feat: Waku v2 bridge

Issue #12610
This commit is contained in:
Michal Iskierko
2023-11-12 13:29:38 +01:00
parent 56e7bd01ca
commit 6d31343205
6716 changed files with 1982502 additions and 5891 deletions

354
vendor/github.com/hashicorp/errwrap/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,354 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

89
vendor/github.com/hashicorp/errwrap/README.md generated vendored Normal file
View File

@@ -0,0 +1,89 @@
# errwrap
`errwrap` is a package for Go that formalizes the pattern of wrapping errors
and checking if an error contains another error.
There is a common pattern in Go of taking a returned `error` value and
then wrapping it (such as with `fmt.Errorf`) before returning it. The problem
with this pattern is that you completely lose the original `error` structure.
Arguably the _correct_ approach is that you should make a custom structure
implementing the `error` interface, and have the original error as a field
on that structure, such [as this example](http://golang.org/pkg/os/#PathError).
This is a good approach, but you have to know the entire chain of possible
rewrapping that happens, when you might just care about one.
`errwrap` formalizes this pattern (it doesn't matter what approach you use
above) by giving a single interface for wrapping errors, checking if a specific
error is wrapped, and extracting that error.
## Installation and Docs
Install using `go get github.com/hashicorp/errwrap`.
Full documentation is available at
http://godoc.org/github.com/hashicorp/errwrap
## Usage
#### Basic Usage
Below is a very basic example of its usage:
```go
// A function that always returns an error, but wraps it, like a real
// function might.
func tryOpen() error {
_, err := os.Open("/i/dont/exist")
if err != nil {
return errwrap.Wrapf("Doesn't exist: {{err}}", err)
}
return nil
}
func main() {
err := tryOpen()
// We can use the Contains helpers to check if an error contains
// another error. It is safe to do this with a nil error, or with
// an error that doesn't even use the errwrap package.
if errwrap.Contains(err, "does not exist") {
// Do something
}
if errwrap.ContainsType(err, new(os.PathError)) {
// Do something
}
// Or we can use the associated `Get` functions to just extract
// a specific error. This would return nil if that specific error doesn't
// exist.
perr := errwrap.GetType(err, new(os.PathError))
}
```
#### Custom Types
If you're already making custom types that properly wrap errors, then
you can get all the functionality of `errwraps.Contains` and such by
implementing the `Wrapper` interface with just one function. Example:
```go
type AppError {
Code ErrorCode
Err error
}
func (e *AppError) WrappedErrors() []error {
return []error{e.Err}
}
```
Now this works:
```go
err := &AppError{Err: fmt.Errorf("an error")}
if errwrap.ContainsType(err, fmt.Errorf("")) {
// This will work!
}
```

178
vendor/github.com/hashicorp/errwrap/errwrap.go generated vendored Normal file
View File

@@ -0,0 +1,178 @@
// Package errwrap implements methods to formalize error wrapping in Go.
//
// All of the top-level functions that take an `error` are built to be able
// to take any error, not just wrapped errors. This allows you to use errwrap
// without having to type-check and type-cast everywhere.
package errwrap
import (
"errors"
"reflect"
"strings"
)
// WalkFunc is the callback called for Walk.
type WalkFunc func(error)
// Wrapper is an interface that can be implemented by custom types to
// have all the Contains, Get, etc. functions in errwrap work.
//
// When Walk reaches a Wrapper, it will call the callback for every
// wrapped error in addition to the wrapper itself. Since all the top-level
// functions in errwrap use Walk, this means that all those functions work
// with your custom type.
type Wrapper interface {
WrappedErrors() []error
}
// Wrap defines that outer wraps inner, returning an error type that
// can be cleanly used with the other methods in this package, such as
// Contains, GetAll, etc.
//
// This function won't modify the error message at all (the outer message
// will be used).
func Wrap(outer, inner error) error {
return &wrappedError{
Outer: outer,
Inner: inner,
}
}
// Wrapf wraps an error with a formatting message. This is similar to using
// `fmt.Errorf` to wrap an error. If you're using `fmt.Errorf` to wrap
// errors, you should replace it with this.
//
// format is the format of the error message. The string '{{err}}' will
// be replaced with the original error message.
//
// Deprecated: Use fmt.Errorf()
func Wrapf(format string, err error) error {
outerMsg := "<nil>"
if err != nil {
outerMsg = err.Error()
}
outer := errors.New(strings.Replace(
format, "{{err}}", outerMsg, -1))
return Wrap(outer, err)
}
// Contains checks if the given error contains an error with the
// message msg. If err is not a wrapped error, this will always return
// false unless the error itself happens to match this msg.
func Contains(err error, msg string) bool {
return len(GetAll(err, msg)) > 0
}
// ContainsType checks if the given error contains an error with
// the same concrete type as v. If err is not a wrapped error, this will
// check the err itself.
func ContainsType(err error, v interface{}) bool {
return len(GetAllType(err, v)) > 0
}
// Get is the same as GetAll but returns the deepest matching error.
func Get(err error, msg string) error {
es := GetAll(err, msg)
if len(es) > 0 {
return es[len(es)-1]
}
return nil
}
// GetType is the same as GetAllType but returns the deepest matching error.
func GetType(err error, v interface{}) error {
es := GetAllType(err, v)
if len(es) > 0 {
return es[len(es)-1]
}
return nil
}
// GetAll gets all the errors that might be wrapped in err with the
// given message. The order of the errors is such that the outermost
// matching error (the most recent wrap) is index zero, and so on.
func GetAll(err error, msg string) []error {
var result []error
Walk(err, func(err error) {
if err.Error() == msg {
result = append(result, err)
}
})
return result
}
// GetAllType gets all the errors that are the same type as v.
//
// The order of the return value is the same as described in GetAll.
func GetAllType(err error, v interface{}) []error {
var result []error
var search string
if v != nil {
search = reflect.TypeOf(v).String()
}
Walk(err, func(err error) {
var needle string
if err != nil {
needle = reflect.TypeOf(err).String()
}
if needle == search {
result = append(result, err)
}
})
return result
}
// Walk walks all the wrapped errors in err and calls the callback. If
// err isn't a wrapped error, this will be called once for err. If err
// is a wrapped error, the callback will be called for both the wrapper
// that implements error as well as the wrapped error itself.
func Walk(err error, cb WalkFunc) {
if err == nil {
return
}
switch e := err.(type) {
case *wrappedError:
cb(e.Outer)
Walk(e.Inner, cb)
case Wrapper:
cb(err)
for _, err := range e.WrappedErrors() {
Walk(err, cb)
}
case interface{ Unwrap() error }:
cb(err)
Walk(e.Unwrap(), cb)
default:
cb(err)
}
}
// wrappedError is an implementation of error that has both the
// outer and inner errors.
type wrappedError struct {
Outer error
Inner error
}
func (w *wrappedError) Error() string {
return w.Outer.Error()
}
func (w *wrappedError) WrappedErrors() []error {
return []error{w.Outer, w.Inner}
}
func (w *wrappedError) Unwrap() error {
return w.Inner
}

4
vendor/github.com/hashicorp/go-bexpr/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,4 @@
/expr-parse
/expr-eval
/filter
/simple

373
vendor/github.com/hashicorp/go-bexpr/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,373 @@
Mozilla Public License Version 2.0
==================================
1. Definitions
--------------
1.1. "Contributor"
means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.
1.5. "Incompatible With Secondary Licenses"
means
(a) that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or
(b) that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.
1.10. "Modifications"
means any of the following:
(a) any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or
(b) any new file in Source Code Form that contains any Covered
Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, "control" means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.
2. License Grants and Conditions
--------------------------------
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
(b) under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
(a) for any code that a Contributor has removed from Covered Software;
or
(b) for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
(c) under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.
3. Responsibilities
-------------------
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
(a) such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and
(b) You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
---------------------------------------------------
If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.
5. Termination
--------------
5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.
************************************************************************
* *
* 6. Disclaimer of Warranty *
* ------------------------- *
* *
* Covered Software is provided under this License on an "as is" *
* basis, without warranty of any kind, either expressed, implied, or *
* statutory, including, without limitation, warranties that the *
* Covered Software is free of defects, merchantable, fit for a *
* particular purpose or non-infringing. The entire risk as to the *
* quality and performance of the Covered Software is with You. *
* Should any Covered Software prove defective in any respect, You *
* (not any Contributor) assume the cost of any necessary servicing, *
* repair, or correction. This disclaimer of warranty constitutes an *
* essential part of this License. No use of any Covered Software is *
* authorized under this License except under this disclaimer. *
* *
************************************************************************
************************************************************************
* *
* 7. Limitation of Liability *
* -------------------------- *
* *
* Under no circumstances and under no legal theory, whether tort *
* (including negligence), contract, or otherwise, shall any *
* Contributor, or anyone who distributes Covered Software as *
* permitted above, be liable to You for any direct, indirect, *
* special, incidental, or consequential damages of any character *
* including, without limitation, damages for lost profits, loss of *
* goodwill, work stoppage, computer failure or malfunction, or any *
* and all other commercial damages or losses, even if such party *
* shall have been informed of the possibility of such damages. This *
* limitation of liability shall not apply to liability for death or *
* personal injury resulting from such party's negligence to the *
* extent applicable law prohibits such limitation. Some *
* jurisdictions do not allow the exclusion or limitation of *
* incidental or consequential damages, so this exclusion and *
* limitation may not apply to You. *
* *
************************************************************************
8. Litigation
-------------
Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party's ability to bring
cross-claims or counter-claims.
9. Miscellaneous
----------------
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.
10. Versions of the License
---------------------------
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
-------------------------------------------
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
---------------------------------------------------------
This Source Code Form is "Incompatible With Secondary Licenses", as
defined by the Mozilla Public License, v. 2.0.

63
vendor/github.com/hashicorp/go-bexpr/Makefile generated vendored Normal file
View File

@@ -0,0 +1,63 @@
GOTEST_PKGS=$(shell go list ./... | grep -v examples)
BENCHTIME ?= 2s
BENCHTESTS ?= .
BENCHFULL?=0
ifeq (${BENCHFULL},1)
BENCHFULL_ARG=-bench-full -timeout 60m
else
BENCHFULL_ARG=
endif
TEST_VERBOSE?=0
ifeq (${TEST_VERBOSE},1)
TEST_VERBOSE_ARG=-v
else
TEST_VERBOSE_ARG=
endif
TEST_RESULTS?="/tmp/test-results"
generate:
@echo "Regenerating Parser"
@go generate ./
test:
@go test $(TEST_VERBOSE_ARG) $(GOTEST_PKGS)
test-ci:
@gotestsum --junitfile $(TEST_RESULTS)/gotestsum-report.xml -- $(GOTEST_PKGS)
bench:
@go test $(TEST_VERBOSE_ARG) -run DONTRUNTESTS -bench $(BENCHTESTS) $(BENCHFULL_ARG) -benchtime=$(BENCHTIME) $(GOTEST_PKGS)
coverage:
@go test -coverprofile /tmp/coverage.out $(GOTEST_PKGS)
@go tool cover -html /tmp/coverage.out
fmt:
@gofmt -w -s
examples: simple expr-parse expr-eval filter
simple:
@go build ./examples/simple
expr-parse:
@go build ./examples/expr-parse
expr-eval:
@go build ./examples/expr-eval
filter:
@go build ./examples/filter
deps:
@go get github.com/mna/pigeon@master
@go get golang.org/x/tools/cmd/goimports
@go get golang.org/x/tools/cmd/cover
@go mod tidy
.PHONY: generate test coverage fmt deps bench examples expr-parse expr-eval filter

104
vendor/github.com/hashicorp/go-bexpr/README.md generated vendored Normal file
View File

@@ -0,0 +1,104 @@
# bexpr - Boolean Expression Evaluator [![GoDoc](https://godoc.org/github.com/hashicorp/go-bexpr?status.svg)](https://godoc.org/github.com/hashicorp/go-bexpr) [![CircleCI](https://circleci.com/gh/hashicorp/go-bexpr.svg?style=svg)](https://circleci.com/gh/hashicorp/go-bexpr)
`bexpr` is a Go (golang) library to provide generic boolean expression
evaluation and filtering for Go data structures and maps. Under the hood,
`bexpr` uses
[`pointerstructure`](https://github.com/mitchellh/pointerstructure), meaning
that any path within a map or structure that can be expressed via that library
can be used with `bexpr`. This also means that you can use the custom `bexpr`
dotted syntax (kept mainly for backwards compatibility) to select values in
expressions, or, by enclosing the selectors in quotes, you can use [JSON
Pointer](https://tools.ietf.org/html/rfc6901) syntax to select values in
expressions.
## Usage (Reflection)
This example program is available in [examples/simple](examples/simple)
```go
package main
import (
"fmt"
"github.com/hashicorp/go-bexpr"
)
type Example struct {
X int
// Can rename a field with the struct tag
Y string `bexpr:"y"`
Z bool `bexpr:"foo"`
// Tag with "-" to prevent allowing this field from being used
Hidden string `bexpr:"-"`
// Unexported fields are not available for evaluation
unexported string
}
func main() {
value := map[string]Example{
"foo": Example{X: 5, Y: "foo", Z: true, Hidden: "yes", unexported: "no"},
"bar": Example{X: 42, Y: "bar", Z: false, Hidden: "no", unexported: "yes"},
}
expressions := []string{
"foo.X == 5",
"bar.y == bar",
"foo.baz == true",
// will error in evaluator creation
"bar.Hidden != yes",
// will error in evaluator creation
"foo.unexported == no",
}
for _, expression := range expressions {
eval, err := bexpr.CreateEvaluator(expression)
if err != nil {
fmt.Printf("Failed to create evaluator for expression %q: %v\n", expression, err)
continue
}
result, err := eval.Evaluate(value)
if err != nil {
fmt.Printf("Failed to run evaluation of expression %q: %v\n", expression, err)
continue
}
fmt.Printf("Result of expression %q evaluation: %t\n", expression, result)
}
}
```
This will output:
```
Result of expression "foo.X == 5" evaluation: true
Result of expression "bar.y == bar" evaluation: true
Result of expression "foo.baz == true" evaluation: true
Failed to run evaluation of expression "bar.Hidden != yes": error finding value in datum: /bar/Hidden at part 1: struct field "Hidden" is ignored and cannot be used
Failed to run evaluation of expression "foo.unexported == no": error finding value in datum: /foo/unexported at part 1: couldn't find struct field with name "unexported"
```
## Testing
The [Makefile](Makefile) contains 3 main targets to aid with testing:
1. `make test` - runs the standard test suite
2. `make coverage` - runs the test suite gathering coverage information
3. `make bench` - this will run benchmarks. You can use the [`benchcmp`](https://godoc.org/golang.org/x/tools/cmd/benchcmp) tool to compare
subsequent runs of the tool to compare performance. There are a few arguments you can
provide to the make invocation to alter the behavior a bit
* `BENCHFULL=1` - This will enable running all the benchmarks. Some could be fairly redundant but
could be useful when modifying specific sections of the code.
* `BENCHTIME=5s` - By default the -benchtime paramater used for the `go test` invocation is `2s`.
`1s` seemed like too little to get results consistent enough for comparison between two runs.
For the highest degree of confidence that performance has remained steady increase this value
even further. The time it takes to run the bench testing suite grows linearly with this value.
* `BENCHTESTS=BenchmarkEvalute` - This is used to run a particular benchmark including all of its
sub-benchmarks. This is just an example and "BenchmarkEvaluate" can be replaced with any
benchmark functions name.

51
vendor/github.com/hashicorp/go-bexpr/bexpr.go generated vendored Normal file
View File

@@ -0,0 +1,51 @@
// bexpr is an implementation of a generic boolean expression evaluator.
// The general goal is to be able to evaluate some expression against some
// arbitrary data and get back a boolean of whether or not the data
// was matched by the expression
package bexpr
//go:generate pigeon -o grammar/grammar.go -optimize-parser grammar/grammar.peg
//go:generate goimports -w grammar/grammar.go
import (
"github.com/hashicorp/go-bexpr/grammar"
"github.com/mitchellh/pointerstructure"
)
// HookFn provides a way to translate one reflect.Value to another during
// evaluation by bexpr. This facilitates making Go structures appear in a way
// that matches the expected JSON Pointers used for evaluation. This is
// helpful, for example, when working with protocol buffers' well-known types.
type ValueTransformationHookFn = pointerstructure.ValueTransformationHookFn
type Evaluator struct {
// The syntax tree
ast grammar.Expression
tagName string
valueTransformationHook ValueTransformationHookFn
}
func CreateEvaluator(expression string, opts ...Option) (*Evaluator, error) {
parsedOpts := getOpts(opts...)
var parserOpts []grammar.Option
if parsedOpts.withMaxExpressions != 0 {
parserOpts = append(parserOpts, grammar.MaxExpressions(parsedOpts.withMaxExpressions))
}
ast, err := grammar.Parse("", []byte(expression), parserOpts...)
if err != nil {
return nil, err
}
eval := &Evaluator{
ast: ast.(grammar.Expression),
tagName: parsedOpts.withTagName,
valueTransformationHook: parsedOpts.withHookFn,
}
return eval, nil
}
func (eval *Evaluator) Evaluate(datum interface{}) (bool, error) {
return evaluate(eval.ast, datum, WithTagName(eval.tagName), WithHookFn(eval.valueTransformationHook))
}

46
vendor/github.com/hashicorp/go-bexpr/coerce.go generated vendored Normal file
View File

@@ -0,0 +1,46 @@
package bexpr
import (
"strconv"
)
// CoerceInt64 conforms to the FieldValueCoercionFn signature
// and can be used to convert the raw string value of
// an expression into an `int64`
func CoerceInt64(value string) (interface{}, error) {
i, err := strconv.ParseInt(value, 0, 64)
return int64(i), err
}
// CoerceUint64 conforms to the FieldValueCoercionFn signature
// and can be used to convert the raw string value of
// an expression into an `int64`
func CoerceUint64(value string) (interface{}, error) {
i, err := strconv.ParseUint(value, 0, 64)
return uint64(i), err
}
// CoerceBool conforms to the FieldValueCoercionFn signature
// and can be used to convert the raw string value of
// an expression into a `bool`
func CoerceBool(value string) (interface{}, error) {
return strconv.ParseBool(value)
}
// CoerceFloat32 conforms to the FieldValueCoercionFn signature
// and can be used to convert the raw string value of
// an expression into an `float32`
func CoerceFloat32(value string) (interface{}, error) {
// ParseFloat always returns a float64 but ensures
// it can be converted to a float32 without changing
// its value
f, err := strconv.ParseFloat(value, 32)
return float32(f), err
}
// CoerceFloat64 conforms to the FieldValueCoercionFn signature
// and can be used to convert the raw string value of
// an expression into an `float64`
func CoerceFloat64(value string) (interface{}, error) {
return strconv.ParseFloat(value, 64)
}

309
vendor/github.com/hashicorp/go-bexpr/evaluate.go generated vendored Normal file
View File

@@ -0,0 +1,309 @@
package bexpr
import (
"encoding/json"
"errors"
"fmt"
"reflect"
"regexp"
"strconv"
"strings"
"github.com/hashicorp/go-bexpr/grammar"
"github.com/mitchellh/pointerstructure"
)
var byteSliceTyp reflect.Type = reflect.TypeOf([]byte{})
func primitiveEqualityFn(kind reflect.Kind) func(first interface{}, second reflect.Value) bool {
switch kind {
case reflect.Bool:
return doEqualBool
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return doEqualInt64
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return doEqualUint64
case reflect.Float32:
return doEqualFloat32
case reflect.Float64:
return doEqualFloat64
case reflect.String:
return doEqualString
default:
return nil
}
}
func doEqualBool(first interface{}, second reflect.Value) bool {
return first.(bool) == second.Bool()
}
func doEqualInt64(first interface{}, second reflect.Value) bool {
return first.(int64) == second.Int()
}
func doEqualUint64(first interface{}, second reflect.Value) bool {
return first.(uint64) == second.Uint()
}
func doEqualFloat32(first interface{}, second reflect.Value) bool {
return first.(float32) == float32(second.Float())
}
func doEqualFloat64(first interface{}, second reflect.Value) bool {
return first.(float64) == second.Float()
}
func doEqualString(first interface{}, second reflect.Value) bool {
return first.(string) == second.String()
}
// Get rid of 0 to many levels of pointers to get at the real type
func derefType(rtype reflect.Type) reflect.Type {
for rtype.Kind() == reflect.Ptr {
rtype = rtype.Elem()
}
return rtype
}
func doMatchMatches(expression *grammar.MatchExpression, value reflect.Value) (bool, error) {
if !value.Type().ConvertibleTo(byteSliceTyp) {
return false, fmt.Errorf("Value of type %s is not convertible to []byte", value.Type())
}
var re *regexp.Regexp
var ok bool
if expression.Value.Converted != nil {
re, ok = expression.Value.Converted.(*regexp.Regexp)
}
if !ok || re == nil {
var err error
re, err = regexp.Compile(expression.Value.Raw)
if err != nil {
return false, fmt.Errorf("Failed to compile regular expression %q: %v", expression.Value.Raw, err)
}
expression.Value.Converted = re
}
return re.Match(value.Convert(byteSliceTyp).Interface().([]byte)), nil
}
func doMatchEqual(expression *grammar.MatchExpression, value reflect.Value) (bool, error) {
// NOTE: see preconditions in evaluategrammar.MatchExpressionRecurse
eqFn := primitiveEqualityFn(value.Kind())
if eqFn == nil {
return false, errors.New("unable to find suitable primitive comparison function for matching")
}
matchValue, err := getMatchExprValue(expression, value.Kind())
if err != nil {
return false, fmt.Errorf("error getting match value in expression: %w", err)
}
return eqFn(matchValue, value), nil
}
func doMatchIn(expression *grammar.MatchExpression, value reflect.Value) (bool, error) {
matchValue, err := getMatchExprValue(expression, value.Kind())
if err != nil {
return false, fmt.Errorf("error getting match value in expression: %w", err)
}
switch kind := value.Kind(); kind {
case reflect.Map:
found := value.MapIndex(reflect.ValueOf(matchValue))
return found.IsValid(), nil
case reflect.Slice, reflect.Array:
itemType := derefType(value.Type().Elem())
kind := itemType.Kind()
switch kind {
case reflect.Interface:
// If it's an interface, that is, the type was []interface{}, we
// have to treat each element individually, checking each element's
// type/kind and rederiving the match value.
for i := 0; i < value.Len(); i++ {
item := value.Index(i).Elem()
itemType := derefType(item.Type())
kind := itemType.Kind()
// We need to special case errors here. The reason is that in an
// interface slice there can be a mix/match of types, but the
// coerce functions expect a certain type. So the expression
// passed in might be `"true" in "/my/slice"` but the value it's
// checking against might be an integer, thus it will try to
// coerce "true" to an integer and fail. However, all of the
// functions use strconv which has a specific error type for
// syntax errors, so as a special case in this situation, don't
// error on a strconv.ErrSyntax, just continue on to the next
// element.
matchValue, err = getMatchExprValue(expression, kind)
if err != nil {
if errors.Is(err, strconv.ErrSyntax) {
continue
}
return false, errors.New(`error getting interface slice match value in expression`)
}
eqFn := primitiveEqualityFn(kind)
if eqFn == nil {
return false, fmt.Errorf(`unable to find suitable primitive comparison function for "in" comparison in interface slice: %s`, kind)
}
// the value will be the correct type as we verified the itemType
if eqFn(matchValue, reflect.Indirect(item)) {
return true, nil
}
}
return false, nil
default:
// Otherwise it's a concrete type and we can essentially cache the
// answers. First we need to re-derive the match value for equality
// assertion.
matchValue, err = getMatchExprValue(expression, kind)
if err != nil {
return false, fmt.Errorf("error getting match value in expression: %w", err)
}
eqFn := primitiveEqualityFn(kind)
if eqFn == nil {
return false, errors.New(`unable to find suitable primitive comparison function for "in" comparison`)
}
for i := 0; i < value.Len(); i++ {
item := value.Index(i)
// the value will be the correct type as we verified the itemType
if eqFn(matchValue, reflect.Indirect(item)) {
return true, nil
}
}
return false, nil
}
case reflect.String:
return strings.Contains(value.String(), matchValue.(string)), nil
default:
return false, fmt.Errorf("Cannot perform in/contains operations on type %s for selector: %q", kind, expression.Selector)
}
}
func doMatchIsEmpty(matcher *grammar.MatchExpression, value reflect.Value) (bool, error) {
// NOTE: see preconditions in evaluategrammar.MatchExpressionRecurse
return value.Len() == 0, nil
}
func getMatchExprValue(expression *grammar.MatchExpression, rvalue reflect.Kind) (interface{}, error) {
if expression.Value == nil {
return nil, nil
}
switch rvalue {
case reflect.Bool:
return CoerceBool(expression.Value.Raw)
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return CoerceInt64(expression.Value.Raw)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return CoerceUint64(expression.Value.Raw)
case reflect.Float32:
return CoerceFloat32(expression.Value.Raw)
case reflect.Float64:
return CoerceFloat64(expression.Value.Raw)
default:
return expression.Value.Raw, nil
}
}
func evaluateMatchExpression(expression *grammar.MatchExpression, datum interface{}, opt ...Option) (bool, error) {
opts := getOpts(opt...)
ptr := pointerstructure.Pointer{
Parts: expression.Selector.Path,
Config: pointerstructure.Config{
TagName: opts.withTagName,
ValueTransformationHook: opts.withHookFn,
},
}
val, err := ptr.Get(datum)
if err != nil {
return false, fmt.Errorf("error finding value in datum: %w", err)
}
if jn, ok := val.(json.Number); ok {
if jni, err := jn.Int64(); err == nil {
val = jni
} else if jnf, err := jn.Float64(); err == nil {
val = jnf
} else {
return false, fmt.Errorf("unable to convert json number %s to int or float", jn)
}
}
rvalue := reflect.Indirect(reflect.ValueOf(val))
switch expression.Operator {
case grammar.MatchEqual:
return doMatchEqual(expression, rvalue)
case grammar.MatchNotEqual:
result, err := doMatchEqual(expression, rvalue)
if err == nil {
return !result, nil
}
return false, err
case grammar.MatchIn:
return doMatchIn(expression, rvalue)
case grammar.MatchNotIn:
result, err := doMatchIn(expression, rvalue)
if err == nil {
return !result, nil
}
return false, err
case grammar.MatchIsEmpty:
return doMatchIsEmpty(expression, rvalue)
case grammar.MatchIsNotEmpty:
result, err := doMatchIsEmpty(expression, rvalue)
if err == nil {
return !result, nil
}
return false, err
case grammar.MatchMatches:
return doMatchMatches(expression, rvalue)
case grammar.MatchNotMatches:
result, err := doMatchMatches(expression, rvalue)
if err == nil {
return !result, nil
}
return false, err
default:
return false, fmt.Errorf("Invalid match operation: %d", expression.Operator)
}
}
func evaluate(ast grammar.Expression, datum interface{}, opt ...Option) (bool, error) {
switch node := ast.(type) {
case *grammar.UnaryExpression:
switch node.Operator {
case grammar.UnaryOpNot:
result, err := evaluate(node.Operand, datum, opt...)
return !result, err
}
case *grammar.BinaryExpression:
switch node.Operator {
case grammar.BinaryOpAnd:
result, err := evaluate(node.Left, datum, opt...)
if err != nil || !result {
return result, err
}
return evaluate(node.Right, datum, opt...)
case grammar.BinaryOpOr:
result, err := evaluate(node.Left, datum, opt...)
if err != nil || result {
return result, err
}
return evaluate(node.Right, datum, opt...)
}
case *grammar.MatchExpression:
return evaluateMatchExpression(node, datum, opt...)
}
return false, fmt.Errorf("Invalid AST node")
}

93
vendor/github.com/hashicorp/go-bexpr/filter.go generated vendored Normal file
View File

@@ -0,0 +1,93 @@
package bexpr
import (
"fmt"
"reflect"
)
type Filter struct {
// The underlying boolean expression evaluator
evaluator *Evaluator
}
// Creates a filter to operate on the given data type.
// The data type passed can be either be a container type (map, slice or array) or the element type.
// For example, if you want to filter a []Foo then the data type to pass here is either []Foo or just Foo.
// If no expression is provided the nil filter will be returned but is not an error. This is done
// to allow for executing the nil filter which is just a no-op
func CreateFilter(expression string) (*Filter, error) {
if expression == "" {
// nil filter
return nil, nil
}
exp, err := CreateEvaluator(expression)
if err != nil {
return nil, fmt.Errorf("Failed to create boolean expression evaluator: %v", err)
}
return &Filter{
evaluator: exp,
}, nil
}
// Execute the filter. If called on a nil filter this is a no-op and
// will return the original data
func (f *Filter) Execute(data interface{}) (interface{}, error) {
if f == nil {
return data, nil
}
rvalue := reflect.ValueOf(data)
rtype := rvalue.Type()
switch rvalue.Kind() {
case reflect.Array:
// For arrays we return slices instead of fixed sized arrays
rtype = reflect.SliceOf(rtype.Elem())
fallthrough
case reflect.Slice:
newSlice := reflect.MakeSlice(rtype, 0, rvalue.Len())
for i := 0; i < rvalue.Len(); i++ {
item := rvalue.Index(i)
if !item.CanInterface() {
return nil, fmt.Errorf("Slice/Array value can not be used")
}
result, err := f.evaluator.Evaluate(item.Interface())
if err != nil {
return nil, err
}
if result {
newSlice = reflect.Append(newSlice, item)
}
}
return newSlice.Interface(), nil
case reflect.Map:
newMap := reflect.MakeMap(rtype)
// TODO (mkeeler) - Update to use a MapRange iterator once Go 1.12 is usable
// for all of our products
for _, mapKey := range rvalue.MapKeys() {
item := rvalue.MapIndex(mapKey)
if !item.CanInterface() {
return nil, fmt.Errorf("Map value cannot be used")
}
result, err := f.evaluator.Evaluate(item.Interface())
if err != nil {
return nil, err
}
if result {
newMap.SetMapIndex(mapKey, item)
}
}
return newMap.Interface(), nil
default:
return nil, fmt.Errorf("Only slices, arrays and maps are filterable")
}
}

155
vendor/github.com/hashicorp/go-bexpr/grammar/ast.go generated vendored Normal file
View File

@@ -0,0 +1,155 @@
package grammar
import (
"fmt"
"io"
"strings"
)
// TODO - Probably should make most of what is in here un-exported
type Expression interface {
ExpressionDump(w io.Writer, indent string, level int)
}
type UnaryOperator int
const (
UnaryOpNot UnaryOperator = iota
)
func (op UnaryOperator) String() string {
switch op {
case UnaryOpNot:
return "Not"
default:
return "UNKNOWN"
}
}
type BinaryOperator int
const (
BinaryOpAnd BinaryOperator = iota
BinaryOpOr
)
func (op BinaryOperator) String() string {
switch op {
case BinaryOpAnd:
return "And"
case BinaryOpOr:
return "Or"
default:
return "UNKNOWN"
}
}
type MatchOperator int
const (
MatchEqual MatchOperator = iota
MatchNotEqual
MatchIn
MatchNotIn
MatchIsEmpty
MatchIsNotEmpty
MatchMatches
MatchNotMatches
)
func (op MatchOperator) String() string {
switch op {
case MatchEqual:
return "Equal"
case MatchNotEqual:
return "Not Equal"
case MatchIn:
return "In"
case MatchNotIn:
return "Not In"
case MatchIsEmpty:
return "Is Empty"
case MatchIsNotEmpty:
return "Is Not Empty"
case MatchMatches:
return "Matches"
case MatchNotMatches:
return "Not Matches"
default:
return "UNKNOWN"
}
}
type MatchValue struct {
Raw string
Converted interface{}
}
type UnaryExpression struct {
Operator UnaryOperator
Operand Expression
}
type BinaryExpression struct {
Left Expression
Operator BinaryOperator
Right Expression
}
type SelectorType uint32
const (
SelectorTypeUnknown = iota
SelectorTypeBexpr
SelectorTypeJsonPointer
)
type Selector struct {
Type SelectorType
Path []string
}
func (sel Selector) String() string {
if len(sel.Path) == 0 {
return ""
}
switch sel.Type {
case SelectorTypeBexpr:
return strings.Join(sel.Path, ".")
case SelectorTypeJsonPointer:
return strings.Join(sel.Path, "/")
default:
return ""
}
}
type MatchExpression struct {
Selector Selector
Operator MatchOperator
Value *MatchValue
}
func (expr *UnaryExpression) ExpressionDump(w io.Writer, indent string, level int) {
localIndent := strings.Repeat(indent, level)
fmt.Fprintf(w, "%s%s {\n", localIndent, expr.Operator.String())
expr.Operand.ExpressionDump(w, indent, level+1)
fmt.Fprintf(w, "%s}\n", localIndent)
}
func (expr *BinaryExpression) ExpressionDump(w io.Writer, indent string, level int) {
localIndent := strings.Repeat(indent, level)
fmt.Fprintf(w, "%s%s {\n", localIndent, expr.Operator.String())
expr.Left.ExpressionDump(w, indent, level+1)
expr.Right.ExpressionDump(w, indent, level+1)
fmt.Fprintf(w, "%s}\n", localIndent)
}
func (expr *MatchExpression) ExpressionDump(w io.Writer, indent string, level int) {
switch expr.Operator {
case MatchEqual, MatchNotEqual, MatchIn, MatchNotIn:
fmt.Fprintf(w, "%[1]s%[3]s {\n%[2]sSelector: %[4]v\n%[2]sValue: %[5]q\n%[1]s}\n", strings.Repeat(indent, level), strings.Repeat(indent, level+1), expr.Operator.String(), expr.Selector, expr.Value.Raw)
default:
fmt.Fprintf(w, "%[1]s%[3]s {\n%[2]sSelector: %[4]v\n%[1]s}\n", strings.Repeat(indent, level), strings.Repeat(indent, level+1), expr.Operator.String(), expr.Selector)
}
}

3107
vendor/github.com/hashicorp/go-bexpr/grammar/grammar.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,193 @@
{
package grammar
import (
"strconv"
"strings"
"github.com/mitchellh/pointerstructure"
)
}
Input <- _? "(" _? expr:OrExpression _? ")" _? EOF {
return expr, nil
} / _? expr:OrExpression _? EOF {
return expr, nil
}
OrExpression <- left:AndExpression _ "or" _ right:OrExpression {
return &BinaryExpression{
Operator: BinaryOpOr,
Left: left.(Expression),
Right: right.(Expression),
}, nil
} / expr:AndExpression {
return expr, nil
}
AndExpression <- left:NotExpression _ "and" _ right:AndExpression {
return &BinaryExpression{
Operator: BinaryOpAnd,
Left: left.(Expression),
Right: right.(Expression),
}, nil
} / expr:NotExpression {
return expr, nil
}
NotExpression <- "not" _ expr:NotExpression {
if unary, ok := expr.(*UnaryExpression); ok && unary.Operator == UnaryOpNot {
// small optimization to get rid unnecessary levels of AST nodes
// for things like: not not foo == 3 which is equivalent to foo == 3
return unary.Operand, nil
}
return &UnaryExpression{
Operator: UnaryOpNot,
Operand: expr.(Expression),
}, nil
} / expr:ParenthesizedExpression {
return expr, nil
}
ParenthesizedExpression "grouping" <- "(" _? expr:OrExpression _? ")" {
return expr, nil
} / expr:MatchExpression {
return expr, nil
} / "(" _? OrExpression _? !")" &{
return false, errors.New("Unmatched parentheses")
}
MatchExpression "match" <- MatchSelectorOpValue / MatchSelectorOp / MatchValueOpSelector
MatchSelectorOpValue "match" <- selector:Selector operator:(MatchEqual / MatchNotEqual / MatchContains / MatchNotContains / MatchMatches / MatchNotMatches) value:Value {
return &MatchExpression{Selector: selector.(Selector), Operator: operator.(MatchOperator), Value: value.(*MatchValue)}, nil
}
MatchSelectorOp "match" <- selector:Selector operator:(MatchIsEmpty / MatchIsNotEmpty) {
return &MatchExpression{Selector: selector.(Selector), Operator: operator.(MatchOperator), Value: nil}, nil
}
MatchValueOpSelector "match" <- value:Value operator:(MatchIn / MatchNotIn) selector:Selector {
return &MatchExpression{Selector: selector.(Selector), Operator: operator.(MatchOperator), Value: value.(*MatchValue)}, nil
} / Value operator:(MatchIn / MatchNotIn) !Selector &{
return false, errors.New("Invalid selector")
}
MatchEqual <- _? "==" _? {
return MatchEqual, nil
}
MatchNotEqual <- _? "!=" _? {
return MatchNotEqual, nil
}
MatchIsEmpty <- _ "is" _ "empty" {
return MatchIsEmpty, nil
}
MatchIsNotEmpty <- _"is" _ "not" _ "empty" {
return MatchIsNotEmpty, nil
}
MatchIn <- _ "in" _ {
return MatchIn, nil
}
MatchNotIn <- _ "not" _ "in" _ {
return MatchNotIn, nil
}
MatchContains <- _ "contains" _ {
return MatchIn, nil
}
MatchNotContains <- _ "not" _ "contains" _ {
return MatchNotIn, nil
}
MatchMatches <- _ "matches" _ {
return MatchMatches, nil
}
MatchNotMatches <- _ "not" _ "matches" _ {
return MatchNotMatches, nil
}
Selector "selector" <- first:Identifier rest:SelectorOrIndex* {
sel := Selector{
Type: SelectorTypeBexpr,
Path: []string{first.(string)},
}
if rest != nil {
for _, v := range rest.([]interface{}) {
sel.Path = append(sel.Path, v.(string))
}
}
return sel, nil
} / '"' ptrsegs:JsonPointerSegment* '"' {
sel := Selector{
Type: SelectorTypeJsonPointer,
}
if ptrsegs != nil {
for _, v := range ptrsegs.([]interface{}) {
sel.Path = append(sel.Path, v.(string))
}
}
// Validate and cache
ptrStr := fmt.Sprintf("/%s", strings.Join(sel.Path, "/"))
ptr, err := pointerstructure.Parse(ptrStr)
if err != nil {
return nil, fmt.Errorf("error validating json pointer: %w", err)
}
sel.Path = ptr.Parts
return sel, nil
}
JsonPointerSegment <- '/' ident:[\pL\pN-_.~:|]+ {
return string(c.text)[1:], nil
}
Identifier <- [a-zA-Z] [a-zA-Z0-9_/]* {
return string(c.text), nil
}
SelectorOrIndex <- "." ident:Identifier {
return ident, nil
} / expr:IndexExpression {
return expr, nil
} / "." idx:[0-9]+ {
return string(c.text)[1:], nil
}
IndexExpression "index" <- "[" _? lit:StringLiteral _? "]" {
return lit, nil
} / "[" _? !StringLiteral &{
return false, errors.New("Invalid index")
} / "[" _? StringLiteral _? !"]" &{
return false, errors.New("Unclosed index expression")
}
Value "value" <- selector:Selector {
return &MatchValue{Raw:selector.(Selector).String()}, nil
} / n:NumberLiteral {
return &MatchValue{Raw: n.(string)}, nil
} / s:StringLiteral {
return &MatchValue{Raw: s.(string)}, nil
}
NumberLiteral "number" <- "-"? IntegerOrFloat &AfterNumbers {
return string(c.text), nil
} / "-"? IntegerOrFloat !AfterNumbers &{
return false, errors.New("Invalid number literal")
}
AfterNumbers <- &(_ / EOF / ")")
IntegerOrFloat <- ("0" / [1-9][0-9]*) ("." [0-9]+)?
StringLiteral "string" <- ('`' RawStringChar* '`' / '"' DoubleStringChar* '"') {
return strconv.Unquote(string(c.text))
} / ('`' RawStringChar* / '"' DoubleStringChar*) EOF &{
return false, errors.New("Unterminated string literal")
}
RawStringChar <- !'`' .
DoubleStringChar <- !'"' .
_ "whitespace" <- [ \t\r\n]+
EOF <- !.

52
vendor/github.com/hashicorp/go-bexpr/options.go generated vendored Normal file
View File

@@ -0,0 +1,52 @@
package bexpr
// getOpts - iterate the inbound Options and return a struct
func getOpts(opt ...Option) options {
opts := getDefaultOptions()
for _, o := range opt {
if o != nil {
o(&opts)
}
}
return opts
}
// Option - how Options are passed as arguments
type Option func(*options)
// options = how options are represented
type options struct {
withMaxExpressions uint64
withTagName string
withHookFn ValueTransformationHookFn
}
func WithMaxExpressions(maxExprCnt uint64) Option {
return func(o *options) {
o.withMaxExpressions = maxExprCnt
}
}
// WithTagName indictes what tag to use instead of the default "bexpr"
func WithTagName(tagName string) Option {
return func(o *options) {
o.withTagName = tagName
}
}
// WithHookFn sets a HookFn to be called on the Go data under evaluation
// and all subfields, indexes, and values recursively. That makes it
// easier for the JSON Pointer to not match exactly the Go value being
// evaluated (for example, when using protocol buffers' well-known types).
func WithHookFn(fn ValueTransformationHookFn) Option {
return func(o *options) {
o.withHookFn = fn
}
}
func getDefaultOptions() options {
return options{
withMaxExpressions: 0,
withTagName: "bexpr",
}
}

353
vendor/github.com/hashicorp/go-multierror/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,353 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

31
vendor/github.com/hashicorp/go-multierror/Makefile generated vendored Normal file
View File

@@ -0,0 +1,31 @@
TEST?=./...
default: test
# test runs the test suite and vets the code.
test: generate
@echo "==> Running tests..."
@go list $(TEST) \
| grep -v "/vendor/" \
| xargs -n1 go test -timeout=60s -parallel=10 ${TESTARGS}
# testrace runs the race checker
testrace: generate
@echo "==> Running tests (race)..."
@go list $(TEST) \
| grep -v "/vendor/" \
| xargs -n1 go test -timeout=60s -race ${TESTARGS}
# updatedeps installs all the dependencies needed to run and build.
updatedeps:
@sh -c "'${CURDIR}/scripts/deps.sh' '${NAME}'"
# generate runs `go generate` to build the dynamically generated source files.
generate:
@echo "==> Generating..."
@find . -type f -name '.DS_Store' -delete
@go list ./... \
| grep -v "/vendor/" \
| xargs -n1 go generate
.PHONY: default test testrace updatedeps generate

150
vendor/github.com/hashicorp/go-multierror/README.md generated vendored Normal file
View File

@@ -0,0 +1,150 @@
# go-multierror
[![CircleCI](https://img.shields.io/circleci/build/github/hashicorp/go-multierror/master)](https://circleci.com/gh/hashicorp/go-multierror)
[![Go Reference](https://pkg.go.dev/badge/github.com/hashicorp/go-multierror.svg)](https://pkg.go.dev/github.com/hashicorp/go-multierror)
![GitHub go.mod Go version](https://img.shields.io/github/go-mod/go-version/hashicorp/go-multierror)
[circleci]: https://app.circleci.com/pipelines/github/hashicorp/go-multierror
[godocs]: https://pkg.go.dev/github.com/hashicorp/go-multierror
`go-multierror` is a package for Go that provides a mechanism for
representing a list of `error` values as a single `error`.
This allows a function in Go to return an `error` that might actually
be a list of errors. If the caller knows this, they can unwrap the
list and access the errors. If the caller doesn't know, the error
formats to a nice human-readable format.
`go-multierror` is fully compatible with the Go standard library
[errors](https://golang.org/pkg/errors/) package, including the
functions `As`, `Is`, and `Unwrap`. This provides a standardized approach
for introspecting on error values.
## Installation and Docs
Install using `go get github.com/hashicorp/go-multierror`.
Full documentation is available at
https://pkg.go.dev/github.com/hashicorp/go-multierror
### Requires go version 1.13 or newer
`go-multierror` requires go version 1.13 or newer. Go 1.13 introduced
[error wrapping](https://golang.org/doc/go1.13#error_wrapping), which
this library takes advantage of.
If you need to use an earlier version of go, you can use the
[v1.0.0](https://github.com/hashicorp/go-multierror/tree/v1.0.0)
tag, which doesn't rely on features in go 1.13.
If you see compile errors that look like the below, it's likely that
you're on an older version of go:
```
/go/src/github.com/hashicorp/go-multierror/multierror.go:112:9: undefined: errors.As
/go/src/github.com/hashicorp/go-multierror/multierror.go:117:9: undefined: errors.Is
```
## Usage
go-multierror is easy to use and purposely built to be unobtrusive in
existing Go applications/libraries that may not be aware of it.
**Building a list of errors**
The `Append` function is used to create a list of errors. This function
behaves a lot like the Go built-in `append` function: it doesn't matter
if the first argument is nil, a `multierror.Error`, or any other `error`,
the function behaves as you would expect.
```go
var result error
if err := step1(); err != nil {
result = multierror.Append(result, err)
}
if err := step2(); err != nil {
result = multierror.Append(result, err)
}
return result
```
**Customizing the formatting of the errors**
By specifying a custom `ErrorFormat`, you can customize the format
of the `Error() string` function:
```go
var result *multierror.Error
// ... accumulate errors here, maybe using Append
if result != nil {
result.ErrorFormat = func([]error) string {
return "errors!"
}
}
```
**Accessing the list of errors**
`multierror.Error` implements `error` so if the caller doesn't know about
multierror, it will work just fine. But if you're aware a multierror might
be returned, you can use type switches to access the list of errors:
```go
if err := something(); err != nil {
if merr, ok := err.(*multierror.Error); ok {
// Use merr.Errors
}
}
```
You can also use the standard [`errors.Unwrap`](https://golang.org/pkg/errors/#Unwrap)
function. This will continue to unwrap into subsequent errors until none exist.
**Extracting an error**
The standard library [`errors.As`](https://golang.org/pkg/errors/#As)
function can be used directly with a multierror to extract a specific error:
```go
// Assume err is a multierror value
err := somefunc()
// We want to know if "err" has a "RichErrorType" in it and extract it.
var errRich RichErrorType
if errors.As(err, &errRich) {
// It has it, and now errRich is populated.
}
```
**Checking for an exact error value**
Some errors are returned as exact errors such as the [`ErrNotExist`](https://golang.org/pkg/os/#pkg-variables)
error in the `os` package. You can check if this error is present by using
the standard [`errors.Is`](https://golang.org/pkg/errors/#Is) function.
```go
// Assume err is a multierror value
err := somefunc()
if errors.Is(err, os.ErrNotExist) {
// err contains os.ErrNotExist
}
```
**Returning a multierror only if there are errors**
If you build a `multierror.Error`, you can use the `ErrorOrNil` function
to return an `error` implementation only if there are errors to return:
```go
var result *multierror.Error
// ... accumulate errors here
// Return the `error` only if errors were added to the multierror, otherwise
// return nil since there are no errors.
return result.ErrorOrNil()
```

43
vendor/github.com/hashicorp/go-multierror/append.go generated vendored Normal file
View File

@@ -0,0 +1,43 @@
package multierror
// Append is a helper function that will append more errors
// onto an Error in order to create a larger multi-error.
//
// If err is not a multierror.Error, then it will be turned into
// one. If any of the errs are multierr.Error, they will be flattened
// one level into err.
// Any nil errors within errs will be ignored. If err is nil, a new
// *Error will be returned.
func Append(err error, errs ...error) *Error {
switch err := err.(type) {
case *Error:
// Typed nils can reach here, so initialize if we are nil
if err == nil {
err = new(Error)
}
// Go through each error and flatten
for _, e := range errs {
switch e := e.(type) {
case *Error:
if e != nil {
err.Errors = append(err.Errors, e.Errors...)
}
default:
if e != nil {
err.Errors = append(err.Errors, e)
}
}
}
return err
default:
newErrs := make([]error, 0, len(errs)+1)
if err != nil {
newErrs = append(newErrs, err)
}
newErrs = append(newErrs, errs...)
return Append(&Error{}, newErrs...)
}
}

26
vendor/github.com/hashicorp/go-multierror/flatten.go generated vendored Normal file
View File

@@ -0,0 +1,26 @@
package multierror
// Flatten flattens the given error, merging any *Errors together into
// a single *Error.
func Flatten(err error) error {
// If it isn't an *Error, just return the error as-is
if _, ok := err.(*Error); !ok {
return err
}
// Otherwise, make the result and flatten away!
flatErr := new(Error)
flatten(err, flatErr)
return flatErr
}
func flatten(err error, flatErr *Error) {
switch err := err.(type) {
case *Error:
for _, e := range err.Errors {
flatten(e, flatErr)
}
default:
flatErr.Errors = append(flatErr.Errors, err)
}
}

27
vendor/github.com/hashicorp/go-multierror/format.go generated vendored Normal file
View File

@@ -0,0 +1,27 @@
package multierror
import (
"fmt"
"strings"
)
// ErrorFormatFunc is a function callback that is called by Error to
// turn the list of errors into a string.
type ErrorFormatFunc func([]error) string
// ListFormatFunc is a basic formatter that outputs the number of errors
// that occurred along with a bullet point list of the errors.
func ListFormatFunc(es []error) string {
if len(es) == 1 {
return fmt.Sprintf("1 error occurred:\n\t* %s\n\n", es[0])
}
points := make([]string, len(es))
for i, err := range es {
points[i] = fmt.Sprintf("* %s", err)
}
return fmt.Sprintf(
"%d errors occurred:\n\t%s\n\n",
len(es), strings.Join(points, "\n\t"))
}

38
vendor/github.com/hashicorp/go-multierror/group.go generated vendored Normal file
View File

@@ -0,0 +1,38 @@
package multierror
import "sync"
// Group is a collection of goroutines which return errors that need to be
// coalesced.
type Group struct {
mutex sync.Mutex
err *Error
wg sync.WaitGroup
}
// Go calls the given function in a new goroutine.
//
// If the function returns an error it is added to the group multierror which
// is returned by Wait.
func (g *Group) Go(f func() error) {
g.wg.Add(1)
go func() {
defer g.wg.Done()
if err := f(); err != nil {
g.mutex.Lock()
g.err = Append(g.err, err)
g.mutex.Unlock()
}
}()
}
// Wait blocks until all function calls from the Go method have returned, then
// returns the multierror.
func (g *Group) Wait() *Error {
g.wg.Wait()
g.mutex.Lock()
defer g.mutex.Unlock()
return g.err
}

121
vendor/github.com/hashicorp/go-multierror/multierror.go generated vendored Normal file
View File

@@ -0,0 +1,121 @@
package multierror
import (
"errors"
"fmt"
)
// Error is an error type to track multiple errors. This is used to
// accumulate errors in cases and return them as a single "error".
type Error struct {
Errors []error
ErrorFormat ErrorFormatFunc
}
func (e *Error) Error() string {
fn := e.ErrorFormat
if fn == nil {
fn = ListFormatFunc
}
return fn(e.Errors)
}
// ErrorOrNil returns an error interface if this Error represents
// a list of errors, or returns nil if the list of errors is empty. This
// function is useful at the end of accumulation to make sure that the value
// returned represents the existence of errors.
func (e *Error) ErrorOrNil() error {
if e == nil {
return nil
}
if len(e.Errors) == 0 {
return nil
}
return e
}
func (e *Error) GoString() string {
return fmt.Sprintf("*%#v", *e)
}
// WrappedErrors returns the list of errors that this Error is wrapping. It is
// an implementation of the errwrap.Wrapper interface so that multierror.Error
// can be used with that library.
//
// This method is not safe to be called concurrently. Unlike accessing the
// Errors field directly, this function also checks if the multierror is nil to
// prevent a null-pointer panic. It satisfies the errwrap.Wrapper interface.
func (e *Error) WrappedErrors() []error {
if e == nil {
return nil
}
return e.Errors
}
// Unwrap returns an error from Error (or nil if there are no errors).
// This error returned will further support Unwrap to get the next error,
// etc. The order will match the order of Errors in the multierror.Error
// at the time of calling.
//
// The resulting error supports errors.As/Is/Unwrap so you can continue
// to use the stdlib errors package to introspect further.
//
// This will perform a shallow copy of the errors slice. Any errors appended
// to this error after calling Unwrap will not be available until a new
// Unwrap is called on the multierror.Error.
func (e *Error) Unwrap() error {
// If we have no errors then we do nothing
if e == nil || len(e.Errors) == 0 {
return nil
}
// If we have exactly one error, we can just return that directly.
if len(e.Errors) == 1 {
return e.Errors[0]
}
// Shallow copy the slice
errs := make([]error, len(e.Errors))
copy(errs, e.Errors)
return chain(errs)
}
// chain implements the interfaces necessary for errors.Is/As/Unwrap to
// work in a deterministic way with multierror. A chain tracks a list of
// errors while accounting for the current represented error. This lets
// Is/As be meaningful.
//
// Unwrap returns the next error. In the cleanest form, Unwrap would return
// the wrapped error here but we can't do that if we want to properly
// get access to all the errors. Instead, users are recommended to use
// Is/As to get the correct error type out.
//
// Precondition: []error is non-empty (len > 0)
type chain []error
// Error implements the error interface
func (e chain) Error() string {
return e[0].Error()
}
// Unwrap implements errors.Unwrap by returning the next error in the
// chain or nil if there are no more errors.
func (e chain) Unwrap() error {
if len(e) == 1 {
return nil
}
return e[1:]
}
// As implements errors.As by attempting to map to the current value.
func (e chain) As(target interface{}) bool {
return errors.As(e[0], target)
}
// Is implements errors.Is by comparing the current value directly.
func (e chain) Is(target error) bool {
return errors.Is(e[0], target)
}

37
vendor/github.com/hashicorp/go-multierror/prefix.go generated vendored Normal file
View File

@@ -0,0 +1,37 @@
package multierror
import (
"fmt"
"github.com/hashicorp/errwrap"
)
// Prefix is a helper function that will prefix some text
// to the given error. If the error is a multierror.Error, then
// it will be prefixed to each wrapped error.
//
// This is useful to use when appending multiple multierrors
// together in order to give better scoping.
func Prefix(err error, prefix string) error {
if err == nil {
return nil
}
format := fmt.Sprintf("%s {{err}}", prefix)
switch err := err.(type) {
case *Error:
// Typed nils can reach here, so initialize if we are nil
if err == nil {
err = new(Error)
}
// Wrap each of the errors
for i, e := range err.Errors {
err.Errors[i] = errwrap.Wrapf(format, e)
}
return err
default:
return errwrap.Wrapf(format, err)
}
}

16
vendor/github.com/hashicorp/go-multierror/sort.go generated vendored Normal file
View File

@@ -0,0 +1,16 @@
package multierror
// Len implements sort.Interface function for length
func (err Error) Len() int {
return len(err.Errors)
}
// Swap implements sort.Interface function for swapping elements
func (err Error) Swap(i, j int) {
err.Errors[i], err.Errors[j] = err.Errors[j], err.Errors[i]
}
// Less implements sort.Interface function for determining order
func (err Error) Less(i, j int) bool {
return err.Errors[i].Error() < err.Errors[j].Error()
}

13
vendor/github.com/hashicorp/go-version/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,13 @@
language: go
go:
- 1.2
- 1.3
- 1.4
- 1.9
- "1.10"
- 1.11
- 1.12
script:
- go test

354
vendor/github.com/hashicorp/go-version/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,354 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

65
vendor/github.com/hashicorp/go-version/README.md generated vendored Normal file
View File

@@ -0,0 +1,65 @@
# Versioning Library for Go
[![Build Status](https://travis-ci.org/hashicorp/go-version.svg?branch=master)](https://travis-ci.org/hashicorp/go-version)
go-version is a library for parsing versions and version constraints,
and verifying versions against a set of constraints. go-version
can sort a collection of versions properly, handles prerelease/beta
versions, can increment versions, etc.
Versions used with go-version must follow [SemVer](http://semver.org/).
## Installation and Usage
Package documentation can be found on
[GoDoc](http://godoc.org/github.com/hashicorp/go-version).
Installation can be done with a normal `go get`:
```
$ go get github.com/hashicorp/go-version
```
#### Version Parsing and Comparison
```go
v1, err := version.NewVersion("1.2")
v2, err := version.NewVersion("1.5+metadata")
// Comparison example. There is also GreaterThan, Equal, and just
// a simple Compare that returns an int allowing easy >=, <=, etc.
if v1.LessThan(v2) {
fmt.Printf("%s is less than %s", v1, v2)
}
```
#### Version Constraints
```go
v1, err := version.NewVersion("1.2")
// Constraints example.
constraints, err := version.NewConstraint(">= 1.0, < 1.4")
if constraints.Check(v1) {
fmt.Printf("%s satisfies constraints %s", v1, constraints)
}
```
#### Version Sorting
```go
versionsRaw := []string{"1.1", "0.7.1", "1.4-beta", "1.4", "2"}
versions := make([]*version.Version, len(versionsRaw))
for i, raw := range versionsRaw {
v, _ := version.NewVersion(raw)
versions[i] = v
}
// After this, the versions are properly sorted
sort.Sort(version.Collection(versions))
```
## Issues and Contributing
If you find an issue with this library, please report an issue. If you'd
like, we welcome any contributions. Fork this library and submit a pull
request.

204
vendor/github.com/hashicorp/go-version/constraint.go generated vendored Normal file
View File

@@ -0,0 +1,204 @@
package version
import (
"fmt"
"reflect"
"regexp"
"strings"
)
// Constraint represents a single constraint for a version, such as
// ">= 1.0".
type Constraint struct {
f constraintFunc
check *Version
original string
}
// Constraints is a slice of constraints. We make a custom type so that
// we can add methods to it.
type Constraints []*Constraint
type constraintFunc func(v, c *Version) bool
var constraintOperators map[string]constraintFunc
var constraintRegexp *regexp.Regexp
func init() {
constraintOperators = map[string]constraintFunc{
"": constraintEqual,
"=": constraintEqual,
"!=": constraintNotEqual,
">": constraintGreaterThan,
"<": constraintLessThan,
">=": constraintGreaterThanEqual,
"<=": constraintLessThanEqual,
"~>": constraintPessimistic,
}
ops := make([]string, 0, len(constraintOperators))
for k := range constraintOperators {
ops = append(ops, regexp.QuoteMeta(k))
}
constraintRegexp = regexp.MustCompile(fmt.Sprintf(
`^\s*(%s)\s*(%s)\s*$`,
strings.Join(ops, "|"),
VersionRegexpRaw))
}
// NewConstraint will parse one or more constraints from the given
// constraint string. The string must be a comma-separated list of
// constraints.
func NewConstraint(v string) (Constraints, error) {
vs := strings.Split(v, ",")
result := make([]*Constraint, len(vs))
for i, single := range vs {
c, err := parseSingle(single)
if err != nil {
return nil, err
}
result[i] = c
}
return Constraints(result), nil
}
// Check tests if a version satisfies all the constraints.
func (cs Constraints) Check(v *Version) bool {
for _, c := range cs {
if !c.Check(v) {
return false
}
}
return true
}
// Returns the string format of the constraints
func (cs Constraints) String() string {
csStr := make([]string, len(cs))
for i, c := range cs {
csStr[i] = c.String()
}
return strings.Join(csStr, ",")
}
// Check tests if a constraint is validated by the given version.
func (c *Constraint) Check(v *Version) bool {
return c.f(v, c.check)
}
func (c *Constraint) String() string {
return c.original
}
func parseSingle(v string) (*Constraint, error) {
matches := constraintRegexp.FindStringSubmatch(v)
if matches == nil {
return nil, fmt.Errorf("Malformed constraint: %s", v)
}
check, err := NewVersion(matches[2])
if err != nil {
return nil, err
}
return &Constraint{
f: constraintOperators[matches[1]],
check: check,
original: v,
}, nil
}
func prereleaseCheck(v, c *Version) bool {
switch vPre, cPre := v.Prerelease() != "", c.Prerelease() != ""; {
case cPre && vPre:
// A constraint with a pre-release can only match a pre-release version
// with the same base segments.
return reflect.DeepEqual(c.Segments64(), v.Segments64())
case !cPre && vPre:
// A constraint without a pre-release can only match a version without a
// pre-release.
return false
case cPre && !vPre:
// OK, except with the pessimistic operator
case !cPre && !vPre:
// OK
}
return true
}
//-------------------------------------------------------------------
// Constraint functions
//-------------------------------------------------------------------
func constraintEqual(v, c *Version) bool {
return v.Equal(c)
}
func constraintNotEqual(v, c *Version) bool {
return !v.Equal(c)
}
func constraintGreaterThan(v, c *Version) bool {
return prereleaseCheck(v, c) && v.Compare(c) == 1
}
func constraintLessThan(v, c *Version) bool {
return prereleaseCheck(v, c) && v.Compare(c) == -1
}
func constraintGreaterThanEqual(v, c *Version) bool {
return prereleaseCheck(v, c) && v.Compare(c) >= 0
}
func constraintLessThanEqual(v, c *Version) bool {
return prereleaseCheck(v, c) && v.Compare(c) <= 0
}
func constraintPessimistic(v, c *Version) bool {
// Using a pessimistic constraint with a pre-release, restricts versions to pre-releases
if !prereleaseCheck(v, c) || (c.Prerelease() != "" && v.Prerelease() == "") {
return false
}
// If the version being checked is naturally less than the constraint, then there
// is no way for the version to be valid against the constraint
if v.LessThan(c) {
return false
}
// We'll use this more than once, so grab the length now so it's a little cleaner
// to write the later checks
cs := len(c.segments)
// If the version being checked has less specificity than the constraint, then there
// is no way for the version to be valid against the constraint
if cs > len(v.segments) {
return false
}
// Check the segments in the constraint against those in the version. If the version
// being checked, at any point, does not have the same values in each index of the
// constraints segments, then it cannot be valid against the constraint.
for i := 0; i < c.si-1; i++ {
if v.segments[i] != c.segments[i] {
return false
}
}
// Check the last part of the segment in the constraint. If the version segment at
// this index is less than the constraints segment at this index, then it cannot
// be valid against the constraint
if c.segments[cs-1] > v.segments[cs-1] {
return false
}
// If nothing has rejected the version by now, it's valid
return true
}

380
vendor/github.com/hashicorp/go-version/version.go generated vendored Normal file
View File

@@ -0,0 +1,380 @@
package version
import (
"bytes"
"fmt"
"reflect"
"regexp"
"strconv"
"strings"
)
// The compiled regular expression used to test the validity of a version.
var (
versionRegexp *regexp.Regexp
semverRegexp *regexp.Regexp
)
// The raw regular expression string used for testing the validity
// of a version.
const (
VersionRegexpRaw string = `v?([0-9]+(\.[0-9]+)*?)` +
`(-([0-9]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)|(-?([A-Za-z\-~]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)))?` +
`(\+([0-9A-Za-z\-~]+(\.[0-9A-Za-z\-~]+)*))?` +
`?`
// SemverRegexpRaw requires a separator between version and prerelease
SemverRegexpRaw string = `v?([0-9]+(\.[0-9]+)*?)` +
`(-([0-9]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)|(-([A-Za-z\-~]+[0-9A-Za-z\-~]*(\.[0-9A-Za-z\-~]+)*)))?` +
`(\+([0-9A-Za-z\-~]+(\.[0-9A-Za-z\-~]+)*))?` +
`?`
)
// Version represents a single version.
type Version struct {
metadata string
pre string
segments []int64
si int
original string
}
func init() {
versionRegexp = regexp.MustCompile("^" + VersionRegexpRaw + "$")
semverRegexp = regexp.MustCompile("^" + SemverRegexpRaw + "$")
}
// NewVersion parses the given version and returns a new
// Version.
func NewVersion(v string) (*Version, error) {
return newVersion(v, versionRegexp)
}
// NewSemver parses the given version and returns a new
// Version that adheres strictly to SemVer specs
// https://semver.org/
func NewSemver(v string) (*Version, error) {
return newVersion(v, semverRegexp)
}
func newVersion(v string, pattern *regexp.Regexp) (*Version, error) {
matches := pattern.FindStringSubmatch(v)
if matches == nil {
return nil, fmt.Errorf("Malformed version: %s", v)
}
segmentsStr := strings.Split(matches[1], ".")
segments := make([]int64, len(segmentsStr))
si := 0
for i, str := range segmentsStr {
val, err := strconv.ParseInt(str, 10, 64)
if err != nil {
return nil, fmt.Errorf(
"Error parsing version: %s", err)
}
segments[i] = int64(val)
si++
}
// Even though we could support more than three segments, if we
// got less than three, pad it with 0s. This is to cover the basic
// default usecase of semver, which is MAJOR.MINOR.PATCH at the minimum
for i := len(segments); i < 3; i++ {
segments = append(segments, 0)
}
pre := matches[7]
if pre == "" {
pre = matches[4]
}
return &Version{
metadata: matches[10],
pre: pre,
segments: segments,
si: si,
original: v,
}, nil
}
// Must is a helper that wraps a call to a function returning (*Version, error)
// and panics if error is non-nil.
func Must(v *Version, err error) *Version {
if err != nil {
panic(err)
}
return v
}
// Compare compares this version to another version. This
// returns -1, 0, or 1 if this version is smaller, equal,
// or larger than the other version, respectively.
//
// If you want boolean results, use the LessThan, Equal,
// GreaterThan, GreaterThanOrEqual or LessThanOrEqual methods.
func (v *Version) Compare(other *Version) int {
// A quick, efficient equality check
if v.String() == other.String() {
return 0
}
segmentsSelf := v.Segments64()
segmentsOther := other.Segments64()
// If the segments are the same, we must compare on prerelease info
if reflect.DeepEqual(segmentsSelf, segmentsOther) {
preSelf := v.Prerelease()
preOther := other.Prerelease()
if preSelf == "" && preOther == "" {
return 0
}
if preSelf == "" {
return 1
}
if preOther == "" {
return -1
}
return comparePrereleases(preSelf, preOther)
}
// Get the highest specificity (hS), or if they're equal, just use segmentSelf length
lenSelf := len(segmentsSelf)
lenOther := len(segmentsOther)
hS := lenSelf
if lenSelf < lenOther {
hS = lenOther
}
// Compare the segments
// Because a constraint could have more/less specificity than the version it's
// checking, we need to account for a lopsided or jagged comparison
for i := 0; i < hS; i++ {
if i > lenSelf-1 {
// This means Self had the lower specificity
// Check to see if the remaining segments in Other are all zeros
if !allZero(segmentsOther[i:]) {
// if not, it means that Other has to be greater than Self
return -1
}
break
} else if i > lenOther-1 {
// this means Other had the lower specificity
// Check to see if the remaining segments in Self are all zeros -
if !allZero(segmentsSelf[i:]) {
//if not, it means that Self has to be greater than Other
return 1
}
break
}
lhs := segmentsSelf[i]
rhs := segmentsOther[i]
if lhs == rhs {
continue
} else if lhs < rhs {
return -1
}
// Otherwis, rhs was > lhs, they're not equal
return 1
}
// if we got this far, they're equal
return 0
}
func allZero(segs []int64) bool {
for _, s := range segs {
if s != 0 {
return false
}
}
return true
}
func comparePart(preSelf string, preOther string) int {
if preSelf == preOther {
return 0
}
var selfInt int64
selfNumeric := true
selfInt, err := strconv.ParseInt(preSelf, 10, 64)
if err != nil {
selfNumeric = false
}
var otherInt int64
otherNumeric := true
otherInt, err = strconv.ParseInt(preOther, 10, 64)
if err != nil {
otherNumeric = false
}
// if a part is empty, we use the other to decide
if preSelf == "" {
if otherNumeric {
return -1
}
return 1
}
if preOther == "" {
if selfNumeric {
return 1
}
return -1
}
if selfNumeric && !otherNumeric {
return -1
} else if !selfNumeric && otherNumeric {
return 1
} else if !selfNumeric && !otherNumeric && preSelf > preOther {
return 1
} else if selfInt > otherInt {
return 1
}
return -1
}
func comparePrereleases(v string, other string) int {
// the same pre release!
if v == other {
return 0
}
// split both pre releases for analyse their parts
selfPreReleaseMeta := strings.Split(v, ".")
otherPreReleaseMeta := strings.Split(other, ".")
selfPreReleaseLen := len(selfPreReleaseMeta)
otherPreReleaseLen := len(otherPreReleaseMeta)
biggestLen := otherPreReleaseLen
if selfPreReleaseLen > otherPreReleaseLen {
biggestLen = selfPreReleaseLen
}
// loop for parts to find the first difference
for i := 0; i < biggestLen; i = i + 1 {
partSelfPre := ""
if i < selfPreReleaseLen {
partSelfPre = selfPreReleaseMeta[i]
}
partOtherPre := ""
if i < otherPreReleaseLen {
partOtherPre = otherPreReleaseMeta[i]
}
compare := comparePart(partSelfPre, partOtherPre)
// if parts are equals, continue the loop
if compare != 0 {
return compare
}
}
return 0
}
// Equal tests if two versions are equal.
func (v *Version) Equal(o *Version) bool {
return v.Compare(o) == 0
}
// GreaterThan tests if this version is greater than another version.
func (v *Version) GreaterThan(o *Version) bool {
return v.Compare(o) > 0
}
// GreaterThanOrEqualTo tests if this version is greater than or equal to another version.
func (v *Version) GreaterThanOrEqual(o *Version) bool {
return v.Compare(o) >= 0
}
// LessThan tests if this version is less than another version.
func (v *Version) LessThan(o *Version) bool {
return v.Compare(o) < 0
}
// LessThanOrEqualTo tests if this version is less than or equal to another version.
func (v *Version) LessThanOrEqual(o *Version) bool {
return v.Compare(o) <= 0
}
// Metadata returns any metadata that was part of the version
// string.
//
// Metadata is anything that comes after the "+" in the version.
// For example, with "1.2.3+beta", the metadata is "beta".
func (v *Version) Metadata() string {
return v.metadata
}
// Prerelease returns any prerelease data that is part of the version,
// or blank if there is no prerelease data.
//
// Prerelease information is anything that comes after the "-" in the
// version (but before any metadata). For example, with "1.2.3-beta",
// the prerelease information is "beta".
func (v *Version) Prerelease() string {
return v.pre
}
// Segments returns the numeric segments of the version as a slice of ints.
//
// This excludes any metadata or pre-release information. For example,
// for a version "1.2.3-beta", segments will return a slice of
// 1, 2, 3.
func (v *Version) Segments() []int {
segmentSlice := make([]int, len(v.segments))
for i, v := range v.segments {
segmentSlice[i] = int(v)
}
return segmentSlice
}
// Segments64 returns the numeric segments of the version as a slice of int64s.
//
// This excludes any metadata or pre-release information. For example,
// for a version "1.2.3-beta", segments will return a slice of
// 1, 2, 3.
func (v *Version) Segments64() []int64 {
result := make([]int64, len(v.segments))
copy(result, v.segments)
return result
}
// String returns the full version string included pre-release
// and metadata information.
//
// This value is rebuilt according to the parsed segments and other
// information. Therefore, ambiguities in the version string such as
// prefixed zeroes (1.04.0 => 1.4.0), `v` prefix (v1.0.0 => 1.0.0), and
// missing parts (1.0 => 1.0.0) will be made into a canonicalized form
// as shown in the parenthesized examples.
func (v *Version) String() string {
var buf bytes.Buffer
fmtParts := make([]string, len(v.segments))
for i, s := range v.segments {
// We can ignore err here since we've pre-parsed the values in segments
str := strconv.FormatInt(s, 10)
fmtParts[i] = str
}
fmt.Fprintf(&buf, strings.Join(fmtParts, "."))
if v.pre != "" {
fmt.Fprintf(&buf, "-%s", v.pre)
}
if v.metadata != "" {
fmt.Fprintf(&buf, "+%s", v.metadata)
}
return buf.String()
}
// Original returns the original parsed version as-is, including any
// potential whitespace, `v` prefix, etc.
func (v *Version) Original() string {
return v.original
}

View File

@@ -0,0 +1,17 @@
package version
// Collection is a type that implements the sort.Interface interface
// so that versions can be sorted.
type Collection []*Version
func (v Collection) Len() int {
return len(v)
}
func (v Collection) Less(i, j int) bool {
return v[i].LessThan(v[j])
}
func (v Collection) Swap(i, j int) {
v[i], v[j] = v[j], v[i]
}

23
vendor/github.com/hashicorp/golang-lru/v2/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,23 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test

View File

@@ -0,0 +1,33 @@
# Copyright (c) HashiCorp, Inc.
# SPDX-License-Identifier: MPL-2.0
linters:
enable:
- megacheck
- revive
- govet
- unconvert
- megacheck
- gas
- gocyclo
- dupl
- misspell
- unparam
- unused
- typecheck
- ineffassign
- stylecheck
- exportloopref
- gocritic
- nakedret
- gosimple
- prealloc
fast: false
disable-all: true
issues:
exclude-rules:
- path: _test\.go
linters:
- dupl
exclude-use-default: false

225
vendor/github.com/hashicorp/golang-lru/v2/2q.go generated vendored Normal file
View File

@@ -0,0 +1,225 @@
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package lru
import (
"errors"
"sync"
"github.com/hashicorp/golang-lru/v2/simplelru"
)
const (
// Default2QRecentRatio is the ratio of the 2Q cache dedicated
// to recently added entries that have only been accessed once.
Default2QRecentRatio = 0.25
// Default2QGhostEntries is the default ratio of ghost
// entries kept to track entries recently evicted
Default2QGhostEntries = 0.50
)
// TwoQueueCache is a thread-safe fixed size 2Q cache.
// 2Q is an enhancement over the standard LRU cache
// in that it tracks both frequently and recently used
// entries separately. This avoids a burst in access to new
// entries from evicting frequently used entries. It adds some
// additional tracking overhead to the standard LRU cache, and is
// computationally about 2x the cost, and adds some metadata over
// head. The ARCCache is similar, but does not require setting any
// parameters.
type TwoQueueCache[K comparable, V any] struct {
size int
recentSize int
recent simplelru.LRUCache[K, V]
frequent simplelru.LRUCache[K, V]
recentEvict simplelru.LRUCache[K, struct{}]
lock sync.RWMutex
}
// New2Q creates a new TwoQueueCache using the default
// values for the parameters.
func New2Q[K comparable, V any](size int) (*TwoQueueCache[K, V], error) {
return New2QParams[K, V](size, Default2QRecentRatio, Default2QGhostEntries)
}
// New2QParams creates a new TwoQueueCache using the provided
// parameter values.
func New2QParams[K comparable, V any](size int, recentRatio, ghostRatio float64) (*TwoQueueCache[K, V], error) {
if size <= 0 {
return nil, errors.New("invalid size")
}
if recentRatio < 0.0 || recentRatio > 1.0 {
return nil, errors.New("invalid recent ratio")
}
if ghostRatio < 0.0 || ghostRatio > 1.0 {
return nil, errors.New("invalid ghost ratio")
}
// Determine the sub-sizes
recentSize := int(float64(size) * recentRatio)
evictSize := int(float64(size) * ghostRatio)
// Allocate the LRUs
recent, err := simplelru.NewLRU[K, V](size, nil)
if err != nil {
return nil, err
}
frequent, err := simplelru.NewLRU[K, V](size, nil)
if err != nil {
return nil, err
}
recentEvict, err := simplelru.NewLRU[K, struct{}](evictSize, nil)
if err != nil {
return nil, err
}
// Initialize the cache
c := &TwoQueueCache[K, V]{
size: size,
recentSize: recentSize,
recent: recent,
frequent: frequent,
recentEvict: recentEvict,
}
return c, nil
}
// Get looks up a key's value from the cache.
func (c *TwoQueueCache[K, V]) Get(key K) (value V, ok bool) {
c.lock.Lock()
defer c.lock.Unlock()
// Check if this is a frequent value
if val, ok := c.frequent.Get(key); ok {
return val, ok
}
// If the value is contained in recent, then we
// promote it to frequent
if val, ok := c.recent.Peek(key); ok {
c.recent.Remove(key)
c.frequent.Add(key, val)
return val, ok
}
// No hit
return
}
// Add adds a value to the cache.
func (c *TwoQueueCache[K, V]) Add(key K, value V) {
c.lock.Lock()
defer c.lock.Unlock()
// Check if the value is frequently used already,
// and just update the value
if c.frequent.Contains(key) {
c.frequent.Add(key, value)
return
}
// Check if the value is recently used, and promote
// the value into the frequent list
if c.recent.Contains(key) {
c.recent.Remove(key)
c.frequent.Add(key, value)
return
}
// If the value was recently evicted, add it to the
// frequently used list
if c.recentEvict.Contains(key) {
c.ensureSpace(true)
c.recentEvict.Remove(key)
c.frequent.Add(key, value)
return
}
// Add to the recently seen list
c.ensureSpace(false)
c.recent.Add(key, value)
}
// ensureSpace is used to ensure we have space in the cache
func (c *TwoQueueCache[K, V]) ensureSpace(recentEvict bool) {
// If we have space, nothing to do
recentLen := c.recent.Len()
freqLen := c.frequent.Len()
if recentLen+freqLen < c.size {
return
}
// If the recent buffer is larger than
// the target, evict from there
if recentLen > 0 && (recentLen > c.recentSize || (recentLen == c.recentSize && !recentEvict)) {
k, _, _ := c.recent.RemoveOldest()
c.recentEvict.Add(k, struct{}{})
return
}
// Remove from the frequent list otherwise
c.frequent.RemoveOldest()
}
// Len returns the number of items in the cache.
func (c *TwoQueueCache[K, V]) Len() int {
c.lock.RLock()
defer c.lock.RUnlock()
return c.recent.Len() + c.frequent.Len()
}
// Keys returns a slice of the keys in the cache.
// The frequently used keys are first in the returned slice.
func (c *TwoQueueCache[K, V]) Keys() []K {
c.lock.RLock()
defer c.lock.RUnlock()
k1 := c.frequent.Keys()
k2 := c.recent.Keys()
return append(k1, k2...)
}
// Remove removes the provided key from the cache.
func (c *TwoQueueCache[K, V]) Remove(key K) {
c.lock.Lock()
defer c.lock.Unlock()
if c.frequent.Remove(key) {
return
}
if c.recent.Remove(key) {
return
}
if c.recentEvict.Remove(key) {
return
}
}
// Purge is used to completely clear the cache.
func (c *TwoQueueCache[K, V]) Purge() {
c.lock.Lock()
defer c.lock.Unlock()
c.recent.Purge()
c.frequent.Purge()
c.recentEvict.Purge()
}
// Contains is used to check if the cache contains a key
// without updating recency or frequency.
func (c *TwoQueueCache[K, V]) Contains(key K) bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.frequent.Contains(key) || c.recent.Contains(key)
}
// Peek is used to inspect the cache value of a key
// without updating recency or frequency.
func (c *TwoQueueCache[K, V]) Peek(key K) (value V, ok bool) {
c.lock.RLock()
defer c.lock.RUnlock()
if val, ok := c.frequent.Peek(key); ok {
return val, ok
}
return c.recent.Peek(key)
}

364
vendor/github.com/hashicorp/golang-lru/v2/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,364 @@
Copyright (c) 2014 HashiCorp, Inc.
Mozilla Public License, version 2.0
1. Definitions
1.1. "Contributor"
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. "Incompatible With Secondary Licenses"
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the terms of
a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in a
separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible, whether
at the time of the initial grant or subsequently, any and all of the
rights conveyed by this License.
1.10. "Modifications"
means any of the following:
a. any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the License,
by the making, using, selling, offering for sale, having made, import,
or transfer of either its Contributions or its Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, "control" means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights to
grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter the
recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty, or
limitations of liability) contained within the Source Code Form of the
Covered Software, except that You may alter any license notices to the
extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute,
judicial order, or regulation then You must: (a) comply with the terms of
this License to the maximum extent possible; and (b) describe the
limitations and the code they affect. Such description must be placed in a
text file included with all distributions of the Covered Software under
this License. Except to the extent prohibited by statute or regulation,
such description must be sufficiently detailed for a recipient of ordinary
skill to be able to understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing
basis, if such Contributor fails to notify You of the non-compliance by
some reasonable means prior to 60 days after You have come back into
compliance. Moreover, Your grants from a particular Contributor are
reinstated on an ongoing basis if such Contributor notifies You of the
non-compliance by some reasonable means, this is the first time You have
received notice of non-compliance with this License from such
Contributor, and You become compliant prior to 30 days after Your receipt
of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an "as is" basis,
without warranty of any kind, either expressed, implied, or statutory,
including, without limitation, warranties that the Covered Software is free
of defects, merchantable, fit for a particular purpose or non-infringing.
The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect,
You (not any Contributor) assume the cost of any necessary servicing,
repair, or correction. This disclaimer of warranty constitutes an essential
part of this License. No use of any Covered Software is authorized under
this License except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from
such party's negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of
incidental or consequential damages, so this exclusion and limitation may
not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts
of a jurisdiction where the defendant maintains its principal place of
business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions. Nothing
in this Section shall prevent a party's ability to bring cross-claims or
counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides that
the language of a contract shall be construed against the drafter shall not
be used to construe this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses If You choose to distribute Source Code Form that is
Incompatible With Secondary Licenses under the terms of this version of
the License, the notice described in Exhibit B of this License must be
attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file,
then You may include the notice in a location (such as a LICENSE file in a
relevant directory) where a recipient would be likely to look for such a
notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
This Source Code Form is "Incompatible
With Secondary Licenses", as defined by
the Mozilla Public License, v. 2.0.

25
vendor/github.com/hashicorp/golang-lru/v2/README.md generated vendored Normal file
View File

@@ -0,0 +1,25 @@
golang-lru
==========
This provides the `lru` package which implements a fixed-size
thread safe LRU cache. It is based on the cache in Groupcache.
Documentation
=============
Full docs are available on [Go Packages](https://pkg.go.dev/github.com/hashicorp/golang-lru/v2)
Example
=======
Using the LRU is very simple:
```go
l, _ := New[int, interface{}](128)
for i := 0; i < 256; i++ {
l.Add(i, nil)
}
if l.Len() != 128 {
panic(fmt.Sprintf("bad len: %v", l.Len()))
}
```

259
vendor/github.com/hashicorp/golang-lru/v2/arc.go generated vendored Normal file
View File

@@ -0,0 +1,259 @@
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package lru
import (
"sync"
"github.com/hashicorp/golang-lru/v2/simplelru"
)
// ARCCache is a thread-safe fixed size Adaptive Replacement Cache (ARC).
// ARC is an enhancement over the standard LRU cache in that tracks both
// frequency and recency of use. This avoids a burst in access to new
// entries from evicting the frequently used older entries. It adds some
// additional tracking overhead to a standard LRU cache, computationally
// it is roughly 2x the cost, and the extra memory overhead is linear
// with the size of the cache. ARC has been patented by IBM, but is
// similar to the TwoQueueCache (2Q) which requires setting parameters.
type ARCCache[K comparable, V any] struct {
size int // Size is the total capacity of the cache
p int // P is the dynamic preference towards T1 or T2
t1 simplelru.LRUCache[K, V] // T1 is the LRU for recently accessed items
b1 simplelru.LRUCache[K, struct{}] // B1 is the LRU for evictions from t1
t2 simplelru.LRUCache[K, V] // T2 is the LRU for frequently accessed items
b2 simplelru.LRUCache[K, struct{}] // B2 is the LRU for evictions from t2
lock sync.RWMutex
}
// NewARC creates an ARC of the given size
func NewARC[K comparable, V any](size int) (*ARCCache[K, V], error) {
// Create the sub LRUs
b1, err := simplelru.NewLRU[K, struct{}](size, nil)
if err != nil {
return nil, err
}
b2, err := simplelru.NewLRU[K, struct{}](size, nil)
if err != nil {
return nil, err
}
t1, err := simplelru.NewLRU[K, V](size, nil)
if err != nil {
return nil, err
}
t2, err := simplelru.NewLRU[K, V](size, nil)
if err != nil {
return nil, err
}
// Initialize the ARC
c := &ARCCache[K, V]{
size: size,
p: 0,
t1: t1,
b1: b1,
t2: t2,
b2: b2,
}
return c, nil
}
// Get looks up a key's value from the cache.
func (c *ARCCache[K, V]) Get(key K) (value V, ok bool) {
c.lock.Lock()
defer c.lock.Unlock()
// If the value is contained in T1 (recent), then
// promote it to T2 (frequent)
if val, ok := c.t1.Peek(key); ok {
c.t1.Remove(key)
c.t2.Add(key, val)
return val, ok
}
// Check if the value is contained in T2 (frequent)
if val, ok := c.t2.Get(key); ok {
return val, ok
}
// No hit
return
}
// Add adds a value to the cache.
func (c *ARCCache[K, V]) Add(key K, value V) {
c.lock.Lock()
defer c.lock.Unlock()
// Check if the value is contained in T1 (recent), and potentially
// promote it to frequent T2
if c.t1.Contains(key) {
c.t1.Remove(key)
c.t2.Add(key, value)
return
}
// Check if the value is already in T2 (frequent) and update it
if c.t2.Contains(key) {
c.t2.Add(key, value)
return
}
// Check if this value was recently evicted as part of the
// recently used list
if c.b1.Contains(key) {
// T1 set is too small, increase P appropriately
delta := 1
b1Len := c.b1.Len()
b2Len := c.b2.Len()
if b2Len > b1Len {
delta = b2Len / b1Len
}
if c.p+delta >= c.size {
c.p = c.size
} else {
c.p += delta
}
// Potentially need to make room in the cache
if c.t1.Len()+c.t2.Len() >= c.size {
c.replace(false)
}
// Remove from B1
c.b1.Remove(key)
// Add the key to the frequently used list
c.t2.Add(key, value)
return
}
// Check if this value was recently evicted as part of the
// frequently used list
if c.b2.Contains(key) {
// T2 set is too small, decrease P appropriately
delta := 1
b1Len := c.b1.Len()
b2Len := c.b2.Len()
if b1Len > b2Len {
delta = b1Len / b2Len
}
if delta >= c.p {
c.p = 0
} else {
c.p -= delta
}
// Potentially need to make room in the cache
if c.t1.Len()+c.t2.Len() >= c.size {
c.replace(true)
}
// Remove from B2
c.b2.Remove(key)
// Add the key to the frequently used list
c.t2.Add(key, value)
return
}
// Potentially need to make room in the cache
if c.t1.Len()+c.t2.Len() >= c.size {
c.replace(false)
}
// Keep the size of the ghost buffers trim
if c.b1.Len() > c.size-c.p {
c.b1.RemoveOldest()
}
if c.b2.Len() > c.p {
c.b2.RemoveOldest()
}
// Add to the recently seen list
c.t1.Add(key, value)
}
// replace is used to adaptively evict from either T1 or T2
// based on the current learned value of P
func (c *ARCCache[K, V]) replace(b2ContainsKey bool) {
t1Len := c.t1.Len()
if t1Len > 0 && (t1Len > c.p || (t1Len == c.p && b2ContainsKey)) {
k, _, ok := c.t1.RemoveOldest()
if ok {
c.b1.Add(k, struct{}{})
}
} else {
k, _, ok := c.t2.RemoveOldest()
if ok {
c.b2.Add(k, struct{}{})
}
}
}
// Len returns the number of cached entries
func (c *ARCCache[K, V]) Len() int {
c.lock.RLock()
defer c.lock.RUnlock()
return c.t1.Len() + c.t2.Len()
}
// Keys returns all the cached keys
func (c *ARCCache[K, V]) Keys() []K {
c.lock.RLock()
defer c.lock.RUnlock()
k1 := c.t1.Keys()
k2 := c.t2.Keys()
return append(k1, k2...)
}
// Remove is used to purge a key from the cache
func (c *ARCCache[K, V]) Remove(key K) {
c.lock.Lock()
defer c.lock.Unlock()
if c.t1.Remove(key) {
return
}
if c.t2.Remove(key) {
return
}
if c.b1.Remove(key) {
return
}
if c.b2.Remove(key) {
return
}
}
// Purge is used to clear the cache
func (c *ARCCache[K, V]) Purge() {
c.lock.Lock()
defer c.lock.Unlock()
c.t1.Purge()
c.t2.Purge()
c.b1.Purge()
c.b2.Purge()
}
// Contains is used to check if the cache contains a key
// without updating recency or frequency.
func (c *ARCCache[K, V]) Contains(key K) bool {
c.lock.RLock()
defer c.lock.RUnlock()
return c.t1.Contains(key) || c.t2.Contains(key)
}
// Peek is used to inspect the cache value of a key
// without updating recency or frequency.
func (c *ARCCache[K, V]) Peek(key K) (value V, ok bool) {
c.lock.RLock()
defer c.lock.RUnlock()
if val, ok := c.t1.Peek(key); ok {
return val, ok
}
return c.t2.Peek(key)
}

24
vendor/github.com/hashicorp/golang-lru/v2/doc.go generated vendored Normal file
View File

@@ -0,0 +1,24 @@
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
// Package lru provides three different LRU caches of varying sophistication.
//
// Cache is a simple LRU cache. It is based on the
// LRU implementation in groupcache:
// https://github.com/golang/groupcache/tree/master/lru
//
// TwoQueueCache tracks frequently used and recently used entries separately.
// This avoids a burst of accesses from taking out frequently used entries,
// at the cost of about 2x computational overhead and some extra bookkeeping.
//
// ARCCache is an adaptive replacement cache. It tracks recent evictions as
// well as recent usage in both the frequent and recent caches. Its
// computational overhead is comparable to TwoQueueCache, but the memory
// overhead is linear with the size of the cache.
//
// ARC has been patented by IBM, so do not use it if that is problematic for
// your program.
//
// All caches in this package take locks while operating, and are therefore
// thread-safe for consumers.
package lru

242
vendor/github.com/hashicorp/golang-lru/v2/lru.go generated vendored Normal file
View File

@@ -0,0 +1,242 @@
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package lru
import (
"sync"
"github.com/hashicorp/golang-lru/v2/simplelru"
)
const (
// DefaultEvictedBufferSize defines the default buffer size to store evicted key/val
DefaultEvictedBufferSize = 16
)
// Cache is a thread-safe fixed size LRU cache.
type Cache[K comparable, V any] struct {
lru *simplelru.LRU[K, V]
evictedKeys []K
evictedVals []V
onEvictedCB func(k K, v V)
lock sync.RWMutex
}
// New creates an LRU of the given size.
func New[K comparable, V any](size int) (*Cache[K, V], error) {
return NewWithEvict[K, V](size, nil)
}
// NewWithEvict constructs a fixed size cache with the given eviction
// callback.
func NewWithEvict[K comparable, V any](size int, onEvicted func(key K, value V)) (c *Cache[K, V], err error) {
// create a cache with default settings
c = &Cache[K, V]{
onEvictedCB: onEvicted,
}
if onEvicted != nil {
c.initEvictBuffers()
onEvicted = c.onEvicted
}
c.lru, err = simplelru.NewLRU(size, onEvicted)
return
}
func (c *Cache[K, V]) initEvictBuffers() {
c.evictedKeys = make([]K, 0, DefaultEvictedBufferSize)
c.evictedVals = make([]V, 0, DefaultEvictedBufferSize)
}
// onEvicted save evicted key/val and sent in externally registered callback
// outside of critical section
func (c *Cache[K, V]) onEvicted(k K, v V) {
c.evictedKeys = append(c.evictedKeys, k)
c.evictedVals = append(c.evictedVals, v)
}
// Purge is used to completely clear the cache.
func (c *Cache[K, V]) Purge() {
var ks []K
var vs []V
c.lock.Lock()
c.lru.Purge()
if c.onEvictedCB != nil && len(c.evictedKeys) > 0 {
ks, vs = c.evictedKeys, c.evictedVals
c.initEvictBuffers()
}
c.lock.Unlock()
// invoke callback outside of critical section
if c.onEvictedCB != nil {
for i := 0; i < len(ks); i++ {
c.onEvictedCB(ks[i], vs[i])
}
}
}
// Add adds a value to the cache. Returns true if an eviction occurred.
func (c *Cache[K, V]) Add(key K, value V) (evicted bool) {
var k K
var v V
c.lock.Lock()
evicted = c.lru.Add(key, value)
if c.onEvictedCB != nil && evicted {
k, v = c.evictedKeys[0], c.evictedVals[0]
c.evictedKeys, c.evictedVals = c.evictedKeys[:0], c.evictedVals[:0]
}
c.lock.Unlock()
if c.onEvictedCB != nil && evicted {
c.onEvictedCB(k, v)
}
return
}
// Get looks up a key's value from the cache.
func (c *Cache[K, V]) Get(key K) (value V, ok bool) {
c.lock.Lock()
value, ok = c.lru.Get(key)
c.lock.Unlock()
return value, ok
}
// Contains checks if a key is in the cache, without updating the
// recent-ness or deleting it for being stale.
func (c *Cache[K, V]) Contains(key K) bool {
c.lock.RLock()
containKey := c.lru.Contains(key)
c.lock.RUnlock()
return containKey
}
// Peek returns the key value (or undefined if not found) without updating
// the "recently used"-ness of the key.
func (c *Cache[K, V]) Peek(key K) (value V, ok bool) {
c.lock.RLock()
value, ok = c.lru.Peek(key)
c.lock.RUnlock()
return value, ok
}
// ContainsOrAdd checks if a key is in the cache without updating the
// recent-ness or deleting it for being stale, and if not, adds the value.
// Returns whether found and whether an eviction occurred.
func (c *Cache[K, V]) ContainsOrAdd(key K, value V) (ok, evicted bool) {
var k K
var v V
c.lock.Lock()
if c.lru.Contains(key) {
c.lock.Unlock()
return true, false
}
evicted = c.lru.Add(key, value)
if c.onEvictedCB != nil && evicted {
k, v = c.evictedKeys[0], c.evictedVals[0]
c.evictedKeys, c.evictedVals = c.evictedKeys[:0], c.evictedVals[:0]
}
c.lock.Unlock()
if c.onEvictedCB != nil && evicted {
c.onEvictedCB(k, v)
}
return false, evicted
}
// PeekOrAdd checks if a key is in the cache without updating the
// recent-ness or deleting it for being stale, and if not, adds the value.
// Returns whether found and whether an eviction occurred.
func (c *Cache[K, V]) PeekOrAdd(key K, value V) (previous V, ok, evicted bool) {
var k K
var v V
c.lock.Lock()
previous, ok = c.lru.Peek(key)
if ok {
c.lock.Unlock()
return previous, true, false
}
evicted = c.lru.Add(key, value)
if c.onEvictedCB != nil && evicted {
k, v = c.evictedKeys[0], c.evictedVals[0]
c.evictedKeys, c.evictedVals = c.evictedKeys[:0], c.evictedVals[:0]
}
c.lock.Unlock()
if c.onEvictedCB != nil && evicted {
c.onEvictedCB(k, v)
}
return
}
// Remove removes the provided key from the cache.
func (c *Cache[K, V]) Remove(key K) (present bool) {
var k K
var v V
c.lock.Lock()
present = c.lru.Remove(key)
if c.onEvictedCB != nil && present {
k, v = c.evictedKeys[0], c.evictedVals[0]
c.evictedKeys, c.evictedVals = c.evictedKeys[:0], c.evictedVals[:0]
}
c.lock.Unlock()
if c.onEvictedCB != nil && present {
c.onEvictedCB(k, v)
}
return
}
// Resize changes the cache size.
func (c *Cache[K, V]) Resize(size int) (evicted int) {
var ks []K
var vs []V
c.lock.Lock()
evicted = c.lru.Resize(size)
if c.onEvictedCB != nil && evicted > 0 {
ks, vs = c.evictedKeys, c.evictedVals
c.initEvictBuffers()
}
c.lock.Unlock()
if c.onEvictedCB != nil && evicted > 0 {
for i := 0; i < len(ks); i++ {
c.onEvictedCB(ks[i], vs[i])
}
}
return evicted
}
// RemoveOldest removes the oldest item from the cache.
func (c *Cache[K, V]) RemoveOldest() (key K, value V, ok bool) {
var k K
var v V
c.lock.Lock()
key, value, ok = c.lru.RemoveOldest()
if c.onEvictedCB != nil && ok {
k, v = c.evictedKeys[0], c.evictedVals[0]
c.evictedKeys, c.evictedVals = c.evictedKeys[:0], c.evictedVals[:0]
}
c.lock.Unlock()
if c.onEvictedCB != nil && ok {
c.onEvictedCB(k, v)
}
return
}
// GetOldest returns the oldest entry
func (c *Cache[K, V]) GetOldest() (key K, value V, ok bool) {
c.lock.RLock()
key, value, ok = c.lru.GetOldest()
c.lock.RUnlock()
return
}
// Keys returns a slice of the keys in the cache, from oldest to newest.
func (c *Cache[K, V]) Keys() []K {
c.lock.RLock()
keys := c.lru.Keys()
c.lock.RUnlock()
return keys
}
// Len returns the number of items in the cache.
func (c *Cache[K, V]) Len() int {
c.lock.RLock()
length := c.lru.Len()
c.lock.RUnlock()
return length
}

View File

@@ -0,0 +1,29 @@
This license applies to simplelru/list.go
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,128 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE_list file.
package simplelru
// entry is an LRU entry
type entry[K comparable, V any] struct {
// Next and previous pointers in the doubly-linked list of elements.
// To simplify the implementation, internally a list l is implemented
// as a ring, such that &l.root is both the next element of the last
// list element (l.Back()) and the previous element of the first list
// element (l.Front()).
next, prev *entry[K, V]
// The list to which this element belongs.
list *lruList[K, V]
// The LRU key of this element.
key K
// The value stored with this element.
value V
}
// prevEntry returns the previous list element or nil.
func (e *entry[K, V]) prevEntry() *entry[K, V] {
if p := e.prev; e.list != nil && p != &e.list.root {
return p
}
return nil
}
// lruList represents a doubly linked list.
// The zero value for lruList is an empty list ready to use.
type lruList[K comparable, V any] struct {
root entry[K, V] // sentinel list element, only &root, root.prev, and root.next are used
len int // current list length excluding (this) sentinel element
}
// init initializes or clears list l.
func (l *lruList[K, V]) init() *lruList[K, V] {
l.root.next = &l.root
l.root.prev = &l.root
l.len = 0
return l
}
// newList returns an initialized list.
func newList[K comparable, V any]() *lruList[K, V] { return new(lruList[K, V]).init() }
// length returns the number of elements of list l.
// The complexity is O(1).
func (l *lruList[K, V]) length() int { return l.len }
// back returns the last element of list l or nil if the list is empty.
func (l *lruList[K, V]) back() *entry[K, V] {
if l.len == 0 {
return nil
}
return l.root.prev
}
// lazyInit lazily initializes a zero List value.
func (l *lruList[K, V]) lazyInit() {
if l.root.next == nil {
l.init()
}
}
// insert inserts e after at, increments l.len, and returns e.
func (l *lruList[K, V]) insert(e, at *entry[K, V]) *entry[K, V] {
e.prev = at
e.next = at.next
e.prev.next = e
e.next.prev = e
e.list = l
l.len++
return e
}
// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *lruList[K, V]) insertValue(k K, v V, at *entry[K, V]) *entry[K, V] {
return l.insert(&entry[K, V]{value: v, key: k}, at)
}
// remove removes e from its list, decrements l.len
func (l *lruList[K, V]) remove(e *entry[K, V]) V {
e.prev.next = e.next
e.next.prev = e.prev
e.next = nil // avoid memory leaks
e.prev = nil // avoid memory leaks
e.list = nil
l.len--
return e.value
}
// move moves e to next to at.
func (l *lruList[K, V]) move(e, at *entry[K, V]) {
if e == at {
return
}
e.prev.next = e.next
e.next.prev = e.prev
e.prev = at
e.next = at.next
e.prev.next = e
e.next.prev = e
}
// pushFront inserts a new element e with value v at the front of list l and returns e.
func (l *lruList[K, V]) pushFront(k K, v V) *entry[K, V] {
l.lazyInit()
return l.insertValue(k, v, &l.root)
}
// moveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *lruList[K, V]) moveToFront(e *entry[K, V]) {
if e.list != l || l.root.next == e {
return
}
// see comment in List.Remove about initialization of l
l.move(e, &l.root)
}

View File

@@ -0,0 +1,164 @@
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package simplelru
import (
"errors"
)
// EvictCallback is used to get a callback when a cache entry is evicted
type EvictCallback[K comparable, V any] func(key K, value V)
// LRU implements a non-thread safe fixed size LRU cache
type LRU[K comparable, V any] struct {
size int
evictList *lruList[K, V]
items map[K]*entry[K, V]
onEvict EvictCallback[K, V]
}
// NewLRU constructs an LRU of the given size
func NewLRU[K comparable, V any](size int, onEvict EvictCallback[K, V]) (*LRU[K, V], error) {
if size <= 0 {
return nil, errors.New("must provide a positive size")
}
c := &LRU[K, V]{
size: size,
evictList: newList[K, V](),
items: make(map[K]*entry[K, V]),
onEvict: onEvict,
}
return c, nil
}
// Purge is used to completely clear the cache.
func (c *LRU[K, V]) Purge() {
for k, v := range c.items {
if c.onEvict != nil {
c.onEvict(k, v.value)
}
delete(c.items, k)
}
c.evictList.init()
}
// Add adds a value to the cache. Returns true if an eviction occurred.
func (c *LRU[K, V]) Add(key K, value V) (evicted bool) {
// Check for existing item
if ent, ok := c.items[key]; ok {
c.evictList.moveToFront(ent)
ent.value = value
return false
}
// Add new item
ent := c.evictList.pushFront(key, value)
c.items[key] = ent
evict := c.evictList.length() > c.size
// Verify size not exceeded
if evict {
c.removeOldest()
}
return evict
}
// Get looks up a key's value from the cache.
func (c *LRU[K, V]) Get(key K) (value V, ok bool) {
if ent, ok := c.items[key]; ok {
c.evictList.moveToFront(ent)
return ent.value, true
}
return
}
// Contains checks if a key is in the cache, without updating the recent-ness
// or deleting it for being stale.
func (c *LRU[K, V]) Contains(key K) (ok bool) {
_, ok = c.items[key]
return ok
}
// Peek returns the key value (or undefined if not found) without updating
// the "recently used"-ness of the key.
func (c *LRU[K, V]) Peek(key K) (value V, ok bool) {
var ent *entry[K, V]
if ent, ok = c.items[key]; ok {
return ent.value, true
}
return
}
// Remove removes the provided key from the cache, returning if the
// key was contained.
func (c *LRU[K, V]) Remove(key K) (present bool) {
if ent, ok := c.items[key]; ok {
c.removeElement(ent)
return true
}
return false
}
// RemoveOldest removes the oldest item from the cache.
func (c *LRU[K, V]) RemoveOldest() (key K, value V, ok bool) {
if ent := c.evictList.back(); ent != nil {
c.removeElement(ent)
return ent.key, ent.value, true
}
return
}
// GetOldest returns the oldest entry
func (c *LRU[K, V]) GetOldest() (key K, value V, ok bool) {
if ent := c.evictList.back(); ent != nil {
return ent.key, ent.value, true
}
return
}
// Keys returns a slice of the keys in the cache, from oldest to newest.
func (c *LRU[K, V]) Keys() []K {
keys := make([]K, c.evictList.length())
i := 0
for ent := c.evictList.back(); ent != nil; ent = ent.prevEntry() {
keys[i] = ent.key
i++
}
return keys
}
// Len returns the number of items in the cache.
func (c *LRU[K, V]) Len() int {
return c.evictList.length()
}
// Resize changes the cache size.
func (c *LRU[K, V]) Resize(size int) (evicted int) {
diff := c.Len() - size
if diff < 0 {
diff = 0
}
for i := 0; i < diff; i++ {
c.removeOldest()
}
c.size = size
return diff
}
// removeOldest removes the oldest item from the cache.
func (c *LRU[K, V]) removeOldest() {
if ent := c.evictList.back(); ent != nil {
c.removeElement(ent)
}
}
// removeElement is used to remove a given list element from the cache
func (c *LRU[K, V]) removeElement(e *entry[K, V]) {
c.evictList.remove(e)
delete(c.items, e.key)
if c.onEvict != nil {
c.onEvict(e.key, e.value)
}
}

View File

@@ -0,0 +1,43 @@
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
// Package simplelru provides simple LRU implementation based on build-in container/list.
package simplelru
// LRUCache is the interface for simple LRU cache.
type LRUCache[K comparable, V any] interface {
// Adds a value to the cache, returns true if an eviction occurred and
// updates the "recently used"-ness of the key.
Add(key K, value V) bool
// Returns key's value from the cache and
// updates the "recently used"-ness of the key. #value, isFound
Get(key K) (value V, ok bool)
// Checks if a key exists in cache without updating the recent-ness.
Contains(key K) (ok bool)
// Returns key's value without updating the "recently used"-ness of the key.
Peek(key K) (value V, ok bool)
// Removes a key from the cache.
Remove(key K) bool
// Removes the oldest entry from cache.
RemoveOldest() (K, V, bool)
// Returns the oldest entry from the cache. #key, value, isFound
GetOldest() (K, V, bool)
// Returns a slice of the keys in the cache, from oldest to newest.
Keys() []K
// Returns the number of items in the cache.
Len() int
// Clears all cache entries.
Purge()
// Resizes cache, returning number evicted
Resize(int) int
}

19
vendor/github.com/hashicorp/golang-lru/v2/testing.go generated vendored Normal file
View File

@@ -0,0 +1,19 @@
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package lru
import (
"crypto/rand"
"math"
"math/big"
"testing"
)
func getRand(tb testing.TB) int64 {
out, err := rand.Int(rand.Reader, big.NewInt(math.MaxInt64))
if err != nil {
tb.Fatal(err)
}
return out.Int64()
}