder to indicate if an element is used
* 3. This is used by the flexi-decoder to indicate the first byte of the identifier */
int used;
/** Flag used to indicate optional items in ASN.1 sequences */
int optional;
/** ASN.1 identifier */
ltc_asn1_class klass;
ltc_asn1_pc pc;
ulong64 tag;
/** prev/next entry in the list */
struct ltc_asn1_list_ *prev, *next, *child, *parent;
} ltc_asn1_list;
#define LTC_SET_ASN1(list, index, Type, Data, Size) \
do { \
int LTC_MACRO_temp = (index); \
ltc_asn1_list *LTC_MACRO_list = (list); \
LTC_MACRO_list[LTC_MACRO_temp].type = (Type); \
LTC_MACRO_list[LTC_MACRO_temp].data = (void*)(Data); \
LTC_MACRO_list[LTC_MACRO_temp].size = (Size); \
LTC_MACRO_list[LTC_MACRO_temp].used = 0; \
LTC_MACRO_list[LTC_MACRO_temp].optional = 0; \
LTC_MACRO_list[LTC_MACRO_temp].klass = 0; \
LTC_MACRO_list[LTC_MACRO_temp].pc = 0; \
LTC_MACRO_list[LTC_MACRO_temp].tag = 0; \
} while (0)
#define LTC_SET_ASN1_IDENTIFIER(list, index, Class, Pc, Tag) \
do { \
int LTC_MACRO_temp = (index); \
ltc_asn1_list *LTC_MACRO_list = (list); \
LTC_MACRO_list[LTC_MACRO_temp].type = LTC_ASN1_CUSTOM_TYPE; \
LTC_MACRO_list[LTC_MACRO_temp].klass = (Class); \
LTC_MACRO_list[LTC_MACRO_temp].pc = (Pc); \
LTC_MACRO_list[LTC_MACRO_temp].tag = (Tag); \
} while (0)
#define LTC_SET_ASN1_CUSTOM_CONSTRUCTED(list, index, Class, Tag, Data) \
do { \
int LTC_MACRO_temp##__LINE__ = (index); \
LTC_SET_ASN1(list, LTC_MACRO_temp##__LINE__, LTC_ASN1_CUSTOM_TYPE, Data, 1); \
LTC_SET_ASN1_IDENTIFIER(list, LTC_MACRO_temp##__LINE__, Class, LTC_ASN1_PC_CONSTRUCTED, Tag); \
} while (0)
#define LTC_SET_ASN1_CUSTOM_PRIMITIVE(list, index, Class, Tag, Type, Data, Size) \
do { \
int LTC_MACRO_temp##__LINE__ = (index); \
LTC_SET_ASN1(list, LTC_MACRO_temp##__LINE__, LTC_ASN1_CUSTOM_TYPE, Data, Size); \
LTC_SET_ASN1_IDENTIFIER(list, LTC_MACRO_temp##__LINE__, Class, LTC_ASN1_PC_PRIMITIVE, Tag); \
list[LTC_MACRO_temp##__LINE__].used = (int)(Type); \
} while (0)
extern const char* der_asn1_class_to_string_map[];
extern const unsigned long der_asn1_class_to_string_map_sz;
extern const char* der_asn1_pc_to_string_map[];
extern const unsigned long der_asn1_pc_to_string_map_sz;
extern const char* der_asn1_tag_to_string_map[];
extern const unsigned long der_asn1_tag_to_string_map_sz;
/* SEQUENCE */
int der_encode_sequence_ex(const ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int type_of);
#define der_encode_sequence(list, inlen, out, outlen) der_encode_sequence_ex(list, inlen, out, outlen, LTC_ASN1_SEQUENCE)
/** The supported bitmap for all the
* decoders with a `flags` argument.
*/
enum ltc_der_seq {
LTC_DER_SEQ_ZERO = 0x0u,
/** Bit0 - [0]=Unordered (SET or SETOF)
* [1]=Ordered (SEQUENCE) */
LTC_DER_SEQ_UNORDERED = LTC_DER_SEQ_ZERO,
LTC_DER_SEQ_ORDERED = 0x1u,
/** Bit1 - [0]=Relaxed
* [1]=Strict */
LTC_DER_SEQ_RELAXED = LTC_DER_SEQ_ZERO,
LTC_DER_SEQ_STRICT = 0x2u,
/** Alternative naming */
LTC_DER_SEQ_SET = LTC_DER_SEQ_UNORDERED,
LTC_DER_SEQ_SEQUENCE = LTC_DER_SEQ_ORDERED,
};
int der_decode_sequence_ex(const unsigned char *in, unsigned long inlen,
ltc_asn1_list *list, unsigned long outlen, unsigned int flags);
#define der_decode_sequence(in, inlen, list, outlen) der_decode_sequence_ex(in, inlen, list, outlen, LTC_DER_SEQ_SEQUENCE | LTC_DER_SEQ_RELAXED)
#define der_decode_sequence_strict(in, inlen, list, outlen) der_decode_sequence_ex(in, inlen, list, outlen, LTC_DER_SEQ_SEQUENCE | LTC_DER_SEQ_STRICT)
int der_length_sequence(const ltc_asn1_list *list, unsigned long inlen,
unsigned long *outlen);
/* Custom-types */
int der_encode_custom_type(const ltc_asn1_list *root,
unsigned char *out, unsigned long *outlen);
int der_decode_custom_type(const unsigned char *in, unsigned long inlen,
ltc_asn1_list *root);
int der_length_custom_type(const ltc_asn1_list *root,
unsigned long *outlen,
unsigned long *payloadlen);
/* SET */
#define der_decode_set(in, inlen, list, outlen) der_decode_sequence_ex(in, inlen, list, outlen, LTC_DER_SEQ_SET)
#define der_length_set der_length_sequence
int der_encode_set(const ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_encode_setof(const ltc_asn1_list *list, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
/* VA list handy helpers with triplets of <type, size, data> */
int der_encode_sequence_multi(unsigned char *out, unsigned long *outlen, ...);
int der_decode_sequence_multi(const unsigned char *in, unsigned long inlen, ...);
/* FLEXI DECODER handle unknown list decoder */
int der_decode_sequence_flexi(const unsigned char *in, unsigned long *inlen, ltc_asn1_list **out);
#define der_free_sequence_flexi der_sequence_free
void der_sequence_free(ltc_asn1_list *in);
void der_sequence_shrink(ltc_asn1_list *in);
/* BOOLEAN */
int der_length_boolean(unsigned long *outlen);
int der_encode_boolean(int in,
unsigned char *out, unsigned long *outlen);
int der_decode_boolean(const unsigned char *in, unsigned long inlen,
int *out);
/* INTEGER */
int der_encode_integer(void *num, unsigned char *out, unsigned long *outlen);
int der_decode_integer(const unsigned char *in, unsigned long inlen, void *num);
int der_length_integer(void *num, unsigned long *outlen);
/* INTEGER -- handy for 0..2^32-1 values */
int der_decode_short_integer(const unsigned char *in, unsigned long inlen, unsigned long *num);
int der_encode_short_integer(unsigned long num, unsigned char *out, unsigned long *outlen);
int der_length_short_integer(unsigned long num, unsigned long *outlen);
/* BIT STRING */
int der_encode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_encode_raw_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_raw_bit_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_bit_string(unsigned long nbits, unsigned long *outlen);
/* OCTET STRING */
int der_encode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_octet_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_octet_string(unsigned long noctets, unsigned long *outlen);
/* OBJECT IDENTIFIER */
int der_encode_object_identifier(const unsigned long *words, unsigned long nwords,
unsigned char *out, unsigned long *outlen);
int der_decode_object_identifier(const unsigned char *in, unsigned long inlen,
unsigned long *words, unsigned long *outlen);
int der_length_object_identifier(const unsigned long *words, unsigned long nwords, unsigned long *outlen);
unsigned long der_object_identifier_bits(unsigned long x);
/* IA5 STRING */
int der_encode_ia5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_ia5_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_ia5_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen);
int der_ia5_char_encode(int c);
int der_ia5_value_decode(int v);
/* TELETEX STRING */
int der_decode_teletex_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_teletex_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen);
/* PRINTABLE STRING */
int der_encode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_printable_string(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_length_printable_string(const unsigned char *octets, unsigned long noctets, unsigned long *outlen);
int der_printable_char_encode(int c);
int der_printable_value_decode(int v);
/* UTF-8 */
#if (defined(SIZE_MAX) || __STDC_VERSION__ >= 199901L || defined(WCHAR_MAX) || defined(__WCHAR_MAX__) || defined(_WCHAR_T) || defined(_WCHAR_T_DEFINED) || defined (__WCHAR_TYPE__)) && !defined(LTC_NO_WCHAR)
#if defined(__WCHAR_MAX__)
#define LTC_WCHAR_MAX __WCHAR_MAX__
#else
#include <wchar.h>
#define LTC_WCHAR_MAX WCHAR_MAX
#endif
/* please note that it might happen that LTC_WCHAR_MAX is undefined */
#else
typedef ulong32 wchar_t;
#define LTC_WCHAR_MAX 0xFFFFFFFF
#endif
int der_encode_utf8_string(const wchar_t *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int der_decode_utf8_string(const unsigned char *in, unsigned long inlen,
wchar_t *out, unsigned long *outlen);
unsigned long der_utf8_charsize(const wchar_t c);
int der_length_utf8_string(const wchar_t *in, unsigned long noctets, unsigned long *outlen);
/* CHOICE */
int der_decode_choice(const unsigned char *in, unsigned long *inlen,
ltc_asn1_list *list, unsigned long outlen);
/* UTCTime */
typedef struct {
unsigned YY, /* year */
MM, /* month */
DD, /* day */
hh, /* hour */
mm, /* minute */
ss, /* second */
off_dir, /* timezone offset direction 0 == +, 1 == - */
off_hh, /* timezone offset hours */
off_mm; /* timezone offset minutes */
} ltc_utctime;
int der_encode_utctime(const ltc_utctime *utctime,
unsigned char *out, unsigned long *outlen);
int der_decode_utctime(const unsigned char *in, unsigned long *inlen,
ltc_utctime *out);
int der_length_utctime(const ltc_utctime *utctime, unsigned long *outlen);
/* GeneralizedTime */
typedef struct {
unsigned YYYY, /* year */
MM, /* month */
DD, /* day */
hh, /* hour */
mm, /* minute */
ss, /* second */
fs, /* fractional seconds */
off_dir, /* timezone offset direction 0 == +, 1 == - */
off_hh, /* timezone offset hours */
off_mm; /* timezone offset minutes */
} ltc_generalizedtime;
int der_encode_generalizedtime(const ltc_generalizedtime *gtime,
unsigned char *out, unsigned long *outlen);
int der_decode_generalizedtime(const unsigned char *in, unsigned long *inlen,
ltc_generalizedtime *out);
int der_length_generalizedtime(const ltc_generalizedtime *gtime, unsigned long *outlen);
#endif

View File

@@ -0,0 +1,99 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* PKCS Header Info */
/* ===> PKCS #1 -- RSA Cryptography <=== */
#ifdef LTC_PKCS_1
enum ltc_pkcs_1_v1_5_blocks
{
LTC_PKCS_1_EMSA = 1, /* Block type 1 (PKCS #1 v1.5 signature padding) */
LTC_PKCS_1_EME = 2 /* Block type 2 (PKCS #1 v1.5 encryption padding) */
};
enum ltc_pkcs_1_paddings
{
LTC_PKCS_1_V1_5 = 1, /* PKCS #1 v1.5 padding (\sa ltc_pkcs_1_v1_5_blocks) */
LTC_PKCS_1_OAEP = 2, /* PKCS #1 v2.0 encryption padding */
LTC_PKCS_1_PSS = 3, /* PKCS #1 v2.1 signature padding */
LTC_PKCS_1_V1_5_NA1 = 4 /* PKCS #1 v1.5 padding - No ASN.1 (\sa ltc_pkcs_1_v1_5_blocks) */
};
int pkcs_1_mgf1( int hash_idx,
const unsigned char *seed, unsigned long seedlen,
unsigned char *mask, unsigned long masklen);
int pkcs_1_i2osp(void *n, unsigned long modulus_len, unsigned char *out);
int pkcs_1_os2ip(void *n, unsigned char *in, unsigned long inlen);
/* *** v1.5 padding */
int pkcs_1_v1_5_encode(const unsigned char *msg,
unsigned long msglen,
int block_type,
unsigned long modulus_bitlen,
prng_state *prng,
int prng_idx,
unsigned char *out,
unsigned long *outlen);
int pkcs_1_v1_5_decode(const unsigned char *msg,
unsigned long msglen,
int block_type,
unsigned long modulus_bitlen,
unsigned char *out,
unsigned long *outlen,
int *is_valid);
/* *** v2.1 padding */
int pkcs_1_oaep_encode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, prng_state *prng,
int prng_idx, int hash_idx,
unsigned char *out, unsigned long *outlen);
int pkcs_1_oaep_decode(const unsigned char *msg, unsigned long msglen,
const unsigned char *lparam, unsigned long lparamlen,
unsigned long modulus_bitlen, int hash_idx,
unsigned char *out, unsigned long *outlen,
int *res);
int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
unsigned long saltlen, prng_state *prng,
int prng_idx, int hash_idx,
unsigned long modulus_bitlen,
unsigned char *out, unsigned long *outlen);
int pkcs_1_pss_decode(const unsigned char *msghash, unsigned long msghashlen,
const unsigned char *sig, unsigned long siglen,
unsigned long saltlen, int hash_idx,
unsigned long modulus_bitlen, int *res);
#endif /* LTC_PKCS_1 */
/* ===> PKCS #5 -- Password Based Cryptography <=== */
#ifdef LTC_PKCS_5
/* Algorithm #1 (PBKDF1) */
int pkcs_5_alg1(const unsigned char *password, unsigned long password_len,
const unsigned char *salt,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen);
/* Algorithm #1 (PBKDF1) - OpenSSL-compatible variant for arbitrarily-long keys.
Compatible with EVP_BytesToKey() */
int pkcs_5_alg1_openssl(const unsigned char *password,
unsigned long password_len,
const unsigned char *salt,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen);
/* Algorithm #2 (PBKDF2) */
int pkcs_5_alg2(const unsigned char *password, unsigned long password_len,
const unsigned char *salt, unsigned long salt_len,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen);
int pkcs_5_test (void);
#endif /* LTC_PKCS_5 */

View File

@@ -0,0 +1,447 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt.h"
/*
* Internal Macros
*/
#define LTC_PAD_MASK (0xF000U)
/*
* Internal Enums
*/
enum ltc_oid_id {
PKA_RSA,
PKA_DSA,
PKA_EC,
PKA_EC_PRIMEF,
PKA_X25519,
PKA_ED25519,
};
/*
* Internal Types
*/
typedef struct {
int size;
const char *name, *base, *prime;
} ltc_dh_set_type;
typedef int (*fn_kdf_t)(const unsigned char *password, unsigned long password_len,
const unsigned char *salt, unsigned long salt_len,
int iteration_count, int hash_idx,
unsigned char *out, unsigned long *outlen);
typedef struct {
/* KDF */
fn_kdf_t kdf;
/* Hash or HMAC */
const char* h;
/* cipher */
const char* c;
unsigned long keylen;
/* not used for pbkdf2 */
unsigned long blocklen;
} pbes_properties;
typedef struct
{
pbes_properties type;
const void *pwd;
unsigned long pwdlen;
ltc_asn1_list *enc_data;
ltc_asn1_list *salt;
ltc_asn1_list *iv;
unsigned long iterations;
/* only used for RC2 */
unsigned long key_bits;
} pbes_arg;
/*
* Internal functions
*/
/* tomcrypt_cipher.h */
void blowfish_enc(ulong32 *data, unsigned long blocks, const symmetric_key *skey);
int blowfish_expand(const unsigned char *key, int keylen,
const unsigned char *data, int datalen,
symmetric_key *skey);
int blowfish_setup_with_data(const unsigned char *key, int keylen,
const unsigned char *data, int datalen,
symmetric_key *skey);
/* tomcrypt_hash.h */
/* a simple macro for making hash "process" functions */
#define HASH_PROCESS(func_name, compress_name, state_var, block_size) \
int func_name (hash_state * md, const unsigned char *in, unsigned long inlen) \
{ \
unsigned long n; \
int err; \
LTC_ARGCHK(md != NULL); \
LTC_ARGCHK(in != NULL); \
if (md-> state_var .curlen > sizeof(md-> state_var .buf)) { \
return CRYPT_INVALID_ARG; \
} \
if ((md-> state_var .length + inlen * 8) < md-> state_var .length) { \
return CRYPT_HASH_OVERFLOW; \
} \
while (inlen > 0) { \
if (md-> state_var .curlen == 0 && inlen >= block_size) { \
if ((err = compress_name (md, in)) != CRYPT_OK) { \
return err; \
} \
md-> state_var .length += block_size * 8; \
in += block_size; \
inlen -= block_size; \
} else { \
n = MIN(inlen, (block_size - md-> state_var .curlen)); \
XMEMCPY(md-> state_var .buf + md-> state_var.curlen, in, (size_t)n); \
md-> state_var .curlen += n; \
in += n; \
inlen -= n; \
if (md-> state_var .curlen == block_size) { \
if ((err = compress_name (md, md-> state_var .buf)) != CRYPT_OK) { \
return err; \
} \
md-> state_var .length += 8*block_size; \
md-> state_var .curlen = 0; \
} \
} \
} \
return CRYPT_OK; \
}
/* tomcrypt_mac.h */
int ocb3_int_ntz(unsigned long x);
void ocb3_int_xor_blocks(unsigned char *out, const unsigned char *block_a, const unsigned char *block_b, unsigned long block_len);
/* tomcrypt_math.h */
#if !defined(DESC_DEF_ONLY)
#define MP_DIGIT_BIT ltc_mp.bits_per_digit
/* some handy macros */
#define mp_init(a) ltc_mp.init(a)
#define mp_init_multi ltc_init_multi
#define mp_clear(a) ltc_mp.deinit(a)
#define mp_clear_multi ltc_deinit_multi
#define mp_cleanup_multi ltc_cleanup_multi
#define mp_init_copy(a, b) ltc_mp.init_copy(a, b)
#define mp_neg(a, b) ltc_mp.neg(a, b)
#define mp_copy(a, b) ltc_mp.copy(a, b)
#define mp_set(a, b) ltc_mp.set_int(a, b)
#define mp_set_int(a, b) ltc_mp.set_int(a, b)
#define mp_get_int(a) ltc_mp.get_int(a)
#define mp_get_digit(a, n) ltc_mp.get_digit(a, n)
#define mp_get_digit_count(a) ltc_mp.get_digit_count(a)
#define mp_cmp(a, b) ltc_mp.compare(a, b)
#define mp_cmp_d(a, b) ltc_mp.compare_d(a, b)
#define mp_count_bits(a) ltc_mp.count_bits(a)
#define mp_cnt_lsb(a) ltc_mp.count_lsb_bits(a)
#define mp_2expt(a, b) ltc_mp.twoexpt(a, b)
#define mp_read_radix(a, b, c) ltc_mp.read_radix(a, b, c)
#define mp_toradix(a, b, c) ltc_mp.write_radix(a, b, c)
#define mp_unsigned_bin_size(a) ltc_mp.unsigned_size(a)
#define mp_to_unsigned_bin(a, b) ltc_mp.unsigned_write(a, b)
#define mp_read_unsigned_bin(a, b, c) ltc_mp.unsigned_read(a, b, c)
#define mp_add(a, b, c) ltc_mp.add(a, b, c)
#define mp_add_d(a, b, c) ltc_mp.addi(a, b, c)
#define mp_sub(a, b, c) ltc_mp.sub(a, b, c)
#define mp_sub_d(a, b, c) ltc_mp.subi(a, b, c)
#define mp_mul(a, b, c) ltc_mp.mul(a, b, c)
#define mp_mul_d(a, b, c) ltc_mp.muli(a, b, c)
#define mp_sqr(a, b) ltc_mp.sqr(a, b)
#define mp_sqrtmod_prime(a, b, c) ltc_mp.sqrtmod_prime(a, b, c)
#define mp_div(a, b, c, d) ltc_mp.mpdiv(a, b, c, d)
#define mp_div_2(a, b) ltc_mp.div_2(a, b)
#define mp_mod(a, b, c) ltc_mp.mpdiv(a, b, NULL, c)
#define mp_mod_d(a, b, c) ltc_mp.modi(a, b, c)
#define mp_gcd(a, b, c) ltc_mp.gcd(a, b, c)
#define mp_lcm(a, b, c) ltc_mp.lcm(a, b, c)
#define mp_addmod(a, b, c, d) ltc_mp.addmod(a, b, c, d)
#define mp_submod(a, b, c, d) ltc_mp.submod(a, b, c, d)
#define mp_mulmod(a, b, c, d) ltc_mp.mulmod(a, b, c, d)
#define mp_sqrmod(a, b, c) ltc_mp.sqrmod(a, b, c)
#define mp_invmod(a, b, c) ltc_mp.invmod(a, b, c)
#define mp_montgomery_setup(a, b) ltc_mp.montgomery_setup(a, b)
#define mp_montgomery_normalization(a, b) ltc_mp.montgomery_normalization(a, b)
#define mp_montgomery_reduce(a, b, c) ltc_mp.montgomery_reduce(a, b, c)
#define mp_montgomery_free(a) ltc_mp.montgomery_deinit(a)
#define mp_exptmod(a,b,c,d) ltc_mp.exptmod(a,b,c,d)
#define mp_prime_is_prime(a, b, c) ltc_mp.isprime(a, b, c)
#define mp_iszero(a) (mp_cmp_d(a, 0) == LTC_MP_EQ ? LTC_MP_YES : LTC_MP_NO)
#define mp_isodd(a) (mp_get_digit_count(a) > 0 ? (mp_get_digit(a, 0) & 1 ? LTC_MP_YES : LTC_MP_NO) : LTC_MP_NO)
#define mp_exch(a, b) do { void *ABC__tmp = a; a = b; b = ABC__tmp; } while(0)
#define mp_tohex(a, b) mp_toradix(a, b, 16)
#define mp_rand(a, b) ltc_mp.rand(a, b)
#endif
/* tomcrypt_misc.h */
void copy_or_zeromem(const unsigned char* src, unsigned char* dest, unsigned long len, int coz);
int pbes_decrypt(const pbes_arg *arg, unsigned char *dec_data, unsigned long *dec_size);
int pbes1_extract(const ltc_asn1_list *s, pbes_arg *res);
int pbes2_extract(const ltc_asn1_list *s, pbes_arg *res);
/* tomcrypt_pk.h */
int rand_bn_bits(void *N, int bits, prng_state *prng, int wprng);
int rand_bn_upto(void *N, void *limit, prng_state *prng, int wprng);
int pk_get_oid(enum ltc_oid_id id, const char **st);
int pk_oid_str_to_num(const char *OID, unsigned long *oid, unsigned long *oidlen);
int pk_oid_num_to_str(const unsigned long *oid, unsigned long oidlen, char *OID, unsigned long *outlen);
/* ---- DH Routines ---- */
#ifdef LTC_MRSA
int rsa_init(rsa_key *key);
void rsa_shrink_key(rsa_key *key);
#endif /* LTC_MRSA */
/* ---- DH Routines ---- */
#ifdef LTC_MDH
extern const ltc_dh_set_type ltc_dh_sets[];
int dh_check_pubkey(const dh_key *key);
#endif /* LTC_MDH */
/* ---- ECC Routines ---- */
#ifdef LTC_MECC
int ecc_set_curve_from_mpis(void *a, void *b, void *prime, void *order, void *gx, void *gy, unsigned long cofactor, ecc_key *key);
int ecc_copy_curve(const ecc_key *srckey, ecc_key *key);
int ecc_set_curve_by_size(int size, ecc_key *key);
int ecc_import_subject_public_key_info(const unsigned char *in, unsigned long inlen, ecc_key *key);
#ifdef LTC_SSH
int ecc_ssh_ecdsa_encode_name(char *buffer, unsigned long *buflen, const ecc_key *key);
#endif
/* low level functions */
ecc_point *ltc_ecc_new_point(void);
void ltc_ecc_del_point(ecc_point *p);
int ltc_ecc_set_point_xyz(ltc_mp_digit x, ltc_mp_digit y, ltc_mp_digit z, ecc_point *p);
int ltc_ecc_copy_point(const ecc_point *src, ecc_point *dst);
int ltc_ecc_is_point(const ltc_ecc_dp *dp, void *x, void *y);
int ltc_ecc_is_point_at_infinity(const ecc_point *P, void *modulus, int *retval);
int ltc_ecc_import_point(const unsigned char *in, unsigned long inlen, void *prime, void *a, void *b, void *x, void *y);
int ltc_ecc_export_point(unsigned char *out, unsigned long *outlen, void *x, void *y, unsigned long size, int compressed);
int ltc_ecc_verify_key(const ecc_key *key);
/* point ops (mp == montgomery digit) */
#if !defined(LTC_MECC_ACCEL) || defined(LTM_DESC) || defined(GMP_DESC)
/* R = 2P */
int ltc_ecc_projective_dbl_point(const ecc_point *P, ecc_point *R, void *ma, void *modulus, void *mp);
/* R = P + Q */
int ltc_ecc_projective_add_point(const ecc_point *P, const ecc_point *Q, ecc_point *R, void *ma, void *modulus, void *mp);
#endif
#if defined(LTC_MECC_FP)
/* optimized point multiplication using fixed point cache (HAC algorithm 14.117) */
int ltc_ecc_fp_mulmod(void *k, ecc_point *G, ecc_point *R, void *a, void *modulus, int map);
/* functions for saving/loading/freeing/adding to fixed point cache */
int ltc_ecc_fp_save_state(unsigned char **out, unsigned long *outlen);
int ltc_ecc_fp_restore_state(unsigned char *in, unsigned long inlen);
void ltc_ecc_fp_free(void);
int ltc_ecc_fp_add_point(ecc_point *g, void *modulus, int lock);
/* lock/unlock all points currently in fixed point cache */
void ltc_ecc_fp_tablelock(int lock);
#endif
/* R = kG */
int ltc_ecc_mulmod(void *k, const ecc_point *G, ecc_point *R, void *a, void *modulus, int map);
#ifdef LTC_ECC_SHAMIR
/* kA*A + kB*B = C */
int ltc_ecc_mul2add(const ecc_point *A, void *kA,
const ecc_point *B, void *kB,
ecc_point *C,
void *ma,
void *modulus);
#ifdef LTC_MECC_FP
/* Shamir's trick with optimized point multiplication using fixed point cache */
int ltc_ecc_fp_mul2add(const ecc_point *A, void *kA,
const ecc_point *B, void *kB,
ecc_point *C,
void *ma,
void *modulus);
#endif
#endif
/* map P to affine from projective */
int ltc_ecc_map(ecc_point *P, void *modulus, void *mp);
#endif /* LTC_MECC */
#ifdef LTC_MDSA
int dsa_int_validate_xy(const dsa_key *key, int *stat);
int dsa_int_validate_pqg(const dsa_key *key, int *stat);
int dsa_int_validate_primes(const dsa_key *key, int *stat);
#endif /* LTC_MDSA */
#ifdef LTC_CURVE25519
int tweetnacl_crypto_sign(
unsigned char *sm,unsigned long long *smlen,
const unsigned char *m,unsigned long long mlen,
const unsigned char *sk, const unsigned char *pk);
int tweetnacl_crypto_sign_open(
int *stat,
unsigned char *m,unsigned long long *mlen,
const unsigned char *sm,unsigned long long smlen,
const unsigned char *pk);
int tweetnacl_crypto_sign_keypair(prng_state *prng, int wprng, unsigned char *pk,unsigned char *sk);
int tweetnacl_crypto_sk_to_pk(unsigned char *pk, const unsigned char *sk);
int tweetnacl_crypto_scalarmult(unsigned char *q, const unsigned char *n, const unsigned char *p);
int tweetnacl_crypto_scalarmult_base(unsigned char *q,const unsigned char *n);
typedef int (*sk_to_pk)(unsigned char *pk ,const unsigned char *sk);
int ec25519_import_pkcs8(const unsigned char *in, unsigned long inlen,
const void *pwd, unsigned long pwdlen,
enum ltc_oid_id id, sk_to_pk fp,
curve25519_key *key);
int ec25519_export( unsigned char *out, unsigned long *outlen,
int which,
const curve25519_key *key);
#endif /* LTC_CURVE25519 */
#ifdef LTC_DER
#define LTC_ASN1_IS_TYPE(e, t) (((e) != NULL) && ((e)->type == (t)))
/* DER handling */
int der_decode_custom_type_ex(const unsigned char *in, unsigned long inlen,
ltc_asn1_list *root,
ltc_asn1_list *list, unsigned long outlen, unsigned int flags);
int der_encode_asn1_identifier(const ltc_asn1_list *id, unsigned char *out, unsigned long *outlen);
int der_decode_asn1_identifier(const unsigned char *in, unsigned long *inlen, ltc_asn1_list *id);
int der_length_asn1_identifier(const ltc_asn1_list *id, unsigned long *idlen);
int der_encode_asn1_length(unsigned long len, unsigned char* out, unsigned long* outlen);
int der_decode_asn1_length(const unsigned char *in, unsigned long *inlen, unsigned long *outlen);
int der_length_asn1_length(unsigned long len, unsigned long *outlen);
int der_length_sequence_ex(const ltc_asn1_list *list, unsigned long inlen,
unsigned long *outlen, unsigned long *payloadlen);
extern const ltc_asn1_type der_asn1_tag_to_type_map[];
extern const unsigned long der_asn1_tag_to_type_map_sz;
extern const int der_asn1_type_to_identifier_map[];
extern const unsigned long der_asn1_type_to_identifier_map_sz;
int der_decode_sequence_multi_ex(const unsigned char *in, unsigned long inlen, unsigned int flags, ...);
int der_teletex_char_encode(int c);
int der_teletex_value_decode(int v);
int der_utf8_valid_char(const wchar_t c);
typedef int (*public_key_decode_cb)(const unsigned char *in, unsigned long inlen, void *ctx);
int x509_decode_public_key_from_certificate(const unsigned char *in, unsigned long inlen,
enum ltc_oid_id algorithm, ltc_asn1_type param_type,
ltc_asn1_list* parameters, unsigned long *parameters_len,
public_key_decode_cb callback, void *ctx);
/* SUBJECT PUBLIC KEY INFO */
int x509_encode_subject_public_key_info(unsigned char *out, unsigned long *outlen,
unsigned int algorithm, const void* public_key, unsigned long public_key_len,
ltc_asn1_type parameters_type, ltc_asn1_list* parameters, unsigned long parameters_len);
int x509_decode_subject_public_key_info(const unsigned char *in, unsigned long inlen,
unsigned int algorithm, void* public_key, unsigned long* public_key_len,
ltc_asn1_type parameters_type, ltc_asn1_list* parameters, unsigned long *parameters_len);
int pk_oid_cmp_with_ulong(const char *o1, const unsigned long *o2, unsigned long o2size);
int pk_oid_cmp_with_asn1(const char *o1, const ltc_asn1_list *o2);
#endif /* LTC_DER */
/* tomcrypt_pkcs.h */
#ifdef LTC_PKCS_8
int pkcs8_decode_flexi(const unsigned char *in, unsigned long inlen,
const void *pwd, unsigned long pwdlen,
ltc_asn1_list **decoded_list);
#endif /* LTC_PKCS_8 */
#ifdef LTC_PKCS_12
int pkcs12_utf8_to_utf16(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
int pkcs12_kdf( int hash_id,
const unsigned char *pw, unsigned long pwlen,
const unsigned char *salt, unsigned long saltlen,
unsigned int iterations, unsigned char purpose,
unsigned char *out, unsigned long outlen);
#endif /* LTC_PKCS_12 */
/* tomcrypt_prng.h */
#define LTC_PRNG_EXPORT(which) \
int which ## _export(unsigned char *out, unsigned long *outlen, prng_state *prng) \
{ \
unsigned long len = which ## _desc.export_size; \
\
LTC_ARGCHK(prng != NULL); \
LTC_ARGCHK(out != NULL); \
LTC_ARGCHK(outlen != NULL); \
\
if (*outlen < len) { \
*outlen = len; \
return CRYPT_BUFFER_OVERFLOW; \
} \
\
if (which ## _read(out, len, prng) != len) { \
return CRYPT_ERROR_READPRNG; \
} \
\
*outlen = len; \
return CRYPT_OK; \
}
/* extract a byte portably */
#ifdef _MSC_VER
#define LTC_BYTE(x, n) ((unsigned char)((x) >> (8 * (n))))
#else
#define LTC_BYTE(x, n) (((x) >> (8 * (n))) & 255)
#endif

View File

@@ -0,0 +1,223 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* ---- PRNG Stuff ---- */
#ifdef LTC_YARROW
struct yarrow_prng {
int cipher, hash;
unsigned char pool[MAXBLOCKSIZE];
symmetric_CTR ctr;
};
#endif
#ifdef LTC_RC4
struct rc4_prng {
rc4_state s;
};
#endif
#ifdef LTC_CHACHA20_PRNG
struct chacha20_prng {
chacha_state s; /* chacha state */
unsigned char ent[40]; /* entropy buffer */
unsigned long idx; /* entropy counter */
};
#endif
#ifdef LTC_FORTUNA
struct fortuna_prng {
hash_state pool[LTC_FORTUNA_POOLS]; /* the pools */
symmetric_key skey;
unsigned char K[32], /* the current key */
IV[16]; /* IV for CTR mode */
unsigned long pool_idx, /* current pool we will add to */
pool0_len; /* length of 0'th pool */
ulong64 wd;
ulong64 reset_cnt; /* number of times we have reseeded */
};
#endif
#ifdef LTC_SOBER128
struct sober128_prng {
sober128_state s; /* sober128 state */
unsigned char ent[40]; /* entropy buffer */
unsigned long idx; /* entropy counter */
};
#endif
typedef struct {
union {
char dummy[1];
#ifdef LTC_YARROW
struct yarrow_prng yarrow;
#endif
#ifdef LTC_RC4
struct rc4_prng rc4;
#endif
#ifdef LTC_CHACHA20_PRNG
struct chacha20_prng chacha;
#endif
#ifdef LTC_FORTUNA
struct fortuna_prng fortuna;
#endif
#ifdef LTC_SOBER128
struct sober128_prng sober128;
#endif
} u;
short ready; /* ready flag 0-1 */
LTC_MUTEX_TYPE(lock) /* lock */
} prng_state;
/** PRNG descriptor */
extern struct ltc_prng_descriptor {
/** Name of the PRNG */
const char *name;
/** size in bytes of exported state */
int export_size;
/** Start a PRNG state
@param prng [out] The state to initialize
@return CRYPT_OK if successful
*/
int (*start)(prng_state *prng);
/** Add entropy to the PRNG
@param in The entropy
@param inlen Length of the entropy (octets)\
@param prng The PRNG state
@return CRYPT_OK if successful
*/
int (*add_entropy)(const unsigned char *in, unsigned long inlen, prng_state *prng);
/** Ready a PRNG state to read from
@param prng The PRNG state to ready
@return CRYPT_OK if successful
*/
int (*ready)(prng_state *prng);
/** Read from the PRNG
@param out [out] Where to store the data
@param outlen Length of data desired (octets)
@param prng The PRNG state to read from
@return Number of octets read
*/
unsigned long (*read)(unsigned char *out, unsigned long outlen, prng_state *prng);
/** Terminate a PRNG state
@param prng The PRNG state to terminate
@return CRYPT_OK if successful
*/
int (*done)(prng_state *prng);
/** Export a PRNG state
@param out [out] The destination for the state
@param outlen [in/out] The max size and resulting size of the PRNG state
@param prng The PRNG to export
@return CRYPT_OK if successful
*/
int (*pexport)(unsigned char *out, unsigned long *outlen, prng_state *prng);
/** Import a PRNG state
@param in The data to import
@param inlen The length of the data to import (octets)
@param prng The PRNG to initialize/import
@return CRYPT_OK if successful
*/
int (*pimport)(const unsigned char *in, unsigned long inlen, prng_state *prng);
/** Self-test the PRNG
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled
*/
int (*test)(void);
} prng_descriptor[];
#ifdef LTC_YARROW
int yarrow_start(prng_state *prng);
int yarrow_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int yarrow_ready(prng_state *prng);
unsigned long yarrow_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int yarrow_done(prng_state *prng);
int yarrow_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int yarrow_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int yarrow_test(void);
extern const struct ltc_prng_descriptor yarrow_desc;
#endif
#ifdef LTC_FORTUNA
int fortuna_start(prng_state *prng);
int fortuna_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int fortuna_add_random_event(unsigned long source, unsigned long pool, const unsigned char *in, unsigned long inlen, prng_state *prng);
int fortuna_ready(prng_state *prng);
unsigned long fortuna_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int fortuna_done(prng_state *prng);
int fortuna_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int fortuna_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int fortuna_update_seed(const unsigned char *in, unsigned long inlen, prng_state *prng);
int fortuna_test(void);
extern const struct ltc_prng_descriptor fortuna_desc;
#endif
#ifdef LTC_RC4
int rc4_start(prng_state *prng);
int rc4_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int rc4_ready(prng_state *prng);
unsigned long rc4_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int rc4_done(prng_state *prng);
int rc4_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int rc4_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int rc4_test(void);
extern const struct ltc_prng_descriptor rc4_desc;
#endif
#ifdef LTC_CHACHA20_PRNG
int chacha20_prng_start(prng_state *prng);
int chacha20_prng_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int chacha20_prng_ready(prng_state *prng);
unsigned long chacha20_prng_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int chacha20_prng_done(prng_state *prng);
int chacha20_prng_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int chacha20_prng_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int chacha20_prng_test(void);
extern const struct ltc_prng_descriptor chacha20_prng_desc;
#endif
#ifdef LTC_SPRNG
int sprng_start(prng_state *prng);
int sprng_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sprng_ready(prng_state *prng);
unsigned long sprng_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int sprng_done(prng_state *prng);
int sprng_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int sprng_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sprng_test(void);
extern const struct ltc_prng_descriptor sprng_desc;
#endif
#ifdef LTC_SOBER128
int sober128_start(prng_state *prng);
int sober128_add_entropy(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sober128_ready(prng_state *prng);
unsigned long sober128_read(unsigned char *out, unsigned long outlen, prng_state *prng);
int sober128_done(prng_state *prng);
int sober128_export(unsigned char *out, unsigned long *outlen, prng_state *prng);
int sober128_import(const unsigned char *in, unsigned long inlen, prng_state *prng);
int sober128_test(void);
extern const struct ltc_prng_descriptor sober128_desc;
#endif
int find_prng(const char *name);
int register_prng(const struct ltc_prng_descriptor *prng);
int unregister_prng(const struct ltc_prng_descriptor *prng);
int register_all_prngs(void);
int prng_is_valid(int idx);
LTC_MUTEX_PROTO(ltc_prng_mutex)
/* Slow RNG you **might** be able to use to seed a PRNG with. Be careful as this
* might not work on all platforms as planned
*/
unsigned long rng_get_bytes(unsigned char *out,
unsigned long outlen,
void (*callback)(void));
int rng_make_prng(int bits, int wprng, prng_state *prng, void (*callback)(void));
#ifdef LTC_PRNG_ENABLE_LTC_RNG
extern unsigned long (*ltc_rng)(unsigned char *out, unsigned long outlen,
void (*callback)(void));
#endif

View File

@@ -0,0 +1,23 @@
#!/bin/sh -e
if [ $# -ne 1 ]
then
echo "Usage: $0 go-sqlite3_dir" >&2
echo "Copy tracked source files from go-sqlite3 to current directory." >&2
exit 1
fi
ltd=$1
# copy C files
cp -f $ltd/sqlite3_opt_unlock_notify.c .
# copy Go files
cp -f $ltd/*.go .
rm -rf _example
cp -r $ltd/_example .
rm -rf upgrade
cp -r $ltd/upgrade .
echo "make sure to adjust sqlite3.go with sqlcipher pragmas!"
echo "make sure to adjust import paths in _example directory!"

View File

@@ -0,0 +1,60 @@
#!/bin/sh -e
if [ $# -ne 1 ]
then
echo "Usage: $0 libtomcrypt_dir" >&2
echo "Copy tracked source files from libtomcrypt_dir to current directory." >&2
exit 1
fi
ltd=$1
# copy header files
cp -f $ltd/src/headers/tomcrypt_argchk.h .
cp -f $ltd/src/headers/tomcrypt_cfg.h .
cp -f $ltd/src/headers/tomcrypt_cipher.h .
cp -f $ltd/src/headers/tomcrypt_custom.h .
cp -f $ltd/src/headers/tomcrypt.h .
cp -f $ltd/src/headers/tomcrypt_hash.h .
cp -f $ltd/src/headers/tomcrypt_mac.h .
cp -f $ltd/src/headers/tomcrypt_macros.h .
cp -f $ltd/src/headers/tomcrypt_math.h .
cp -f $ltd/src/headers/tomcrypt_misc.h .
cp -f $ltd/src/headers/tomcrypt_pkcs.h .
cp -f $ltd/src/headers/tomcrypt_pk.h .
cp -f $ltd/src/headers/tomcrypt_private.h .
cp -f $ltd/src/headers/tomcrypt_prng.h .
# copy C files
cp -f $ltd/src/ciphers/aes/aes.c .
cp -f $ltd/src/ciphers/aes/aes_tab.c aes_tab.h
cp -f $ltd/src/misc/burn_stack.c .
cp -f $ltd/src/misc/compare_testvector.c .
cp -f $ltd/src/modes/cbc/cbc_decrypt.c .
cp -f $ltd/src/modes/cbc/cbc_done.c .
cp -f $ltd/src/modes/cbc/cbc_encrypt.c .
cp -f $ltd/src/modes/cbc/cbc_start.c .
cp -f $ltd/src/misc/crypt/crypt_argchk.c .
cp -f $ltd/src/misc/crypt/crypt_cipher_descriptor.c .
cp -f $ltd/src/misc/crypt/crypt_cipher_is_valid.c .
cp -f $ltd/src/misc/crypt/crypt_find_cipher.c .
cp -f $ltd/src/misc/crypt/crypt_find_hash.c .
cp -f $ltd/src/misc/crypt/crypt_hash_descriptor.c .
cp -f $ltd/src/misc/crypt/crypt_hash_is_valid.c .
cp -f $ltd/src/misc/crypt/crypt_prng_descriptor.c .
cp -f $ltd/src/misc/crypt/crypt_register_cipher.c .
cp -f $ltd/src/misc/crypt/crypt_register_hash.c .
cp -f $ltd/src/misc/crypt/crypt_register_prng.c .
cp -f $ltd/src/prngs/fortuna.c .
cp -f $ltd/src/hashes/helper/hash_memory.c .
cp -f $ltd/src/mac/hmac/hmac_done.c .
cp -f $ltd/src/mac/hmac/hmac_init.c .
cp -f $ltd/src/mac/hmac/hmac_memory.c .
cp -f $ltd/src/mac/hmac/hmac_process.c .
cp -f $ltd/src/misc/pkcs5/pkcs_5_2.c .
cp -f $ltd/src/hashes/sha1.c .
cp -f $ltd/src/hashes/sha2/sha256.c .
cp -f $ltd/src/hashes/sha2/sha512.c .
cp -f $ltd/src/misc/zeromem.c .
echo "make sure aes.c includes aes_tab.h instead of aes_tab.c!"

24
vendor/github.com/mutecomm/go-sqlcipher/v4/zeromem.c generated vendored Normal file
View File

@@ -0,0 +1,24 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#include <string.h>
/**
@file zeromem.c
Zero a block of memory, Tom St Denis
*/
/**
Zero a block of memory
@param out The destination of the area to zero
@param outlen The length of the area to zero (octets)
*/
void zeromem(volatile void *out, size_t outlen)
{
LTC_ARGCHKVD(out != NULL);
memset((void *)out, 0, outlen);
}
/* $Source$ */
/* $Revision$ */
/* $Date$ */