feat: Waku v2 bridge

Issue #12610
This commit is contained in:
Michal Iskierko
2023-11-12 13:29:38 +01:00
parent 56e7bd01ca
commit 6d31343205
6716 changed files with 1982502 additions and 5891 deletions

View File

@@ -0,0 +1,321 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693
// and the extendable output function (XOF) BLAKE2Xb.
//
// For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf
// and for BLAKE2Xb see https://blake2.net/blake2x.pdf
//
// If you aren't sure which function you need, use BLAKE2b (Sum512 or New512).
// If you need a secret-key MAC (message authentication code), use the New512
// function with a non-nil key.
//
// BLAKE2X is a construction to compute hash values larger than 64 bytes. It
// can produce hash values between 0 and 4 GiB.
package blake2b
import (
"encoding/binary"
"errors"
"hash"
)
const (
// The blocksize of BLAKE2b in bytes.
BlockSize = 128
// The hash size of BLAKE2b-512 in bytes.
Size = 64
// The hash size of BLAKE2b-384 in bytes.
Size384 = 48
// The hash size of BLAKE2b-256 in bytes.
Size256 = 32
)
var (
useAVX2 bool
useAVX bool
useSSE4 bool
)
var (
errKeySize = errors.New("blake2b: invalid key size")
errHashSize = errors.New("blake2b: invalid hash size")
)
var iv = [8]uint64{
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
}
// Sum512 returns the BLAKE2b-512 checksum of the data.
func Sum512(data []byte) [Size]byte {
var sum [Size]byte
checkSum(&sum, Size, data)
return sum
}
// Sum384 returns the BLAKE2b-384 checksum of the data.
func Sum384(data []byte) [Size384]byte {
var sum [Size]byte
var sum384 [Size384]byte
checkSum(&sum, Size384, data)
copy(sum384[:], sum[:Size384])
return sum384
}
// Sum256 returns the BLAKE2b-256 checksum of the data.
func Sum256(data []byte) [Size256]byte {
var sum [Size]byte
var sum256 [Size256]byte
checkSum(&sum, Size256, data)
copy(sum256[:], sum[:Size256])
return sum256
}
// New512 returns a new hash.Hash computing the BLAKE2b-512 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New512(key []byte) (hash.Hash, error) { return newDigest(Size, key) }
// New384 returns a new hash.Hash computing the BLAKE2b-384 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New384(key []byte) (hash.Hash, error) { return newDigest(Size384, key) }
// New256 returns a new hash.Hash computing the BLAKE2b-256 checksum. A non-nil
// key turns the hash into a MAC. The key must be between zero and 64 bytes long.
func New256(key []byte) (hash.Hash, error) { return newDigest(Size256, key) }
// New returns a new hash.Hash computing the BLAKE2b checksum with a custom length.
// A non-nil key turns the hash into a MAC. The key must be between zero and 64 bytes long.
// The hash size can be a value between 1 and 64 but it is highly recommended to use
// values equal or greater than:
// - 32 if BLAKE2b is used as a hash function (The key is zero bytes long).
// - 16 if BLAKE2b is used as a MAC function (The key is at least 16 bytes long).
// When the key is nil, the returned hash.Hash implements BinaryMarshaler
// and BinaryUnmarshaler for state (de)serialization as documented by hash.Hash.
func New(size int, key []byte) (hash.Hash, error) { return newDigest(size, key) }
// F is a compression function for BLAKE2b. It takes as an argument the state
// vector `h`, message block vector `m`, offset counter `t`, final block indicator
// flag `f`, and number of rounds `rounds`. The state vector provided as the first
// parameter is modified by the function.
func F(h *[8]uint64, m [16]uint64, c [2]uint64, final bool, rounds uint32) {
var flag uint64
if final {
flag = 0xFFFFFFFFFFFFFFFF
}
f(h, &m, c[0], c[1], flag, uint64(rounds))
}
func newDigest(hashSize int, key []byte) (*digest, error) {
if hashSize < 1 || hashSize > Size {
return nil, errHashSize
}
if len(key) > Size {
return nil, errKeySize
}
d := &digest{
size: hashSize,
keyLen: len(key),
}
copy(d.key[:], key)
d.Reset()
return d, nil
}
func checkSum(sum *[Size]byte, hashSize int, data []byte) {
h := iv
h[0] ^= uint64(hashSize) | (1 << 16) | (1 << 24)
var c [2]uint64
if length := len(data); length > BlockSize {
n := length &^ (BlockSize - 1)
if length == n {
n -= BlockSize
}
hashBlocks(&h, &c, 0, data[:n])
data = data[n:]
}
var block [BlockSize]byte
offset := copy(block[:], data)
remaining := uint64(BlockSize - offset)
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
for i, v := range h[:(hashSize+7)/8] {
binary.LittleEndian.PutUint64(sum[8*i:], v)
}
}
func hashBlocks(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
var m [16]uint64
c0, c1 := c[0], c[1]
for i := 0; i < len(blocks); {
c0 += BlockSize
if c0 < BlockSize {
c1++
}
for j := range m {
m[j] = binary.LittleEndian.Uint64(blocks[i:])
i += 8
}
f(h, &m, c0, c1, flag, 12)
}
c[0], c[1] = c0, c1
}
type digest struct {
h [8]uint64
c [2]uint64
size int
block [BlockSize]byte
offset int
key [BlockSize]byte
keyLen int
}
const (
magic = "b2b"
marshaledSize = len(magic) + 8*8 + 2*8 + 1 + BlockSize + 1
)
func (d *digest) MarshalBinary() ([]byte, error) {
if d.keyLen != 0 {
return nil, errors.New("crypto/blake2b: cannot marshal MACs")
}
b := make([]byte, 0, marshaledSize)
b = append(b, magic...)
for i := 0; i < 8; i++ {
b = appendUint64(b, d.h[i])
}
b = appendUint64(b, d.c[0])
b = appendUint64(b, d.c[1])
// Maximum value for size is 64
b = append(b, byte(d.size))
b = append(b, d.block[:]...)
b = append(b, byte(d.offset))
return b, nil
}
func (d *digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic) || string(b[:len(magic)]) != magic {
return errors.New("crypto/blake2b: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("crypto/blake2b: invalid hash state size")
}
b = b[len(magic):]
for i := 0; i < 8; i++ {
b, d.h[i] = consumeUint64(b)
}
b, d.c[0] = consumeUint64(b)
b, d.c[1] = consumeUint64(b)
d.size = int(b[0])
b = b[1:]
copy(d.block[:], b[:BlockSize])
b = b[BlockSize:]
d.offset = int(b[0])
return nil
}
func (d *digest) BlockSize() int { return BlockSize }
func (d *digest) Size() int { return d.size }
func (d *digest) Reset() {
d.h = iv
d.h[0] ^= uint64(d.size) | (uint64(d.keyLen) << 8) | (1 << 16) | (1 << 24)
d.offset, d.c[0], d.c[1] = 0, 0, 0
if d.keyLen > 0 {
d.block = d.key
d.offset = BlockSize
}
}
func (d *digest) Write(p []byte) (n int, err error) {
n = len(p)
if d.offset > 0 {
remaining := BlockSize - d.offset
if n <= remaining {
d.offset += copy(d.block[d.offset:], p)
return
}
copy(d.block[d.offset:], p[:remaining])
hashBlocks(&d.h, &d.c, 0, d.block[:])
d.offset = 0
p = p[remaining:]
}
if length := len(p); length > BlockSize {
nn := length &^ (BlockSize - 1)
if length == nn {
nn -= BlockSize
}
hashBlocks(&d.h, &d.c, 0, p[:nn])
p = p[nn:]
}
if len(p) > 0 {
d.offset += copy(d.block[:], p)
}
return
}
func (d *digest) Sum(sum []byte) []byte {
var hash [Size]byte
d.finalize(&hash)
return append(sum, hash[:d.size]...)
}
func (d *digest) finalize(hash *[Size]byte) {
var block [BlockSize]byte
copy(block[:], d.block[:d.offset])
remaining := uint64(BlockSize - d.offset)
c := d.c
if c[0] < remaining {
c[1]--
}
c[0] -= remaining
h := d.h
hashBlocks(&h, &c, 0xFFFFFFFFFFFFFFFF, block[:])
for i, v := range h {
binary.LittleEndian.PutUint64(hash[8*i:], v)
}
}
func appendUint64(b []byte, x uint64) []byte {
var a [8]byte
binary.BigEndian.PutUint64(a[:], x)
return append(b, a[:]...)
}
//nolint:unused,deadcode
func appendUint32(b []byte, x uint32) []byte {
var a [4]byte
binary.BigEndian.PutUint32(a[:], x)
return append(b, a[:]...)
}
func consumeUint64(b []byte) ([]byte, uint64) {
x := binary.BigEndian.Uint64(b)
return b[8:], x
}
//nolint:unused,deadcode
func consumeUint32(b []byte) ([]byte, uint32) {
x := binary.BigEndian.Uint32(b)
return b[4:], x
}

View File

@@ -0,0 +1,38 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.7 && amd64 && !gccgo && !appengine
// +build go1.7,amd64,!gccgo,!appengine
package blake2b
import "golang.org/x/sys/cpu"
func init() {
useAVX2 = cpu.X86.HasAVX2
useAVX = cpu.X86.HasAVX
useSSE4 = cpu.X86.HasSSE41
}
//go:noescape
func fAVX2(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
//go:noescape
func fAVX(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
//go:noescape
func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
switch {
case useAVX2:
fAVX2(h, m, c0, c1, flag, rounds)
case useAVX:
fAVX(h, m, c0, c1, flag, rounds)
case useSSE4:
fSSE4(h, m, c0, c1, flag, rounds)
default:
fGeneric(h, m, c0, c1, flag, rounds)
}
}

View File

@@ -0,0 +1,717 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7,amd64,!gccgo,!appengine
#include "textflag.h"
DATA ·AVX2_iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908
DATA ·AVX2_iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b
DATA ·AVX2_iv0<>+0x10(SB)/8, $0x3c6ef372fe94f82b
DATA ·AVX2_iv0<>+0x18(SB)/8, $0xa54ff53a5f1d36f1
GLOBL ·AVX2_iv0<>(SB), (NOPTR+RODATA), $32
DATA ·AVX2_iv1<>+0x00(SB)/8, $0x510e527fade682d1
DATA ·AVX2_iv1<>+0x08(SB)/8, $0x9b05688c2b3e6c1f
DATA ·AVX2_iv1<>+0x10(SB)/8, $0x1f83d9abfb41bd6b
DATA ·AVX2_iv1<>+0x18(SB)/8, $0x5be0cd19137e2179
GLOBL ·AVX2_iv1<>(SB), (NOPTR+RODATA), $32
DATA ·AVX2_c40<>+0x00(SB)/8, $0x0201000706050403
DATA ·AVX2_c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b
DATA ·AVX2_c40<>+0x10(SB)/8, $0x0201000706050403
DATA ·AVX2_c40<>+0x18(SB)/8, $0x0a09080f0e0d0c0b
GLOBL ·AVX2_c40<>(SB), (NOPTR+RODATA), $32
DATA ·AVX2_c48<>+0x00(SB)/8, $0x0100070605040302
DATA ·AVX2_c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a
DATA ·AVX2_c48<>+0x10(SB)/8, $0x0100070605040302
DATA ·AVX2_c48<>+0x18(SB)/8, $0x09080f0e0d0c0b0a
GLOBL ·AVX2_c48<>(SB), (NOPTR+RODATA), $32
DATA ·AVX_iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908
DATA ·AVX_iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b
GLOBL ·AVX_iv0<>(SB), (NOPTR+RODATA), $16
DATA ·AVX_iv1<>+0x00(SB)/8, $0x3c6ef372fe94f82b
DATA ·AVX_iv1<>+0x08(SB)/8, $0xa54ff53a5f1d36f1
GLOBL ·AVX_iv1<>(SB), (NOPTR+RODATA), $16
DATA ·AVX_iv2<>+0x00(SB)/8, $0x510e527fade682d1
DATA ·AVX_iv2<>+0x08(SB)/8, $0x9b05688c2b3e6c1f
GLOBL ·AVX_iv2<>(SB), (NOPTR+RODATA), $16
DATA ·AVX_iv3<>+0x00(SB)/8, $0x1f83d9abfb41bd6b
DATA ·AVX_iv3<>+0x08(SB)/8, $0x5be0cd19137e2179
GLOBL ·AVX_iv3<>(SB), (NOPTR+RODATA), $16
DATA ·AVX_c40<>+0x00(SB)/8, $0x0201000706050403
DATA ·AVX_c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b
GLOBL ·AVX_c40<>(SB), (NOPTR+RODATA), $16
DATA ·AVX_c48<>+0x00(SB)/8, $0x0100070605040302
DATA ·AVX_c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a
GLOBL ·AVX_c48<>(SB), (NOPTR+RODATA), $16
#define VPERMQ_0x39_Y1_Y1 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9; BYTE $0x39
#define VPERMQ_0x93_Y1_Y1 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xc9; BYTE $0x93
#define VPERMQ_0x4E_Y2_Y2 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xd2; BYTE $0x4e
#define VPERMQ_0x93_Y3_Y3 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb; BYTE $0x93
#define VPERMQ_0x39_Y3_Y3 BYTE $0xc4; BYTE $0xe3; BYTE $0xfd; BYTE $0x00; BYTE $0xdb; BYTE $0x39
#define ROUND_AVX2(m0, m1, m2, m3, t, c40, c48) \
VPADDQ m0, Y0, Y0; \
VPADDQ Y1, Y0, Y0; \
VPXOR Y0, Y3, Y3; \
VPSHUFD $-79, Y3, Y3; \
VPADDQ Y3, Y2, Y2; \
VPXOR Y2, Y1, Y1; \
VPSHUFB c40, Y1, Y1; \
VPADDQ m1, Y0, Y0; \
VPADDQ Y1, Y0, Y0; \
VPXOR Y0, Y3, Y3; \
VPSHUFB c48, Y3, Y3; \
VPADDQ Y3, Y2, Y2; \
VPXOR Y2, Y1, Y1; \
VPADDQ Y1, Y1, t; \
VPSRLQ $63, Y1, Y1; \
VPXOR t, Y1, Y1; \
VPERMQ_0x39_Y1_Y1; \
VPERMQ_0x4E_Y2_Y2; \
VPERMQ_0x93_Y3_Y3; \
VPADDQ m2, Y0, Y0; \
VPADDQ Y1, Y0, Y0; \
VPXOR Y0, Y3, Y3; \
VPSHUFD $-79, Y3, Y3; \
VPADDQ Y3, Y2, Y2; \
VPXOR Y2, Y1, Y1; \
VPSHUFB c40, Y1, Y1; \
VPADDQ m3, Y0, Y0; \
VPADDQ Y1, Y0, Y0; \
VPXOR Y0, Y3, Y3; \
VPSHUFB c48, Y3, Y3; \
VPADDQ Y3, Y2, Y2; \
VPXOR Y2, Y1, Y1; \
VPADDQ Y1, Y1, t; \
VPSRLQ $63, Y1, Y1; \
VPXOR t, Y1, Y1; \
VPERMQ_0x39_Y3_Y3; \
VPERMQ_0x4E_Y2_Y2; \
VPERMQ_0x93_Y1_Y1
#define VMOVQ_SI_X11_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x1E
#define VMOVQ_SI_X12_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x26
#define VMOVQ_SI_X13_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x2E
#define VMOVQ_SI_X14_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x36
#define VMOVQ_SI_X15_0 BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x3E
#define VMOVQ_SI_X11(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x5E; BYTE $n
#define VMOVQ_SI_X12(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x66; BYTE $n
#define VMOVQ_SI_X13(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x6E; BYTE $n
#define VMOVQ_SI_X14(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x76; BYTE $n
#define VMOVQ_SI_X15(n) BYTE $0xC5; BYTE $0x7A; BYTE $0x7E; BYTE $0x7E; BYTE $n
#define VPINSRQ_1_SI_X11_0 BYTE $0xC4; BYTE $0x63; BYTE $0xA1; BYTE $0x22; BYTE $0x1E; BYTE $0x01
#define VPINSRQ_1_SI_X12_0 BYTE $0xC4; BYTE $0x63; BYTE $0x99; BYTE $0x22; BYTE $0x26; BYTE $0x01
#define VPINSRQ_1_SI_X13_0 BYTE $0xC4; BYTE $0x63; BYTE $0x91; BYTE $0x22; BYTE $0x2E; BYTE $0x01
#define VPINSRQ_1_SI_X14_0 BYTE $0xC4; BYTE $0x63; BYTE $0x89; BYTE $0x22; BYTE $0x36; BYTE $0x01
#define VPINSRQ_1_SI_X15_0 BYTE $0xC4; BYTE $0x63; BYTE $0x81; BYTE $0x22; BYTE $0x3E; BYTE $0x01
#define VPINSRQ_1_SI_X11(n) BYTE $0xC4; BYTE $0x63; BYTE $0xA1; BYTE $0x22; BYTE $0x5E; BYTE $n; BYTE $0x01
#define VPINSRQ_1_SI_X12(n) BYTE $0xC4; BYTE $0x63; BYTE $0x99; BYTE $0x22; BYTE $0x66; BYTE $n; BYTE $0x01
#define VPINSRQ_1_SI_X13(n) BYTE $0xC4; BYTE $0x63; BYTE $0x91; BYTE $0x22; BYTE $0x6E; BYTE $n; BYTE $0x01
#define VPINSRQ_1_SI_X14(n) BYTE $0xC4; BYTE $0x63; BYTE $0x89; BYTE $0x22; BYTE $0x76; BYTE $n; BYTE $0x01
#define VPINSRQ_1_SI_X15(n) BYTE $0xC4; BYTE $0x63; BYTE $0x81; BYTE $0x22; BYTE $0x7E; BYTE $n; BYTE $0x01
#define VMOVQ_R8_X15 BYTE $0xC4; BYTE $0x41; BYTE $0xF9; BYTE $0x6E; BYTE $0xF8
#define VPINSRQ_1_R9_X15 BYTE $0xC4; BYTE $0x43; BYTE $0x81; BYTE $0x22; BYTE $0xF9; BYTE $0x01
// load msg: Y12 = (i0, i1, i2, i3)
// i0, i1, i2, i3 must not be 0
#define LOAD_MSG_AVX2_Y12(i0, i1, i2, i3) \
VMOVQ_SI_X12(i0*8); \
VMOVQ_SI_X11(i2*8); \
VPINSRQ_1_SI_X12(i1*8); \
VPINSRQ_1_SI_X11(i3*8); \
VINSERTI128 $1, X11, Y12, Y12
// load msg: Y13 = (i0, i1, i2, i3)
// i0, i1, i2, i3 must not be 0
#define LOAD_MSG_AVX2_Y13(i0, i1, i2, i3) \
VMOVQ_SI_X13(i0*8); \
VMOVQ_SI_X11(i2*8); \
VPINSRQ_1_SI_X13(i1*8); \
VPINSRQ_1_SI_X11(i3*8); \
VINSERTI128 $1, X11, Y13, Y13
// load msg: Y14 = (i0, i1, i2, i3)
// i0, i1, i2, i3 must not be 0
#define LOAD_MSG_AVX2_Y14(i0, i1, i2, i3) \
VMOVQ_SI_X14(i0*8); \
VMOVQ_SI_X11(i2*8); \
VPINSRQ_1_SI_X14(i1*8); \
VPINSRQ_1_SI_X11(i3*8); \
VINSERTI128 $1, X11, Y14, Y14
// load msg: Y15 = (i0, i1, i2, i3)
// i0, i1, i2, i3 must not be 0
#define LOAD_MSG_AVX2_Y15(i0, i1, i2, i3) \
VMOVQ_SI_X15(i0*8); \
VMOVQ_SI_X11(i2*8); \
VPINSRQ_1_SI_X15(i1*8); \
VPINSRQ_1_SI_X11(i3*8); \
VINSERTI128 $1, X11, Y15, Y15
#define LOAD_MSG_AVX2_0_2_4_6_1_3_5_7_8_10_12_14_9_11_13_15() \
VMOVQ_SI_X12_0; \
VMOVQ_SI_X11(4*8); \
VPINSRQ_1_SI_X12(2*8); \
VPINSRQ_1_SI_X11(6*8); \
VINSERTI128 $1, X11, Y12, Y12; \
LOAD_MSG_AVX2_Y13(1, 3, 5, 7); \
LOAD_MSG_AVX2_Y14(8, 10, 12, 14); \
LOAD_MSG_AVX2_Y15(9, 11, 13, 15)
#define LOAD_MSG_AVX2_14_4_9_13_10_8_15_6_1_0_11_5_12_2_7_3() \
LOAD_MSG_AVX2_Y12(14, 4, 9, 13); \
LOAD_MSG_AVX2_Y13(10, 8, 15, 6); \
VMOVQ_SI_X11(11*8); \
VPSHUFD $0x4E, 0*8(SI), X14; \
VPINSRQ_1_SI_X11(5*8); \
VINSERTI128 $1, X11, Y14, Y14; \
LOAD_MSG_AVX2_Y15(12, 2, 7, 3)
#define LOAD_MSG_AVX2_11_12_5_15_8_0_2_13_10_3_7_9_14_6_1_4() \
VMOVQ_SI_X11(5*8); \
VMOVDQU 11*8(SI), X12; \
VPINSRQ_1_SI_X11(15*8); \
VINSERTI128 $1, X11, Y12, Y12; \
VMOVQ_SI_X13(8*8); \
VMOVQ_SI_X11(2*8); \
VPINSRQ_1_SI_X13_0; \
VPINSRQ_1_SI_X11(13*8); \
VINSERTI128 $1, X11, Y13, Y13; \
LOAD_MSG_AVX2_Y14(10, 3, 7, 9); \
LOAD_MSG_AVX2_Y15(14, 6, 1, 4)
#define LOAD_MSG_AVX2_7_3_13_11_9_1_12_14_2_5_4_15_6_10_0_8() \
LOAD_MSG_AVX2_Y12(7, 3, 13, 11); \
LOAD_MSG_AVX2_Y13(9, 1, 12, 14); \
LOAD_MSG_AVX2_Y14(2, 5, 4, 15); \
VMOVQ_SI_X15(6*8); \
VMOVQ_SI_X11_0; \
VPINSRQ_1_SI_X15(10*8); \
VPINSRQ_1_SI_X11(8*8); \
VINSERTI128 $1, X11, Y15, Y15
#define LOAD_MSG_AVX2_9_5_2_10_0_7_4_15_14_11_6_3_1_12_8_13() \
LOAD_MSG_AVX2_Y12(9, 5, 2, 10); \
VMOVQ_SI_X13_0; \
VMOVQ_SI_X11(4*8); \
VPINSRQ_1_SI_X13(7*8); \
VPINSRQ_1_SI_X11(15*8); \
VINSERTI128 $1, X11, Y13, Y13; \
LOAD_MSG_AVX2_Y14(14, 11, 6, 3); \
LOAD_MSG_AVX2_Y15(1, 12, 8, 13)
#define LOAD_MSG_AVX2_2_6_0_8_12_10_11_3_4_7_15_1_13_5_14_9() \
VMOVQ_SI_X12(2*8); \
VMOVQ_SI_X11_0; \
VPINSRQ_1_SI_X12(6*8); \
VPINSRQ_1_SI_X11(8*8); \
VINSERTI128 $1, X11, Y12, Y12; \
LOAD_MSG_AVX2_Y13(12, 10, 11, 3); \
LOAD_MSG_AVX2_Y14(4, 7, 15, 1); \
LOAD_MSG_AVX2_Y15(13, 5, 14, 9)
#define LOAD_MSG_AVX2_12_1_14_4_5_15_13_10_0_6_9_8_7_3_2_11() \
LOAD_MSG_AVX2_Y12(12, 1, 14, 4); \
LOAD_MSG_AVX2_Y13(5, 15, 13, 10); \
VMOVQ_SI_X14_0; \
VPSHUFD $0x4E, 8*8(SI), X11; \
VPINSRQ_1_SI_X14(6*8); \
VINSERTI128 $1, X11, Y14, Y14; \
LOAD_MSG_AVX2_Y15(7, 3, 2, 11)
#define LOAD_MSG_AVX2_13_7_12_3_11_14_1_9_5_15_8_2_0_4_6_10() \
LOAD_MSG_AVX2_Y12(13, 7, 12, 3); \
LOAD_MSG_AVX2_Y13(11, 14, 1, 9); \
LOAD_MSG_AVX2_Y14(5, 15, 8, 2); \
VMOVQ_SI_X15_0; \
VMOVQ_SI_X11(6*8); \
VPINSRQ_1_SI_X15(4*8); \
VPINSRQ_1_SI_X11(10*8); \
VINSERTI128 $1, X11, Y15, Y15
#define LOAD_MSG_AVX2_6_14_11_0_15_9_3_8_12_13_1_10_2_7_4_5() \
VMOVQ_SI_X12(6*8); \
VMOVQ_SI_X11(11*8); \
VPINSRQ_1_SI_X12(14*8); \
VPINSRQ_1_SI_X11_0; \
VINSERTI128 $1, X11, Y12, Y12; \
LOAD_MSG_AVX2_Y13(15, 9, 3, 8); \
VMOVQ_SI_X11(1*8); \
VMOVDQU 12*8(SI), X14; \
VPINSRQ_1_SI_X11(10*8); \
VINSERTI128 $1, X11, Y14, Y14; \
VMOVQ_SI_X15(2*8); \
VMOVDQU 4*8(SI), X11; \
VPINSRQ_1_SI_X15(7*8); \
VINSERTI128 $1, X11, Y15, Y15
#define LOAD_MSG_AVX2_10_8_7_1_2_4_6_5_15_9_3_13_11_14_12_0() \
LOAD_MSG_AVX2_Y12(10, 8, 7, 1); \
VMOVQ_SI_X13(2*8); \
VPSHUFD $0x4E, 5*8(SI), X11; \
VPINSRQ_1_SI_X13(4*8); \
VINSERTI128 $1, X11, Y13, Y13; \
LOAD_MSG_AVX2_Y14(15, 9, 3, 13); \
VMOVQ_SI_X15(11*8); \
VMOVQ_SI_X11(12*8); \
VPINSRQ_1_SI_X15(14*8); \
VPINSRQ_1_SI_X11_0; \
VINSERTI128 $1, X11, Y15, Y15
// func fAVX2(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
TEXT ·fAVX2(SB), 4, $64-48 // frame size = 32 + 32 byte alignment
MOVQ h+0(FP), AX
MOVQ m+8(FP), SI
MOVQ c0+16(FP), R8
MOVQ c1+24(FP), R9
MOVQ flag+32(FP), CX
MOVQ rounds+40(FP), BX
MOVQ SP, DX
MOVQ SP, R10
ADDQ $31, R10
ANDQ $~31, R10
MOVQ R10, SP
MOVQ CX, 16(SP)
XORQ CX, CX
MOVQ CX, 24(SP)
VMOVDQU ·AVX2_c40<>(SB), Y4
VMOVDQU ·AVX2_c48<>(SB), Y5
VMOVDQU 0(AX), Y8
VMOVDQU 32(AX), Y9
VMOVDQU ·AVX2_iv0<>(SB), Y6
VMOVDQU ·AVX2_iv1<>(SB), Y7
MOVQ R8, 0(SP)
MOVQ R9, 8(SP)
VMOVDQA Y8, Y0
VMOVDQA Y9, Y1
VMOVDQA Y6, Y2
VPXOR 0(SP), Y7, Y3
loop:
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_0_2_4_6_1_3_5_7_8_10_12_14_9_11_13_15()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_14_4_9_13_10_8_15_6_1_0_11_5_12_2_7_3()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_11_12_5_15_8_0_2_13_10_3_7_9_14_6_1_4()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_7_3_13_11_9_1_12_14_2_5_4_15_6_10_0_8()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_9_5_2_10_0_7_4_15_14_11_6_3_1_12_8_13()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_2_6_0_8_12_10_11_3_4_7_15_1_13_5_14_9()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_12_1_14_4_5_15_13_10_0_6_9_8_7_3_2_11()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_13_7_12_3_11_14_1_9_5_15_8_2_0_4_6_10()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_6_14_11_0_15_9_3_8_12_13_1_10_2_7_4_5()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
SUBQ $1, BX; JCS done
LOAD_MSG_AVX2_10_8_7_1_2_4_6_5_15_9_3_13_11_14_12_0()
ROUND_AVX2(Y12, Y13, Y14, Y15, Y10, Y4, Y5)
JMP loop
done:
VPXOR Y0, Y8, Y8
VPXOR Y1, Y9, Y9
VPXOR Y2, Y8, Y8
VPXOR Y3, Y9, Y9
VMOVDQU Y8, 0(AX)
VMOVDQU Y9, 32(AX)
VZEROUPPER
MOVQ DX, SP
RET
#define VPUNPCKLQDQ_X2_X2_X15 BYTE $0xC5; BYTE $0x69; BYTE $0x6C; BYTE $0xFA
#define VPUNPCKLQDQ_X3_X3_X15 BYTE $0xC5; BYTE $0x61; BYTE $0x6C; BYTE $0xFB
#define VPUNPCKLQDQ_X7_X7_X15 BYTE $0xC5; BYTE $0x41; BYTE $0x6C; BYTE $0xFF
#define VPUNPCKLQDQ_X13_X13_X15 BYTE $0xC4; BYTE $0x41; BYTE $0x11; BYTE $0x6C; BYTE $0xFD
#define VPUNPCKLQDQ_X14_X14_X15 BYTE $0xC4; BYTE $0x41; BYTE $0x09; BYTE $0x6C; BYTE $0xFE
#define VPUNPCKHQDQ_X15_X2_X2 BYTE $0xC4; BYTE $0xC1; BYTE $0x69; BYTE $0x6D; BYTE $0xD7
#define VPUNPCKHQDQ_X15_X3_X3 BYTE $0xC4; BYTE $0xC1; BYTE $0x61; BYTE $0x6D; BYTE $0xDF
#define VPUNPCKHQDQ_X15_X6_X6 BYTE $0xC4; BYTE $0xC1; BYTE $0x49; BYTE $0x6D; BYTE $0xF7
#define VPUNPCKHQDQ_X15_X7_X7 BYTE $0xC4; BYTE $0xC1; BYTE $0x41; BYTE $0x6D; BYTE $0xFF
#define VPUNPCKHQDQ_X15_X3_X2 BYTE $0xC4; BYTE $0xC1; BYTE $0x61; BYTE $0x6D; BYTE $0xD7
#define VPUNPCKHQDQ_X15_X7_X6 BYTE $0xC4; BYTE $0xC1; BYTE $0x41; BYTE $0x6D; BYTE $0xF7
#define VPUNPCKHQDQ_X15_X13_X3 BYTE $0xC4; BYTE $0xC1; BYTE $0x11; BYTE $0x6D; BYTE $0xDF
#define VPUNPCKHQDQ_X15_X13_X7 BYTE $0xC4; BYTE $0xC1; BYTE $0x11; BYTE $0x6D; BYTE $0xFF
#define SHUFFLE_AVX() \
VMOVDQA X6, X13; \
VMOVDQA X2, X14; \
VMOVDQA X4, X6; \
VPUNPCKLQDQ_X13_X13_X15; \
VMOVDQA X5, X4; \
VMOVDQA X6, X5; \
VPUNPCKHQDQ_X15_X7_X6; \
VPUNPCKLQDQ_X7_X7_X15; \
VPUNPCKHQDQ_X15_X13_X7; \
VPUNPCKLQDQ_X3_X3_X15; \
VPUNPCKHQDQ_X15_X2_X2; \
VPUNPCKLQDQ_X14_X14_X15; \
VPUNPCKHQDQ_X15_X3_X3; \
#define SHUFFLE_AVX_INV() \
VMOVDQA X2, X13; \
VMOVDQA X4, X14; \
VPUNPCKLQDQ_X2_X2_X15; \
VMOVDQA X5, X4; \
VPUNPCKHQDQ_X15_X3_X2; \
VMOVDQA X14, X5; \
VPUNPCKLQDQ_X3_X3_X15; \
VMOVDQA X6, X14; \
VPUNPCKHQDQ_X15_X13_X3; \
VPUNPCKLQDQ_X7_X7_X15; \
VPUNPCKHQDQ_X15_X6_X6; \
VPUNPCKLQDQ_X14_X14_X15; \
VPUNPCKHQDQ_X15_X7_X7; \
#define HALF_ROUND_AVX(v0, v1, v2, v3, v4, v5, v6, v7, m0, m1, m2, m3, t0, c40, c48) \
VPADDQ m0, v0, v0; \
VPADDQ v2, v0, v0; \
VPADDQ m1, v1, v1; \
VPADDQ v3, v1, v1; \
VPXOR v0, v6, v6; \
VPXOR v1, v7, v7; \
VPSHUFD $-79, v6, v6; \
VPSHUFD $-79, v7, v7; \
VPADDQ v6, v4, v4; \
VPADDQ v7, v5, v5; \
VPXOR v4, v2, v2; \
VPXOR v5, v3, v3; \
VPSHUFB c40, v2, v2; \
VPSHUFB c40, v3, v3; \
VPADDQ m2, v0, v0; \
VPADDQ v2, v0, v0; \
VPADDQ m3, v1, v1; \
VPADDQ v3, v1, v1; \
VPXOR v0, v6, v6; \
VPXOR v1, v7, v7; \
VPSHUFB c48, v6, v6; \
VPSHUFB c48, v7, v7; \
VPADDQ v6, v4, v4; \
VPADDQ v7, v5, v5; \
VPXOR v4, v2, v2; \
VPXOR v5, v3, v3; \
VPADDQ v2, v2, t0; \
VPSRLQ $63, v2, v2; \
VPXOR t0, v2, v2; \
VPADDQ v3, v3, t0; \
VPSRLQ $63, v3, v3; \
VPXOR t0, v3, v3
// load msg: X12 = (i0, i1), X13 = (i2, i3), X14 = (i4, i5), X15 = (i6, i7)
// i0, i1, i2, i3, i4, i5, i6, i7 must not be 0
#define LOAD_MSG_AVX(i0, i1, i2, i3, i4, i5, i6, i7) \
VMOVQ_SI_X12(i0*8); \
VMOVQ_SI_X13(i2*8); \
VMOVQ_SI_X14(i4*8); \
VMOVQ_SI_X15(i6*8); \
VPINSRQ_1_SI_X12(i1*8); \
VPINSRQ_1_SI_X13(i3*8); \
VPINSRQ_1_SI_X14(i5*8); \
VPINSRQ_1_SI_X15(i7*8)
// load msg: X12 = (0, 2), X13 = (4, 6), X14 = (1, 3), X15 = (5, 7)
#define LOAD_MSG_AVX_0_2_4_6_1_3_5_7() \
VMOVQ_SI_X12_0; \
VMOVQ_SI_X13(4*8); \
VMOVQ_SI_X14(1*8); \
VMOVQ_SI_X15(5*8); \
VPINSRQ_1_SI_X12(2*8); \
VPINSRQ_1_SI_X13(6*8); \
VPINSRQ_1_SI_X14(3*8); \
VPINSRQ_1_SI_X15(7*8)
// load msg: X12 = (1, 0), X13 = (11, 5), X14 = (12, 2), X15 = (7, 3)
#define LOAD_MSG_AVX_1_0_11_5_12_2_7_3() \
VPSHUFD $0x4E, 0*8(SI), X12; \
VMOVQ_SI_X13(11*8); \
VMOVQ_SI_X14(12*8); \
VMOVQ_SI_X15(7*8); \
VPINSRQ_1_SI_X13(5*8); \
VPINSRQ_1_SI_X14(2*8); \
VPINSRQ_1_SI_X15(3*8)
// load msg: X12 = (11, 12), X13 = (5, 15), X14 = (8, 0), X15 = (2, 13)
#define LOAD_MSG_AVX_11_12_5_15_8_0_2_13() \
VMOVDQU 11*8(SI), X12; \
VMOVQ_SI_X13(5*8); \
VMOVQ_SI_X14(8*8); \
VMOVQ_SI_X15(2*8); \
VPINSRQ_1_SI_X13(15*8); \
VPINSRQ_1_SI_X14_0; \
VPINSRQ_1_SI_X15(13*8)
// load msg: X12 = (2, 5), X13 = (4, 15), X14 = (6, 10), X15 = (0, 8)
#define LOAD_MSG_AVX_2_5_4_15_6_10_0_8() \
VMOVQ_SI_X12(2*8); \
VMOVQ_SI_X13(4*8); \
VMOVQ_SI_X14(6*8); \
VMOVQ_SI_X15_0; \
VPINSRQ_1_SI_X12(5*8); \
VPINSRQ_1_SI_X13(15*8); \
VPINSRQ_1_SI_X14(10*8); \
VPINSRQ_1_SI_X15(8*8)
// load msg: X12 = (9, 5), X13 = (2, 10), X14 = (0, 7), X15 = (4, 15)
#define LOAD_MSG_AVX_9_5_2_10_0_7_4_15() \
VMOVQ_SI_X12(9*8); \
VMOVQ_SI_X13(2*8); \
VMOVQ_SI_X14_0; \
VMOVQ_SI_X15(4*8); \
VPINSRQ_1_SI_X12(5*8); \
VPINSRQ_1_SI_X13(10*8); \
VPINSRQ_1_SI_X14(7*8); \
VPINSRQ_1_SI_X15(15*8)
// load msg: X12 = (2, 6), X13 = (0, 8), X14 = (12, 10), X15 = (11, 3)
#define LOAD_MSG_AVX_2_6_0_8_12_10_11_3() \
VMOVQ_SI_X12(2*8); \
VMOVQ_SI_X13_0; \
VMOVQ_SI_X14(12*8); \
VMOVQ_SI_X15(11*8); \
VPINSRQ_1_SI_X12(6*8); \
VPINSRQ_1_SI_X13(8*8); \
VPINSRQ_1_SI_X14(10*8); \
VPINSRQ_1_SI_X15(3*8)
// load msg: X12 = (0, 6), X13 = (9, 8), X14 = (7, 3), X15 = (2, 11)
#define LOAD_MSG_AVX_0_6_9_8_7_3_2_11() \
MOVQ 0*8(SI), X12; \
VPSHUFD $0x4E, 8*8(SI), X13; \
MOVQ 7*8(SI), X14; \
MOVQ 2*8(SI), X15; \
VPINSRQ_1_SI_X12(6*8); \
VPINSRQ_1_SI_X14(3*8); \
VPINSRQ_1_SI_X15(11*8)
// load msg: X12 = (6, 14), X13 = (11, 0), X14 = (15, 9), X15 = (3, 8)
#define LOAD_MSG_AVX_6_14_11_0_15_9_3_8() \
MOVQ 6*8(SI), X12; \
MOVQ 11*8(SI), X13; \
MOVQ 15*8(SI), X14; \
MOVQ 3*8(SI), X15; \
VPINSRQ_1_SI_X12(14*8); \
VPINSRQ_1_SI_X13_0; \
VPINSRQ_1_SI_X14(9*8); \
VPINSRQ_1_SI_X15(8*8)
// load msg: X12 = (5, 15), X13 = (8, 2), X14 = (0, 4), X15 = (6, 10)
#define LOAD_MSG_AVX_5_15_8_2_0_4_6_10() \
MOVQ 5*8(SI), X12; \
MOVQ 8*8(SI), X13; \
MOVQ 0*8(SI), X14; \
MOVQ 6*8(SI), X15; \
VPINSRQ_1_SI_X12(15*8); \
VPINSRQ_1_SI_X13(2*8); \
VPINSRQ_1_SI_X14(4*8); \
VPINSRQ_1_SI_X15(10*8)
// load msg: X12 = (12, 13), X13 = (1, 10), X14 = (2, 7), X15 = (4, 5)
#define LOAD_MSG_AVX_12_13_1_10_2_7_4_5() \
VMOVDQU 12*8(SI), X12; \
MOVQ 1*8(SI), X13; \
MOVQ 2*8(SI), X14; \
VPINSRQ_1_SI_X13(10*8); \
VPINSRQ_1_SI_X14(7*8); \
VMOVDQU 4*8(SI), X15
// load msg: X12 = (15, 9), X13 = (3, 13), X14 = (11, 14), X15 = (12, 0)
#define LOAD_MSG_AVX_15_9_3_13_11_14_12_0() \
MOVQ 15*8(SI), X12; \
MOVQ 3*8(SI), X13; \
MOVQ 11*8(SI), X14; \
MOVQ 12*8(SI), X15; \
VPINSRQ_1_SI_X12(9*8); \
VPINSRQ_1_SI_X13(13*8); \
VPINSRQ_1_SI_X14(14*8); \
VPINSRQ_1_SI_X15_0
// func fAVX(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
TEXT ·fAVX(SB), 4, $24-48 // frame size = 8 + 16 byte alignment
MOVQ h+0(FP), AX
MOVQ m+8(FP), SI
MOVQ c0+16(FP), R8
MOVQ c1+24(FP), R9
MOVQ flag+32(FP), CX
MOVQ rounds+40(FP), BX
MOVQ SP, BP
MOVQ SP, R10
ADDQ $15, R10
ANDQ $~15, R10
MOVQ R10, SP
VMOVDQU ·AVX_c40<>(SB), X0
VMOVDQU ·AVX_c48<>(SB), X1
VMOVDQA X0, X8
VMOVDQA X1, X9
VMOVDQU ·AVX_iv3<>(SB), X0
VMOVDQA X0, 0(SP)
XORQ CX, 0(SP) // 0(SP) = ·AVX_iv3 ^ (CX || 0)
VMOVDQU 0(AX), X10
VMOVDQU 16(AX), X11
VMOVDQU 32(AX), X2
VMOVDQU 48(AX), X3
VMOVQ_R8_X15
VPINSRQ_1_R9_X15
VMOVDQA X10, X0
VMOVDQA X11, X1
VMOVDQU ·AVX_iv0<>(SB), X4
VMOVDQU ·AVX_iv1<>(SB), X5
VMOVDQU ·AVX_iv2<>(SB), X6
VPXOR X15, X6, X6
VMOVDQA 0(SP), X7
loop:
SUBQ $1, BX; JCS done
LOAD_MSG_AVX_0_2_4_6_1_3_5_7()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX(8, 10, 12, 14, 9, 11, 13, 15)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX(14, 4, 9, 13, 10, 8, 15, 6)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX_1_0_11_5_12_2_7_3()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX_11_12_5_15_8_0_2_13()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX(10, 3, 7, 9, 14, 6, 1, 4)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX(7, 3, 13, 11, 9, 1, 12, 14)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX_2_5_4_15_6_10_0_8()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX_9_5_2_10_0_7_4_15()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX(14, 11, 6, 3, 1, 12, 8, 13)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX_2_6_0_8_12_10_11_3()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX(4, 7, 15, 1, 13, 5, 14, 9)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX(12, 1, 14, 4, 5, 15, 13, 10)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX_0_6_9_8_7_3_2_11()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX(13, 7, 12, 3, 11, 14, 1, 9)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX_5_15_8_2_0_4_6_10()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX_6_14_11_0_15_9_3_8()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX_12_13_1_10_2_7_4_5()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
SUBQ $1, BX; JCS done
LOAD_MSG_AVX(10, 8, 7, 1, 2, 4, 6, 5)
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX()
LOAD_MSG_AVX_15_9_3_13_11_14_12_0()
HALF_ROUND_AVX(X0, X1, X2, X3, X4, X5, X6, X7, X12, X13, X14, X15, X15, X8, X9)
SHUFFLE_AVX_INV()
JMP loop
done:
VMOVDQU 32(AX), X14
VMOVDQU 48(AX), X15
VPXOR X0, X10, X10
VPXOR X1, X11, X11
VPXOR X2, X14, X14
VPXOR X3, X15, X15
VPXOR X4, X10, X10
VPXOR X5, X11, X11
VPXOR X6, X14, X2
VPXOR X7, X15, X3
VMOVDQU X2, 32(AX)
VMOVDQU X3, 48(AX)
VMOVDQU X10, 0(AX)
VMOVDQU X11, 16(AX)
VZEROUPPER
MOVQ BP, SP
RET

View File

@@ -0,0 +1,25 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.7 && amd64 && !gccgo && !appengine
// +build !go1.7,amd64,!gccgo,!appengine
package blake2b
import "golang.org/x/sys/cpu"
func init() {
useSSE4 = cpu.X86.HasSSE41
}
//go:noescape
func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
if useSSE4 {
fSSE4(h, m, c0, c1, flag, rounds)
} else {
fGeneric(h, m, c0, c1, flag, rounds)
}
}

View File

@@ -0,0 +1,253 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64,!gccgo,!appengine
#include "textflag.h"
DATA ·iv0<>+0x00(SB)/8, $0x6a09e667f3bcc908
DATA ·iv0<>+0x08(SB)/8, $0xbb67ae8584caa73b
GLOBL ·iv0<>(SB), (NOPTR+RODATA), $16
DATA ·iv1<>+0x00(SB)/8, $0x3c6ef372fe94f82b
DATA ·iv1<>+0x08(SB)/8, $0xa54ff53a5f1d36f1
GLOBL ·iv1<>(SB), (NOPTR+RODATA), $16
DATA ·iv2<>+0x00(SB)/8, $0x510e527fade682d1
DATA ·iv2<>+0x08(SB)/8, $0x9b05688c2b3e6c1f
GLOBL ·iv2<>(SB), (NOPTR+RODATA), $16
DATA ·iv3<>+0x00(SB)/8, $0x1f83d9abfb41bd6b
DATA ·iv3<>+0x08(SB)/8, $0x5be0cd19137e2179
GLOBL ·iv3<>(SB), (NOPTR+RODATA), $16
DATA ·c40<>+0x00(SB)/8, $0x0201000706050403
DATA ·c40<>+0x08(SB)/8, $0x0a09080f0e0d0c0b
GLOBL ·c40<>(SB), (NOPTR+RODATA), $16
DATA ·c48<>+0x00(SB)/8, $0x0100070605040302
DATA ·c48<>+0x08(SB)/8, $0x09080f0e0d0c0b0a
GLOBL ·c48<>(SB), (NOPTR+RODATA), $16
#define SHUFFLE(v2, v3, v4, v5, v6, v7, t1, t2) \
MOVO v4, t1; \
MOVO v5, v4; \
MOVO t1, v5; \
MOVO v6, t1; \
PUNPCKLQDQ v6, t2; \
PUNPCKHQDQ v7, v6; \
PUNPCKHQDQ t2, v6; \
PUNPCKLQDQ v7, t2; \
MOVO t1, v7; \
MOVO v2, t1; \
PUNPCKHQDQ t2, v7; \
PUNPCKLQDQ v3, t2; \
PUNPCKHQDQ t2, v2; \
PUNPCKLQDQ t1, t2; \
PUNPCKHQDQ t2, v3
#define SHUFFLE_INV(v2, v3, v4, v5, v6, v7, t1, t2) \
MOVO v4, t1; \
MOVO v5, v4; \
MOVO t1, v5; \
MOVO v2, t1; \
PUNPCKLQDQ v2, t2; \
PUNPCKHQDQ v3, v2; \
PUNPCKHQDQ t2, v2; \
PUNPCKLQDQ v3, t2; \
MOVO t1, v3; \
MOVO v6, t1; \
PUNPCKHQDQ t2, v3; \
PUNPCKLQDQ v7, t2; \
PUNPCKHQDQ t2, v6; \
PUNPCKLQDQ t1, t2; \
PUNPCKHQDQ t2, v7
#define HALF_ROUND(v0, v1, v2, v3, v4, v5, v6, v7, m0, m1, m2, m3, t0, c40, c48) \
PADDQ m0, v0; \
PADDQ m1, v1; \
PADDQ v2, v0; \
PADDQ v3, v1; \
PXOR v0, v6; \
PXOR v1, v7; \
PSHUFD $0xB1, v6, v6; \
PSHUFD $0xB1, v7, v7; \
PADDQ v6, v4; \
PADDQ v7, v5; \
PXOR v4, v2; \
PXOR v5, v3; \
PSHUFB c40, v2; \
PSHUFB c40, v3; \
PADDQ m2, v0; \
PADDQ m3, v1; \
PADDQ v2, v0; \
PADDQ v3, v1; \
PXOR v0, v6; \
PXOR v1, v7; \
PSHUFB c48, v6; \
PSHUFB c48, v7; \
PADDQ v6, v4; \
PADDQ v7, v5; \
PXOR v4, v2; \
PXOR v5, v3; \
MOVOU v2, t0; \
PADDQ v2, t0; \
PSRLQ $63, v2; \
PXOR t0, v2; \
MOVOU v3, t0; \
PADDQ v3, t0; \
PSRLQ $63, v3; \
PXOR t0, v3
#define LOAD_MSG(m0, m1, m2, m3, i0, i1, i2, i3, i4, i5, i6, i7) \
MOVQ i0*8(SI), m0; \
PINSRQ $1, i1*8(SI), m0; \
MOVQ i2*8(SI), m1; \
PINSRQ $1, i3*8(SI), m1; \
MOVQ i4*8(SI), m2; \
PINSRQ $1, i5*8(SI), m2; \
MOVQ i6*8(SI), m3; \
PINSRQ $1, i7*8(SI), m3
// func fSSE4(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64)
TEXT ·fSSE4(SB), 4, $24-48 // frame size = 8 + 16 byte alignment
MOVQ h+0(FP), AX
MOVQ m+8(FP), SI
MOVQ c0+16(FP), R8
MOVQ c1+24(FP), R9
MOVQ flag+32(FP), CX
MOVQ rounds+40(FP), BX
MOVQ SP, BP
MOVQ SP, R10
ADDQ $15, R10
ANDQ $~15, R10
MOVQ R10, SP
MOVOU ·iv3<>(SB), X0
MOVO X0, 0(SP)
XORQ CX, 0(SP) // 0(SP) = ·iv3 ^ (CX || 0)
MOVOU ·c40<>(SB), X13
MOVOU ·c48<>(SB), X14
MOVOU 0(AX), X12
MOVOU 16(AX), X15
MOVQ R8, X8
PINSRQ $1, R9, X8
MOVO X12, X0
MOVO X15, X1
MOVOU 32(AX), X2
MOVOU 48(AX), X3
MOVOU ·iv0<>(SB), X4
MOVOU ·iv1<>(SB), X5
MOVOU ·iv2<>(SB), X6
PXOR X8, X6
MOVO 0(SP), X7
loop:
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 0, 2, 4, 6, 1, 3, 5, 7)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 8, 10, 12, 14, 9, 11, 13, 15)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 14, 4, 9, 13, 10, 8, 15, 6)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 1, 0, 11, 5, 12, 2, 7, 3)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 11, 12, 5, 15, 8, 0, 2, 13)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 10, 3, 7, 9, 14, 6, 1, 4)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 7, 3, 13, 11, 9, 1, 12, 14)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 2, 5, 4, 15, 6, 10, 0, 8)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 9, 5, 2, 10, 0, 7, 4, 15)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 14, 11, 6, 3, 1, 12, 8, 13)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 2, 6, 0, 8, 12, 10, 11, 3)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 4, 7, 15, 1, 13, 5, 14, 9)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 12, 1, 14, 4, 5, 15, 13, 10)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 0, 6, 9, 8, 7, 3, 2, 11)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 13, 7, 12, 3, 11, 14, 1, 9)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 5, 15, 8, 2, 0, 4, 6, 10)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 6, 14, 11, 0, 15, 9, 3, 8)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 12, 13, 1, 10, 2, 7, 4, 5)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
SUBQ $1, BX; JCS done
LOAD_MSG(X8, X9, X10, X11, 10, 8, 7, 1, 2, 4, 6, 5)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE(X2, X3, X4, X5, X6, X7, X8, X9)
LOAD_MSG(X8, X9, X10, X11, 15, 9, 3, 13, 11, 14, 12, 0)
HALF_ROUND(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X11, X13, X14)
SHUFFLE_INV(X2, X3, X4, X5, X6, X7, X8, X9)
JMP loop
done:
MOVOU 32(AX), X10
MOVOU 48(AX), X11
PXOR X0, X12
PXOR X1, X15
PXOR X2, X10
PXOR X3, X11
PXOR X4, X12
PXOR X5, X15
PXOR X6, X10
PXOR X7, X11
MOVOU X10, 32(AX)
MOVOU X11, 48(AX)
MOVOU X12, 0(AX)
MOVOU X15, 16(AX)
MOVQ BP, SP
RET

View File

@@ -0,0 +1,58 @@
//go:build gofuzz
// +build gofuzz
package blake2b
import (
"encoding/binary"
)
func Fuzz(data []byte) int {
// Make sure the data confirms to the input model
if len(data) != 211 {
return 0
}
// Parse everything and call all the implementations
var (
rounds = binary.BigEndian.Uint16(data[0:2])
h [8]uint64
m [16]uint64
t [2]uint64
f uint64
)
for i := 0; i < 8; i++ {
offset := 2 + i*8
h[i] = binary.LittleEndian.Uint64(data[offset : offset+8])
}
for i := 0; i < 16; i++ {
offset := 66 + i*8
m[i] = binary.LittleEndian.Uint64(data[offset : offset+8])
}
t[0] = binary.LittleEndian.Uint64(data[194:202])
t[1] = binary.LittleEndian.Uint64(data[202:210])
if data[210]%2 == 1 { // Avoid spinning the fuzzer to hit 0/1
f = 0xFFFFFFFFFFFFFFFF
}
// Run the blake2b compression on all instruction sets and cross reference
want := h
fGeneric(&want, &m, t[0], t[1], f, uint64(rounds))
have := h
fSSE4(&have, &m, t[0], t[1], f, uint64(rounds))
if have != want {
panic("SSE4 mismatches generic algo")
}
have = h
fAVX(&have, &m, t[0], t[1], f, uint64(rounds))
if have != want {
panic("AVX mismatches generic algo")
}
have = h
fAVX2(&have, &m, t[0], t[1], f, uint64(rounds))
if have != want {
panic("AVX2 mismatches generic algo")
}
return 1
}

View File

@@ -0,0 +1,181 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blake2b
import (
"encoding/binary"
"math/bits"
)
// the precomputed values for BLAKE2b
// there are 10 16-byte arrays - one for each round
// the entries are calculated from the sigma constants.
var precomputed = [10][16]byte{
{0, 2, 4, 6, 1, 3, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15},
{14, 4, 9, 13, 10, 8, 15, 6, 1, 0, 11, 5, 12, 2, 7, 3},
{11, 12, 5, 15, 8, 0, 2, 13, 10, 3, 7, 9, 14, 6, 1, 4},
{7, 3, 13, 11, 9, 1, 12, 14, 2, 5, 4, 15, 6, 10, 0, 8},
{9, 5, 2, 10, 0, 7, 4, 15, 14, 11, 6, 3, 1, 12, 8, 13},
{2, 6, 0, 8, 12, 10, 11, 3, 4, 7, 15, 1, 13, 5, 14, 9},
{12, 1, 14, 4, 5, 15, 13, 10, 0, 6, 9, 8, 7, 3, 2, 11},
{13, 7, 12, 3, 11, 14, 1, 9, 5, 15, 8, 2, 0, 4, 6, 10},
{6, 14, 11, 0, 15, 9, 3, 8, 12, 13, 1, 10, 2, 7, 4, 5},
{10, 8, 7, 1, 2, 4, 6, 5, 15, 9, 3, 13, 11, 14, 12, 0},
}
// nolint:unused,deadcode
func hashBlocksGeneric(h *[8]uint64, c *[2]uint64, flag uint64, blocks []byte) {
var m [16]uint64
c0, c1 := c[0], c[1]
for i := 0; i < len(blocks); {
c0 += BlockSize
if c0 < BlockSize {
c1++
}
for j := range m {
m[j] = binary.LittleEndian.Uint64(blocks[i:])
i += 8
}
fGeneric(h, &m, c0, c1, flag, 12)
}
c[0], c[1] = c0, c1
}
func fGeneric(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
v0, v1, v2, v3, v4, v5, v6, v7 := h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]
v8, v9, v10, v11, v12, v13, v14, v15 := iv[0], iv[1], iv[2], iv[3], iv[4], iv[5], iv[6], iv[7]
v12 ^= c0
v13 ^= c1
v14 ^= flag
for i := 0; i < int(rounds); i++ {
s := &(precomputed[i%10])
v0 += m[s[0]]
v0 += v4
v12 ^= v0
v12 = bits.RotateLeft64(v12, -32)
v8 += v12
v4 ^= v8
v4 = bits.RotateLeft64(v4, -24)
v1 += m[s[1]]
v1 += v5
v13 ^= v1
v13 = bits.RotateLeft64(v13, -32)
v9 += v13
v5 ^= v9
v5 = bits.RotateLeft64(v5, -24)
v2 += m[s[2]]
v2 += v6
v14 ^= v2
v14 = bits.RotateLeft64(v14, -32)
v10 += v14
v6 ^= v10
v6 = bits.RotateLeft64(v6, -24)
v3 += m[s[3]]
v3 += v7
v15 ^= v3
v15 = bits.RotateLeft64(v15, -32)
v11 += v15
v7 ^= v11
v7 = bits.RotateLeft64(v7, -24)
v0 += m[s[4]]
v0 += v4
v12 ^= v0
v12 = bits.RotateLeft64(v12, -16)
v8 += v12
v4 ^= v8
v4 = bits.RotateLeft64(v4, -63)
v1 += m[s[5]]
v1 += v5
v13 ^= v1
v13 = bits.RotateLeft64(v13, -16)
v9 += v13
v5 ^= v9
v5 = bits.RotateLeft64(v5, -63)
v2 += m[s[6]]
v2 += v6
v14 ^= v2
v14 = bits.RotateLeft64(v14, -16)
v10 += v14
v6 ^= v10
v6 = bits.RotateLeft64(v6, -63)
v3 += m[s[7]]
v3 += v7
v15 ^= v3
v15 = bits.RotateLeft64(v15, -16)
v11 += v15
v7 ^= v11
v7 = bits.RotateLeft64(v7, -63)
v0 += m[s[8]]
v0 += v5
v15 ^= v0
v15 = bits.RotateLeft64(v15, -32)
v10 += v15
v5 ^= v10
v5 = bits.RotateLeft64(v5, -24)
v1 += m[s[9]]
v1 += v6
v12 ^= v1
v12 = bits.RotateLeft64(v12, -32)
v11 += v12
v6 ^= v11
v6 = bits.RotateLeft64(v6, -24)
v2 += m[s[10]]
v2 += v7
v13 ^= v2
v13 = bits.RotateLeft64(v13, -32)
v8 += v13
v7 ^= v8
v7 = bits.RotateLeft64(v7, -24)
v3 += m[s[11]]
v3 += v4
v14 ^= v3
v14 = bits.RotateLeft64(v14, -32)
v9 += v14
v4 ^= v9
v4 = bits.RotateLeft64(v4, -24)
v0 += m[s[12]]
v0 += v5
v15 ^= v0
v15 = bits.RotateLeft64(v15, -16)
v10 += v15
v5 ^= v10
v5 = bits.RotateLeft64(v5, -63)
v1 += m[s[13]]
v1 += v6
v12 ^= v1
v12 = bits.RotateLeft64(v12, -16)
v11 += v12
v6 ^= v11
v6 = bits.RotateLeft64(v6, -63)
v2 += m[s[14]]
v2 += v7
v13 ^= v2
v13 = bits.RotateLeft64(v13, -16)
v8 += v13
v7 ^= v8
v7 = bits.RotateLeft64(v7, -63)
v3 += m[s[15]]
v3 += v4
v14 ^= v3
v14 = bits.RotateLeft64(v14, -16)
v9 += v14
v4 ^= v9
v4 = bits.RotateLeft64(v4, -63)
}
h[0] ^= v0 ^ v8
h[1] ^= v1 ^ v9
h[2] ^= v2 ^ v10
h[3] ^= v3 ^ v11
h[4] ^= v4 ^ v12
h[5] ^= v5 ^ v13
h[6] ^= v6 ^ v14
h[7] ^= v7 ^ v15
}

View File

@@ -0,0 +1,12 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 || appengine || gccgo
// +build !amd64 appengine gccgo
package blake2b
func f(h *[8]uint64, m *[16]uint64, c0, c1 uint64, flag uint64, rounds uint64) {
fGeneric(h, m, c0, c1, flag, rounds)
}

View File

@@ -0,0 +1,177 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package blake2b
import (
"encoding/binary"
"errors"
"io"
)
// XOF defines the interface to hash functions that
// support arbitrary-length output.
type XOF interface {
// Write absorbs more data into the hash's state. It panics if called
// after Read.
io.Writer
// Read reads more output from the hash. It returns io.EOF if the limit
// has been reached.
io.Reader
// Clone returns a copy of the XOF in its current state.
Clone() XOF
// Reset resets the XOF to its initial state.
Reset()
}
// OutputLengthUnknown can be used as the size argument to NewXOF to indicate
// the length of the output is not known in advance.
const OutputLengthUnknown = 0
// magicUnknownOutputLength is a magic value for the output size that indicates
// an unknown number of output bytes.
const magicUnknownOutputLength = (1 << 32) - 1
// maxOutputLength is the absolute maximum number of bytes to produce when the
// number of output bytes is unknown.
const maxOutputLength = (1 << 32) * 64
// NewXOF creates a new variable-output-length hash. The hash either produce a
// known number of bytes (1 <= size < 2**32-1), or an unknown number of bytes
// (size == OutputLengthUnknown). In the latter case, an absolute limit of
// 256GiB applies.
//
// A non-nil key turns the hash into a MAC. The key must between
// zero and 32 bytes long.
func NewXOF(size uint32, key []byte) (XOF, error) {
if len(key) > Size {
return nil, errKeySize
}
if size == magicUnknownOutputLength {
// 2^32-1 indicates an unknown number of bytes and thus isn't a
// valid length.
return nil, errors.New("blake2b: XOF length too large")
}
if size == OutputLengthUnknown {
size = magicUnknownOutputLength
}
x := &xof{
d: digest{
size: Size,
keyLen: len(key),
},
length: size,
}
copy(x.d.key[:], key)
x.Reset()
return x, nil
}
type xof struct {
d digest
length uint32
remaining uint64
cfg, root, block [Size]byte
offset int
nodeOffset uint32
readMode bool
}
func (x *xof) Write(p []byte) (n int, err error) {
if x.readMode {
panic("blake2b: write to XOF after read")
}
return x.d.Write(p)
}
func (x *xof) Clone() XOF {
clone := *x
return &clone
}
func (x *xof) Reset() {
x.cfg[0] = byte(Size)
binary.LittleEndian.PutUint32(x.cfg[4:], uint32(Size)) // leaf length
binary.LittleEndian.PutUint32(x.cfg[12:], x.length) // XOF length
x.cfg[17] = byte(Size) // inner hash size
x.d.Reset()
x.d.h[1] ^= uint64(x.length) << 32
x.remaining = uint64(x.length)
if x.remaining == magicUnknownOutputLength {
x.remaining = maxOutputLength
}
x.offset, x.nodeOffset = 0, 0
x.readMode = false
}
func (x *xof) Read(p []byte) (n int, err error) {
if !x.readMode {
x.d.finalize(&x.root)
x.readMode = true
}
if x.remaining == 0 {
return 0, io.EOF
}
n = len(p)
if uint64(n) > x.remaining {
n = int(x.remaining)
p = p[:n]
}
if x.offset > 0 {
blockRemaining := Size - x.offset
if n < blockRemaining {
x.offset += copy(p, x.block[x.offset:])
x.remaining -= uint64(n)
return
}
copy(p, x.block[x.offset:])
p = p[blockRemaining:]
x.offset = 0
x.remaining -= uint64(blockRemaining)
}
for len(p) >= Size {
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
x.nodeOffset++
x.d.initConfig(&x.cfg)
x.d.Write(x.root[:])
x.d.finalize(&x.block)
copy(p, x.block[:])
p = p[Size:]
x.remaining -= uint64(Size)
}
if todo := len(p); todo > 0 {
if x.remaining < uint64(Size) {
x.cfg[0] = byte(x.remaining)
}
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
x.nodeOffset++
x.d.initConfig(&x.cfg)
x.d.Write(x.root[:])
x.d.finalize(&x.block)
x.offset = copy(p, x.block[:todo])
x.remaining -= uint64(todo)
}
return
}
func (d *digest) initConfig(cfg *[Size]byte) {
d.offset, d.c[0], d.c[1] = 0, 0, 0
for i := range d.h {
d.h[i] = iv[i] ^ binary.LittleEndian.Uint64(cfg[i*8:])
}
}

View File

@@ -0,0 +1,33 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.9
// +build go1.9
package blake2b
import (
"crypto"
"hash"
)
func init() {
newHash256 := func() hash.Hash {
h, _ := New256(nil)
return h
}
newHash384 := func() hash.Hash {
h, _ := New384(nil)
return h
}
newHash512 := func() hash.Hash {
h, _ := New512(nil)
return h
}
crypto.RegisterHash(crypto.BLAKE2b_256, newHash256)
crypto.RegisterHash(crypto.BLAKE2b_384, newHash384)
crypto.RegisterHash(crypto.BLAKE2b_512, newHash512)
}

View File

@@ -0,0 +1,84 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
//go:build (amd64 && blsasm) || (amd64 && blsadx)
// +build amd64,blsasm amd64,blsadx
package bls12381
import (
"golang.org/x/sys/cpu"
)
func init() {
if !enableADX || !cpu.X86.HasADX || !cpu.X86.HasBMI2 {
mul = mulNoADX
}
}
// Use ADX backend for default
var mul func(c, a, b *fe) = mulADX
func square(c, a *fe) {
mul(c, a, a)
}
func neg(c, a *fe) {
if a.isZero() {
c.set(a)
} else {
_neg(c, a)
}
}
//go:noescape
func add(c, a, b *fe)
//go:noescape
func addAssign(a, b *fe)
//go:noescape
func ladd(c, a, b *fe)
//go:noescape
func laddAssign(a, b *fe)
//go:noescape
func double(c, a *fe)
//go:noescape
func doubleAssign(a *fe)
//go:noescape
func ldouble(c, a *fe)
//go:noescape
func sub(c, a, b *fe)
//go:noescape
func subAssign(a, b *fe)
//go:noescape
func lsubAssign(a, b *fe)
//go:noescape
func _neg(c, a *fe)
//go:noescape
func mulNoADX(c, a, b *fe)
//go:noescape
func mulADX(c, a, b *fe)

View File

@@ -0,0 +1,567 @@
// Native go field arithmetic code is generated with 'goff'
// https://github.com/ConsenSys/goff
// Many function signature of field operations are renamed.
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// field modulus q =
//
// 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787
// Code generated by goff DO NOT EDIT
// goff version: v0.1.0 - build: 790f1f56eac432441e043abff8819eacddd1d668
// fe are assumed to be in Montgomery form in all methods
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
// Package bls (generated by goff) contains field arithmetics operations
//go:build !amd64 || (!blsasm && !blsadx)
// +build !amd64 !blsasm,!blsadx
package bls12381
import (
"math/bits"
)
func add(z, x, y *fe) {
var carry uint64
z[0], carry = bits.Add64(x[0], y[0], 0)
z[1], carry = bits.Add64(x[1], y[1], carry)
z[2], carry = bits.Add64(x[2], y[2], carry)
z[3], carry = bits.Add64(x[3], y[3], carry)
z[4], carry = bits.Add64(x[4], y[4], carry)
z[5], _ = bits.Add64(x[5], y[5], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[5] < 1873798617647539866 || (z[5] == 1873798617647539866 && (z[4] < 5412103778470702295 || (z[4] == 5412103778470702295 && (z[3] < 7239337960414712511 || (z[3] == 7239337960414712511 && (z[2] < 7435674573564081700 || (z[2] == 7435674573564081700 && (z[1] < 2210141511517208575 || (z[1] == 2210141511517208575 && (z[0] < 13402431016077863595))))))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 13402431016077863595, 0)
z[1], b = bits.Sub64(z[1], 2210141511517208575, b)
z[2], b = bits.Sub64(z[2], 7435674573564081700, b)
z[3], b = bits.Sub64(z[3], 7239337960414712511, b)
z[4], b = bits.Sub64(z[4], 5412103778470702295, b)
z[5], _ = bits.Sub64(z[5], 1873798617647539866, b)
}
}
func addAssign(x, y *fe) {
var carry uint64
x[0], carry = bits.Add64(x[0], y[0], 0)
x[1], carry = bits.Add64(x[1], y[1], carry)
x[2], carry = bits.Add64(x[2], y[2], carry)
x[3], carry = bits.Add64(x[3], y[3], carry)
x[4], carry = bits.Add64(x[4], y[4], carry)
x[5], _ = bits.Add64(x[5], y[5], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(x[5] < 1873798617647539866 || (x[5] == 1873798617647539866 && (x[4] < 5412103778470702295 || (x[4] == 5412103778470702295 && (x[3] < 7239337960414712511 || (x[3] == 7239337960414712511 && (x[2] < 7435674573564081700 || (x[2] == 7435674573564081700 && (x[1] < 2210141511517208575 || (x[1] == 2210141511517208575 && (x[0] < 13402431016077863595))))))))))) {
var b uint64
x[0], b = bits.Sub64(x[0], 13402431016077863595, 0)
x[1], b = bits.Sub64(x[1], 2210141511517208575, b)
x[2], b = bits.Sub64(x[2], 7435674573564081700, b)
x[3], b = bits.Sub64(x[3], 7239337960414712511, b)
x[4], b = bits.Sub64(x[4], 5412103778470702295, b)
x[5], _ = bits.Sub64(x[5], 1873798617647539866, b)
}
}
func ladd(z, x, y *fe) {
var carry uint64
z[0], carry = bits.Add64(x[0], y[0], 0)
z[1], carry = bits.Add64(x[1], y[1], carry)
z[2], carry = bits.Add64(x[2], y[2], carry)
z[3], carry = bits.Add64(x[3], y[3], carry)
z[4], carry = bits.Add64(x[4], y[4], carry)
z[5], _ = bits.Add64(x[5], y[5], carry)
}
func laddAssign(x, y *fe) {
var carry uint64
x[0], carry = bits.Add64(x[0], y[0], 0)
x[1], carry = bits.Add64(x[1], y[1], carry)
x[2], carry = bits.Add64(x[2], y[2], carry)
x[3], carry = bits.Add64(x[3], y[3], carry)
x[4], carry = bits.Add64(x[4], y[4], carry)
x[5], _ = bits.Add64(x[5], y[5], carry)
}
func double(z, x *fe) {
var carry uint64
z[0], carry = bits.Add64(x[0], x[0], 0)
z[1], carry = bits.Add64(x[1], x[1], carry)
z[2], carry = bits.Add64(x[2], x[2], carry)
z[3], carry = bits.Add64(x[3], x[3], carry)
z[4], carry = bits.Add64(x[4], x[4], carry)
z[5], _ = bits.Add64(x[5], x[5], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[5] < 1873798617647539866 || (z[5] == 1873798617647539866 && (z[4] < 5412103778470702295 || (z[4] == 5412103778470702295 && (z[3] < 7239337960414712511 || (z[3] == 7239337960414712511 && (z[2] < 7435674573564081700 || (z[2] == 7435674573564081700 && (z[1] < 2210141511517208575 || (z[1] == 2210141511517208575 && (z[0] < 13402431016077863595))))))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 13402431016077863595, 0)
z[1], b = bits.Sub64(z[1], 2210141511517208575, b)
z[2], b = bits.Sub64(z[2], 7435674573564081700, b)
z[3], b = bits.Sub64(z[3], 7239337960414712511, b)
z[4], b = bits.Sub64(z[4], 5412103778470702295, b)
z[5], _ = bits.Sub64(z[5], 1873798617647539866, b)
}
}
func doubleAssign(z *fe) {
var carry uint64
z[0], carry = bits.Add64(z[0], z[0], 0)
z[1], carry = bits.Add64(z[1], z[1], carry)
z[2], carry = bits.Add64(z[2], z[2], carry)
z[3], carry = bits.Add64(z[3], z[3], carry)
z[4], carry = bits.Add64(z[4], z[4], carry)
z[5], _ = bits.Add64(z[5], z[5], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[5] < 1873798617647539866 || (z[5] == 1873798617647539866 && (z[4] < 5412103778470702295 || (z[4] == 5412103778470702295 && (z[3] < 7239337960414712511 || (z[3] == 7239337960414712511 && (z[2] < 7435674573564081700 || (z[2] == 7435674573564081700 && (z[1] < 2210141511517208575 || (z[1] == 2210141511517208575 && (z[0] < 13402431016077863595))))))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 13402431016077863595, 0)
z[1], b = bits.Sub64(z[1], 2210141511517208575, b)
z[2], b = bits.Sub64(z[2], 7435674573564081700, b)
z[3], b = bits.Sub64(z[3], 7239337960414712511, b)
z[4], b = bits.Sub64(z[4], 5412103778470702295, b)
z[5], _ = bits.Sub64(z[5], 1873798617647539866, b)
}
}
func ldouble(z, x *fe) {
var carry uint64
z[0], carry = bits.Add64(x[0], x[0], 0)
z[1], carry = bits.Add64(x[1], x[1], carry)
z[2], carry = bits.Add64(x[2], x[2], carry)
z[3], carry = bits.Add64(x[3], x[3], carry)
z[4], carry = bits.Add64(x[4], x[4], carry)
z[5], _ = bits.Add64(x[5], x[5], carry)
}
func sub(z, x, y *fe) {
var b uint64
z[0], b = bits.Sub64(x[0], y[0], 0)
z[1], b = bits.Sub64(x[1], y[1], b)
z[2], b = bits.Sub64(x[2], y[2], b)
z[3], b = bits.Sub64(x[3], y[3], b)
z[4], b = bits.Sub64(x[4], y[4], b)
z[5], b = bits.Sub64(x[5], y[5], b)
if b != 0 {
var c uint64
z[0], c = bits.Add64(z[0], 13402431016077863595, 0)
z[1], c = bits.Add64(z[1], 2210141511517208575, c)
z[2], c = bits.Add64(z[2], 7435674573564081700, c)
z[3], c = bits.Add64(z[3], 7239337960414712511, c)
z[4], c = bits.Add64(z[4], 5412103778470702295, c)
z[5], _ = bits.Add64(z[5], 1873798617647539866, c)
}
}
func subAssign(z, x *fe) {
var b uint64
z[0], b = bits.Sub64(z[0], x[0], 0)
z[1], b = bits.Sub64(z[1], x[1], b)
z[2], b = bits.Sub64(z[2], x[2], b)
z[3], b = bits.Sub64(z[3], x[3], b)
z[4], b = bits.Sub64(z[4], x[4], b)
z[5], b = bits.Sub64(z[5], x[5], b)
if b != 0 {
var c uint64
z[0], c = bits.Add64(z[0], 13402431016077863595, 0)
z[1], c = bits.Add64(z[1], 2210141511517208575, c)
z[2], c = bits.Add64(z[2], 7435674573564081700, c)
z[3], c = bits.Add64(z[3], 7239337960414712511, c)
z[4], c = bits.Add64(z[4], 5412103778470702295, c)
z[5], _ = bits.Add64(z[5], 1873798617647539866, c)
}
}
func lsubAssign(z, x *fe) {
var b uint64
z[0], b = bits.Sub64(z[0], x[0], 0)
z[1], b = bits.Sub64(z[1], x[1], b)
z[2], b = bits.Sub64(z[2], x[2], b)
z[3], b = bits.Sub64(z[3], x[3], b)
z[4], b = bits.Sub64(z[4], x[4], b)
z[5], _ = bits.Sub64(z[5], x[5], b)
}
func neg(z *fe, x *fe) {
if x.isZero() {
z.zero()
return
}
var borrow uint64
z[0], borrow = bits.Sub64(13402431016077863595, x[0], 0)
z[1], borrow = bits.Sub64(2210141511517208575, x[1], borrow)
z[2], borrow = bits.Sub64(7435674573564081700, x[2], borrow)
z[3], borrow = bits.Sub64(7239337960414712511, x[3], borrow)
z[4], borrow = bits.Sub64(5412103778470702295, x[4], borrow)
z[5], _ = bits.Sub64(1873798617647539866, x[5], borrow)
}
func mul(z, x, y *fe) {
var t [6]uint64
var c [3]uint64
{
// round 0
v := x[0]
c[1], c[0] = bits.Mul64(v, y[0])
m := c[0] * 9940570264628428797
c[2] = madd0(m, 13402431016077863595, c[0])
c[1], c[0] = madd1(v, y[1], c[1])
c[2], t[0] = madd2(m, 2210141511517208575, c[2], c[0])
c[1], c[0] = madd1(v, y[2], c[1])
c[2], t[1] = madd2(m, 7435674573564081700, c[2], c[0])
c[1], c[0] = madd1(v, y[3], c[1])
c[2], t[2] = madd2(m, 7239337960414712511, c[2], c[0])
c[1], c[0] = madd1(v, y[4], c[1])
c[2], t[3] = madd2(m, 5412103778470702295, c[2], c[0])
c[1], c[0] = madd1(v, y[5], c[1])
t[5], t[4] = madd3(m, 1873798617647539866, c[0], c[2], c[1])
}
{
// round 1
v := x[1]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 9940570264628428797
c[2] = madd0(m, 13402431016077863595, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2210141511517208575, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 7435674573564081700, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
c[2], t[2] = madd2(m, 7239337960414712511, c[2], c[0])
c[1], c[0] = madd2(v, y[4], c[1], t[4])
c[2], t[3] = madd2(m, 5412103778470702295, c[2], c[0])
c[1], c[0] = madd2(v, y[5], c[1], t[5])
t[5], t[4] = madd3(m, 1873798617647539866, c[0], c[2], c[1])
}
{
// round 2
v := x[2]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 9940570264628428797
c[2] = madd0(m, 13402431016077863595, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2210141511517208575, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 7435674573564081700, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
c[2], t[2] = madd2(m, 7239337960414712511, c[2], c[0])
c[1], c[0] = madd2(v, y[4], c[1], t[4])
c[2], t[3] = madd2(m, 5412103778470702295, c[2], c[0])
c[1], c[0] = madd2(v, y[5], c[1], t[5])
t[5], t[4] = madd3(m, 1873798617647539866, c[0], c[2], c[1])
}
{
// round 3
v := x[3]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 9940570264628428797
c[2] = madd0(m, 13402431016077863595, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2210141511517208575, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 7435674573564081700, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
c[2], t[2] = madd2(m, 7239337960414712511, c[2], c[0])
c[1], c[0] = madd2(v, y[4], c[1], t[4])
c[2], t[3] = madd2(m, 5412103778470702295, c[2], c[0])
c[1], c[0] = madd2(v, y[5], c[1], t[5])
t[5], t[4] = madd3(m, 1873798617647539866, c[0], c[2], c[1])
}
{
// round 4
v := x[4]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 9940570264628428797
c[2] = madd0(m, 13402431016077863595, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2210141511517208575, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 7435674573564081700, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
c[2], t[2] = madd2(m, 7239337960414712511, c[2], c[0])
c[1], c[0] = madd2(v, y[4], c[1], t[4])
c[2], t[3] = madd2(m, 5412103778470702295, c[2], c[0])
c[1], c[0] = madd2(v, y[5], c[1], t[5])
t[5], t[4] = madd3(m, 1873798617647539866, c[0], c[2], c[1])
}
{
// round 5
v := x[5]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 9940570264628428797
c[2] = madd0(m, 13402431016077863595, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], z[0] = madd2(m, 2210141511517208575, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], z[1] = madd2(m, 7435674573564081700, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
c[2], z[2] = madd2(m, 7239337960414712511, c[2], c[0])
c[1], c[0] = madd2(v, y[4], c[1], t[4])
c[2], z[3] = madd2(m, 5412103778470702295, c[2], c[0])
c[1], c[0] = madd2(v, y[5], c[1], t[5])
z[5], z[4] = madd3(m, 1873798617647539866, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[5] < 1873798617647539866 || (z[5] == 1873798617647539866 && (z[4] < 5412103778470702295 || (z[4] == 5412103778470702295 && (z[3] < 7239337960414712511 || (z[3] == 7239337960414712511 && (z[2] < 7435674573564081700 || (z[2] == 7435674573564081700 && (z[1] < 2210141511517208575 || (z[1] == 2210141511517208575 && (z[0] < 13402431016077863595))))))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 13402431016077863595, 0)
z[1], b = bits.Sub64(z[1], 2210141511517208575, b)
z[2], b = bits.Sub64(z[2], 7435674573564081700, b)
z[3], b = bits.Sub64(z[3], 7239337960414712511, b)
z[4], b = bits.Sub64(z[4], 5412103778470702295, b)
z[5], _ = bits.Sub64(z[5], 1873798617647539866, b)
}
}
func square(z, x *fe) {
var p [6]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 9940570264628428797
C := madd0(m, 13402431016077863595, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2210141511517208575, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 7435674573564081700, v, C)
t, u, v = madd1s(x[0], x[3], t, u)
C, p[2] = madd2(m, 7239337960414712511, v, C)
t, u, v = madd1s(x[0], x[4], t, u)
C, p[3] = madd2(m, 5412103778470702295, v, C)
_, u, v = madd1s(x[0], x[5], t, u)
p[5], p[4] = madd3(m, 1873798617647539866, v, C, u)
}
{
// round 1
m := p[0] * 9940570264628428797
C := madd0(m, 13402431016077863595, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2210141511517208575, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 7435674573564081700, v, C)
t, u, v = madd2s(x[1], x[3], p[3], t, u)
C, p[2] = madd2(m, 7239337960414712511, v, C)
t, u, v = madd2s(x[1], x[4], p[4], t, u)
C, p[3] = madd2(m, 5412103778470702295, v, C)
_, u, v = madd2s(x[1], x[5], p[5], t, u)
p[5], p[4] = madd3(m, 1873798617647539866, v, C, u)
}
{
// round 2
m := p[0] * 9940570264628428797
C := madd0(m, 13402431016077863595, p[0])
C, p[0] = madd2(m, 2210141511517208575, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 7435674573564081700, v, C)
var t uint64
t, u, v = madd2sb(x[2], x[3], p[3], u)
C, p[2] = madd2(m, 7239337960414712511, v, C)
t, u, v = madd2s(x[2], x[4], p[4], t, u)
C, p[3] = madd2(m, 5412103778470702295, v, C)
_, u, v = madd2s(x[2], x[5], p[5], t, u)
p[5], p[4] = madd3(m, 1873798617647539866, v, C, u)
}
{
// round 3
m := p[0] * 9940570264628428797
C := madd0(m, 13402431016077863595, p[0])
C, p[0] = madd2(m, 2210141511517208575, p[1], C)
C, p[1] = madd2(m, 7435674573564081700, p[2], C)
u, v = madd1(x[3], x[3], p[3])
C, p[2] = madd2(m, 7239337960414712511, v, C)
var t uint64
t, u, v = madd2sb(x[3], x[4], p[4], u)
C, p[3] = madd2(m, 5412103778470702295, v, C)
_, u, v = madd2s(x[3], x[5], p[5], t, u)
p[5], p[4] = madd3(m, 1873798617647539866, v, C, u)
}
{
// round 4
m := p[0] * 9940570264628428797
C := madd0(m, 13402431016077863595, p[0])
C, p[0] = madd2(m, 2210141511517208575, p[1], C)
C, p[1] = madd2(m, 7435674573564081700, p[2], C)
C, p[2] = madd2(m, 7239337960414712511, p[3], C)
u, v = madd1(x[4], x[4], p[4])
C, p[3] = madd2(m, 5412103778470702295, v, C)
_, u, v = madd2sb(x[4], x[5], p[5], u)
p[5], p[4] = madd3(m, 1873798617647539866, v, C, u)
}
{
// round 5
m := p[0] * 9940570264628428797
C := madd0(m, 13402431016077863595, p[0])
C, z[0] = madd2(m, 2210141511517208575, p[1], C)
C, z[1] = madd2(m, 7435674573564081700, p[2], C)
C, z[2] = madd2(m, 7239337960414712511, p[3], C)
C, z[3] = madd2(m, 5412103778470702295, p[4], C)
u, v = madd1(x[5], x[5], p[5])
z[5], z[4] = madd3(m, 1873798617647539866, v, C, u)
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[5] < 1873798617647539866 || (z[5] == 1873798617647539866 && (z[4] < 5412103778470702295 || (z[4] == 5412103778470702295 && (z[3] < 7239337960414712511 || (z[3] == 7239337960414712511 && (z[2] < 7435674573564081700 || (z[2] == 7435674573564081700 && (z[1] < 2210141511517208575 || (z[1] == 2210141511517208575 && (z[0] < 13402431016077863595))))))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 13402431016077863595, 0)
z[1], b = bits.Sub64(z[1], 2210141511517208575, b)
z[2], b = bits.Sub64(z[2], 7435674573564081700, b)
z[3], b = bits.Sub64(z[3], 7239337960414712511, b)
z[4], b = bits.Sub64(z[4], 5412103778470702295, b)
z[5], _ = bits.Sub64(z[5], 1873798617647539866, b)
}
}
// arith.go
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff DO NOT EDIT
func madd(a, b, t, u, v uint64) (uint64, uint64, uint64) {
var carry uint64
hi, lo := bits.Mul64(a, b)
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t, _ = bits.Add64(t, 0, carry)
return t, u, v
}
// madd0 hi = a*b + c (discards lo bits)
func madd0(a, b, c uint64) (hi uint64) {
var carry, lo uint64
hi, lo = bits.Mul64(a, b)
_, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
// madd1 hi, lo = a*b + c
func madd1(a, b, c uint64) (hi uint64, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
// madd2 hi, lo = a*b + c + d
func madd2(a, b, c, d uint64) (hi uint64, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
c, carry = bits.Add64(c, d, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
// madd2s superhi, hi, lo = 2*a*b + c + d + e
func madd2s(a, b, c, d, e uint64) (superhi, hi, lo uint64) {
var carry, sum uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
sum, carry = bits.Add64(c, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, sum, 0)
hi, _ = bits.Add64(hi, 0, carry)
hi, _ = bits.Add64(hi, 0, d)
return
}
func madd1s(a, b, d, e uint64) (superhi, hi, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
lo, carry = bits.Add64(lo, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
hi, _ = bits.Add64(hi, 0, d)
return
}
func madd2sb(a, b, c, e uint64) (superhi, hi, lo uint64) {
var carry, sum uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
sum, carry = bits.Add64(c, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, sum, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
func madd1sb(a, b, e uint64) (superhi, hi, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
lo, carry = bits.Add64(lo, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
func madd3(a, b, c, d, e uint64) (hi uint64, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
c, carry = bits.Add64(c, d, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, e, carry)
return
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,25 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
//go:build amd64 && blsadx
// +build amd64,blsadx
package bls12381
// enableADX is true if the ADX/BMI2 instruction set was requested for the BLS
// implementation. The system may still fall back to plain ASM if the necessary
// instructions are unavailable on the CPU.
const enableADX = true

View File

@@ -0,0 +1,25 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
//go:build amd64 && blsasm
// +build amd64,blsasm
package bls12381
// enableADX is true if the ADX/BMI2 instruction set was requested for the BLS
// implementation. The system may still fall back to plain ASM if the necessary
// instructions are unavailable on the CPU.
const enableADX = false

View File

@@ -0,0 +1,230 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
/*
Field Constants
*/
// Base field modulus
// p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab
// Size of six words
// r = 2 ^ 384
// modulus = p
var modulus = fe{0xb9feffffffffaaab, 0x1eabfffeb153ffff, 0x6730d2a0f6b0f624, 0x64774b84f38512bf, 0x4b1ba7b6434bacd7, 0x1a0111ea397fe69a}
var (
// -p^(-1) mod 2^64
inp uint64 = 0x89f3fffcfffcfffd
// This value is used in assembly code
_ = inp
)
// r mod p
var r1 = &fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493}
// r^2 mod p
var r2 = &fe{
0xf4df1f341c341746, 0x0a76e6a609d104f1, 0x8de5476c4c95b6d5, 0x67eb88a9939d83c0, 0x9a793e85b519952d, 0x11988fe592cae3aa,
}
// -1 + 0 * u
var negativeOne2 = &fe2{
fe{0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x07e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x040ab3263eff0206},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
}
// 2 ^ (-1)
var twoInv = &fe{0x1804000000015554, 0x855000053ab00001, 0x633cb57c253c276f, 0x6e22d1ec31ebb502, 0xd3916126f2d14ca2, 0x17fbb8571a006596}
// (p - 3) / 4
var pMinus3Over4 = bigFromHex("0x680447a8e5ff9a692c6e9ed90d2eb35d91dd2e13ce144afd9cc34a83dac3d8907aaffffac54ffffee7fbfffffffeaaa")
// (p + 1) / 4
var pPlus1Over4 = bigFromHex("0x680447a8e5ff9a692c6e9ed90d2eb35d91dd2e13ce144afd9cc34a83dac3d8907aaffffac54ffffee7fbfffffffeaab")
// (p - 1) / 2
var pMinus1Over2 = bigFromHex("0xd0088f51cbff34d258dd3db21a5d66bb23ba5c279c2895fb39869507b587b120f55ffff58a9ffffdcff7fffffffd555")
// -1
var nonResidue1 = &fe{0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x07e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x040ab3263eff0206}
// (1 + 1 * u)
var nonResidue2 = &fe2{
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
}
/*
Curve Constants
*/
// b coefficient for G1
var b = &fe{0xaa270000000cfff3, 0x53cc0032fc34000a, 0x478fe97a6b0a807f, 0xb1d37ebee6ba24d7, 0x8ec9733bbf78ab2f, 0x09d645513d83de7e}
// b coefficient for G2
var b2 = &fe2{
fe{0xaa270000000cfff3, 0x53cc0032fc34000a, 0x478fe97a6b0a807f, 0xb1d37ebee6ba24d7, 0x8ec9733bbf78ab2f, 0x09d645513d83de7e},
fe{0xaa270000000cfff3, 0x53cc0032fc34000a, 0x478fe97a6b0a807f, 0xb1d37ebee6ba24d7, 0x8ec9733bbf78ab2f, 0x09d645513d83de7e},
}
// Curve order
var q = bigFromHex("0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001")
// Efficient cofactor of G1
var cofactorEFFG1 = bigFromHex("0xd201000000010001")
// Efficient cofactor of G2
var cofactorEFFG2 = bigFromHex("0x0bc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff031508ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689f6a359894c0adebbf6b4e8020005aaa95551")
var g1One = PointG1{
fe{0x5cb38790fd530c16, 0x7817fc679976fff5, 0x154f95c7143ba1c1, 0xf0ae6acdf3d0e747, 0xedce6ecc21dbf440, 0x120177419e0bfb75},
fe{0xbaac93d50ce72271, 0x8c22631a7918fd8e, 0xdd595f13570725ce, 0x51ac582950405194, 0x0e1c8c3fad0059c0, 0x0bbc3efc5008a26a},
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
}
var g2One = PointG2{
fe2{
fe{0xf5f28fa202940a10, 0xb3f5fb2687b4961a, 0xa1a893b53e2ae580, 0x9894999d1a3caee9, 0x6f67b7631863366b, 0x058191924350bcd7},
fe{0xa5a9c0759e23f606, 0xaaa0c59dbccd60c3, 0x3bb17e18e2867806, 0x1b1ab6cc8541b367, 0xc2b6ed0ef2158547, 0x11922a097360edf3},
},
fe2{
fe{0x4c730af860494c4a, 0x597cfa1f5e369c5a, 0xe7e6856caa0a635a, 0xbbefb5e96e0d495f, 0x07d3a975f0ef25a2, 0x083fd8e7e80dae5},
fe{0xadc0fc92df64b05d, 0x18aa270a2b1461dc, 0x86adac6a3be4eba0, 0x79495c4ec93da33a, 0xe7175850a43ccaed, 0xb2bc2a163de1bf2},
},
fe2{
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
}
/*
Frobenious Coeffs
*/
var frobeniusCoeffs61 = [6]fe2{
{
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
fe{0xcd03c9e48671f071, 0x5dab22461fcda5d2, 0x587042afd3851b95, 0x8eb60ebe01bacb9e, 0x03f97d6e83d050d2, 0x18f0206554638741},
},
{
fe{0x30f1361b798a64e8, 0xf3b8ddab7ece5a2a, 0x16a8ca3ac61577f7, 0xc26a2ff874fd029b, 0x3636b76660701c6e, 0x051ba4ab241b6160},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
},
{
fe{0xcd03c9e48671f071, 0x5dab22461fcda5d2, 0x587042afd3851b95, 0x8eb60ebe01bacb9e, 0x03f97d6e83d050d2, 0x18f0206554638741},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
fe{0x30f1361b798a64e8, 0xf3b8ddab7ece5a2a, 0x16a8ca3ac61577f7, 0xc26a2ff874fd029b, 0x3636b76660701c6e, 0x051ba4ab241b6160},
},
}
var frobeniusCoeffs62 = [6]fe2{
{
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x890dc9e4867545c3, 0x2af322533285a5d5, 0x50880866309b7e2c, 0xa20d1b8c7e881024, 0x14e4f04fe2db9068, 0x14e56d3f1564853a},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0xcd03c9e48671f071, 0x5dab22461fcda5d2, 0x587042afd3851b95, 0x8eb60ebe01bacb9e, 0x03f97d6e83d050d2, 0x18f0206554638741},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x07e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x040ab3263eff0206},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x30f1361b798a64e8, 0xf3b8ddab7ece5a2a, 0x16a8ca3ac61577f7, 0xc26a2ff874fd029b, 0x3636b76660701c6e, 0x051ba4ab241b6160},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0xecfb361b798dba3a, 0xc100ddb891865a2c, 0x0ec08ff1232bda8e, 0xd5c13cc6f1ca4721, 0x47222a47bf7b5c04, 0x0110f184e51c5f59},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
}
var frobeniusCoeffs12 = [12]fe2{
{
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x07089552b319d465, 0xc6695f92b50a8313, 0x97e83cccd117228f, 0xa35baecab2dc29ee, 0x1ce393ea5daace4d, 0x08f2220fb0fb66eb},
fe{0xb2f66aad4ce5d646, 0x5842a06bfc497cec, 0xcf4895d42599d394, 0xc11b9cba40a8e8d0, 0x2e3813cbe5a0de89, 0x110eefda88847faf},
},
{
fe{0xecfb361b798dba3a, 0xc100ddb891865a2c, 0x0ec08ff1232bda8e, 0xd5c13cc6f1ca4721, 0x47222a47bf7b5c04, 0x0110f184e51c5f59},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x3e2f585da55c9ad1, 0x4294213d86c18183, 0x382844c88b623732, 0x92ad2afd19103e18, 0x1d794e4fac7cf0b9, 0x0bd592fc7d825ec8},
fe{0x7bcfa7a25aa30fda, 0xdc17dec12a927e7c, 0x2f088dd86b4ebef1, 0xd1ca2087da74d4a7, 0x2da2596696cebc1d, 0x0e2b7eedbbfd87d2},
},
{
fe{0x30f1361b798a64e8, 0xf3b8ddab7ece5a2a, 0x16a8ca3ac61577f7, 0xc26a2ff874fd029b, 0x3636b76660701c6e, 0x051ba4ab241b6160},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x3726c30af242c66c, 0x7c2ac1aad1b6fe70, 0xa04007fbba4b14a2, 0xef517c3266341429, 0x0095ba654ed2226b, 0x02e370eccc86f7dd},
fe{0x82d83cf50dbce43f, 0xa2813e53df9d018f, 0xc6f0caa53c65e181, 0x7525cf528d50fe95, 0x4a85ed50f4798a6b, 0x171da0fd6cf8eebd},
},
{
fe{0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x07e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x040ab3263eff0206},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0xb2f66aad4ce5d646, 0x5842a06bfc497cec, 0xcf4895d42599d394, 0xc11b9cba40a8e8d0, 0x2e3813cbe5a0de89, 0x110eefda88847faf},
fe{0x07089552b319d465, 0xc6695f92b50a8313, 0x97e83cccd117228f, 0xa35baecab2dc29ee, 0x1ce393ea5daace4d, 0x08f2220fb0fb66eb},
},
{
fe{0xcd03c9e48671f071, 0x5dab22461fcda5d2, 0x587042afd3851b95, 0x8eb60ebe01bacb9e, 0x03f97d6e83d050d2, 0x18f0206554638741},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x7bcfa7a25aa30fda, 0xdc17dec12a927e7c, 0x2f088dd86b4ebef1, 0xd1ca2087da74d4a7, 0x2da2596696cebc1d, 0x0e2b7eedbbfd87d2},
fe{0x3e2f585da55c9ad1, 0x4294213d86c18183, 0x382844c88b623732, 0x92ad2afd19103e18, 0x1d794e4fac7cf0b9, 0x0bd592fc7d825ec8},
},
{
fe{0x890dc9e4867545c3, 0x2af322533285a5d5, 0x50880866309b7e2c, 0xa20d1b8c7e881024, 0x14e4f04fe2db9068, 0x14e56d3f1564853a},
fe{0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000},
},
{
fe{0x82d83cf50dbce43f, 0xa2813e53df9d018f, 0xc6f0caa53c65e181, 0x7525cf528d50fe95, 0x4a85ed50f4798a6b, 0x171da0fd6cf8eebd},
fe{0x3726c30af242c66c, 0x7c2ac1aad1b6fe70, 0xa04007fbba4b14a2, 0xef517c3266341429, 0x0095ba654ed2226b, 0x02e370eccc86f7dd},
},
}
/*
x
*/
var x = bigFromHex("0xd201000000010000")

View File

@@ -0,0 +1,340 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"crypto/rand"
"encoding/hex"
"fmt"
"io"
"math/big"
)
// fe is base field element representation
type fe [6]uint64
// fe2 is element representation of 'fp2' which is quadratic extension of base field 'fp'
// Representation follows c[0] + c[1] * u encoding order.
type fe2 [2]fe
// fe6 is element representation of 'fp6' field which is cubic extension of 'fp2'
// Representation follows c[0] + c[1] * v + c[2] * v^2 encoding order.
type fe6 [3]fe2
// fe12 is element representation of 'fp12' field which is quadratic extension of 'fp6'
// Representation follows c[0] + c[1] * w encoding order.
type fe12 [2]fe6
func (fe *fe) setBytes(in []byte) *fe {
size := 48
l := len(in)
if l >= size {
l = size
}
padded := make([]byte, size)
copy(padded[size-l:], in[:])
var a int
for i := 0; i < 6; i++ {
a = size - i*8
fe[i] = uint64(padded[a-1]) | uint64(padded[a-2])<<8 |
uint64(padded[a-3])<<16 | uint64(padded[a-4])<<24 |
uint64(padded[a-5])<<32 | uint64(padded[a-6])<<40 |
uint64(padded[a-7])<<48 | uint64(padded[a-8])<<56
}
return fe
}
func (fe *fe) setBig(a *big.Int) *fe {
return fe.setBytes(a.Bytes())
}
func (fe *fe) setString(s string) (*fe, error) {
if s[:2] == "0x" {
s = s[2:]
}
bytes, err := hex.DecodeString(s)
if err != nil {
return nil, err
}
return fe.setBytes(bytes), nil
}
func (fe *fe) set(fe2 *fe) *fe {
fe[0] = fe2[0]
fe[1] = fe2[1]
fe[2] = fe2[2]
fe[3] = fe2[3]
fe[4] = fe2[4]
fe[5] = fe2[5]
return fe
}
func (fe *fe) bytes() []byte {
out := make([]byte, 48)
var a int
for i := 0; i < 6; i++ {
a = 48 - i*8
out[a-1] = byte(fe[i])
out[a-2] = byte(fe[i] >> 8)
out[a-3] = byte(fe[i] >> 16)
out[a-4] = byte(fe[i] >> 24)
out[a-5] = byte(fe[i] >> 32)
out[a-6] = byte(fe[i] >> 40)
out[a-7] = byte(fe[i] >> 48)
out[a-8] = byte(fe[i] >> 56)
}
return out
}
func (fe *fe) big() *big.Int {
return new(big.Int).SetBytes(fe.bytes())
}
func (fe *fe) string() (s string) {
for i := 5; i >= 0; i-- {
s = fmt.Sprintf("%s%16.16x", s, fe[i])
}
return "0x" + s
}
func (fe *fe) zero() *fe {
fe[0] = 0
fe[1] = 0
fe[2] = 0
fe[3] = 0
fe[4] = 0
fe[5] = 0
return fe
}
func (fe *fe) one() *fe {
return fe.set(r1)
}
func (fe *fe) rand(r io.Reader) (*fe, error) {
bi, err := rand.Int(r, modulus.big())
if err != nil {
return nil, err
}
return fe.setBig(bi), nil
}
func (fe *fe) isValid() bool {
return fe.cmp(&modulus) < 0
}
func (fe *fe) isOdd() bool {
var mask uint64 = 1
return fe[0]&mask != 0
}
func (fe *fe) isEven() bool {
var mask uint64 = 1
return fe[0]&mask == 0
}
func (fe *fe) isZero() bool {
return (fe[5] | fe[4] | fe[3] | fe[2] | fe[1] | fe[0]) == 0
}
func (fe *fe) isOne() bool {
return fe.equal(r1)
}
func (fe *fe) cmp(fe2 *fe) int {
for i := 5; i >= 0; i-- {
if fe[i] > fe2[i] {
return 1
} else if fe[i] < fe2[i] {
return -1
}
}
return 0
}
func (fe *fe) equal(fe2 *fe) bool {
return fe2[0] == fe[0] && fe2[1] == fe[1] && fe2[2] == fe[2] && fe2[3] == fe[3] && fe2[4] == fe[4] && fe2[5] == fe[5]
}
func (e *fe) sign() bool {
r := new(fe)
fromMont(r, e)
return r[0]&1 == 0
}
func (fe *fe) div2(e uint64) {
fe[0] = fe[0]>>1 | fe[1]<<63
fe[1] = fe[1]>>1 | fe[2]<<63
fe[2] = fe[2]>>1 | fe[3]<<63
fe[3] = fe[3]>>1 | fe[4]<<63
fe[4] = fe[4]>>1 | fe[5]<<63
fe[5] = fe[5]>>1 | e<<63
}
func (fe *fe) mul2() uint64 {
e := fe[5] >> 63
fe[5] = fe[5]<<1 | fe[4]>>63
fe[4] = fe[4]<<1 | fe[3]>>63
fe[3] = fe[3]<<1 | fe[2]>>63
fe[2] = fe[2]<<1 | fe[1]>>63
fe[1] = fe[1]<<1 | fe[0]>>63
fe[0] = fe[0] << 1
return e
}
func (e *fe2) zero() *fe2 {
e[0].zero()
e[1].zero()
return e
}
func (e *fe2) one() *fe2 {
e[0].one()
e[1].zero()
return e
}
func (e *fe2) set(e2 *fe2) *fe2 {
e[0].set(&e2[0])
e[1].set(&e2[1])
return e
}
func (e *fe2) rand(r io.Reader) (*fe2, error) {
a0, err := new(fe).rand(r)
if err != nil {
return nil, err
}
a1, err := new(fe).rand(r)
if err != nil {
return nil, err
}
return &fe2{*a0, *a1}, nil
}
func (e *fe2) isOne() bool {
return e[0].isOne() && e[1].isZero()
}
func (e *fe2) isZero() bool {
return e[0].isZero() && e[1].isZero()
}
func (e *fe2) equal(e2 *fe2) bool {
return e[0].equal(&e2[0]) && e[1].equal(&e2[1])
}
func (e *fe2) sign() bool {
r := new(fe)
if !e[0].isZero() {
fromMont(r, &e[0])
return r[0]&1 == 0
}
fromMont(r, &e[1])
return r[0]&1 == 0
}
func (e *fe6) zero() *fe6 {
e[0].zero()
e[1].zero()
e[2].zero()
return e
}
func (e *fe6) one() *fe6 {
e[0].one()
e[1].zero()
e[2].zero()
return e
}
func (e *fe6) set(e2 *fe6) *fe6 {
e[0].set(&e2[0])
e[1].set(&e2[1])
e[2].set(&e2[2])
return e
}
func (e *fe6) rand(r io.Reader) (*fe6, error) {
a0, err := new(fe2).rand(r)
if err != nil {
return nil, err
}
a1, err := new(fe2).rand(r)
if err != nil {
return nil, err
}
a2, err := new(fe2).rand(r)
if err != nil {
return nil, err
}
return &fe6{*a0, *a1, *a2}, nil
}
func (e *fe6) isOne() bool {
return e[0].isOne() && e[1].isZero() && e[2].isZero()
}
func (e *fe6) isZero() bool {
return e[0].isZero() && e[1].isZero() && e[2].isZero()
}
func (e *fe6) equal(e2 *fe6) bool {
return e[0].equal(&e2[0]) && e[1].equal(&e2[1]) && e[2].equal(&e2[2])
}
func (e *fe12) zero() *fe12 {
e[0].zero()
e[1].zero()
return e
}
func (e *fe12) one() *fe12 {
e[0].one()
e[1].zero()
return e
}
func (e *fe12) set(e2 *fe12) *fe12 {
e[0].set(&e2[0])
e[1].set(&e2[1])
return e
}
func (e *fe12) rand(r io.Reader) (*fe12, error) {
a0, err := new(fe6).rand(r)
if err != nil {
return nil, err
}
a1, err := new(fe6).rand(r)
if err != nil {
return nil, err
}
return &fe12{*a0, *a1}, nil
}
func (e *fe12) isOne() bool {
return e[0].isOne() && e[1].isZero()
}
func (e *fe12) isZero() bool {
return e[0].isZero() && e[1].isZero()
}
func (e *fe12) equal(e2 *fe12) bool {
return e[0].equal(&e2[0]) && e[1].equal(&e2[1])
}

View File

@@ -0,0 +1,167 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
func fromBytes(in []byte) (*fe, error) {
fe := &fe{}
if len(in) != 48 {
return nil, errors.New("input string should be equal 48 bytes")
}
fe.setBytes(in)
if !fe.isValid() {
return nil, errors.New("must be less than modulus")
}
toMont(fe, fe)
return fe, nil
}
func fromBig(in *big.Int) (*fe, error) {
fe := new(fe).setBig(in)
if !fe.isValid() {
return nil, errors.New("invalid input string")
}
toMont(fe, fe)
return fe, nil
}
func fromString(in string) (*fe, error) {
fe, err := new(fe).setString(in)
if err != nil {
return nil, err
}
if !fe.isValid() {
return nil, errors.New("invalid input string")
}
toMont(fe, fe)
return fe, nil
}
func toBytes(e *fe) []byte {
e2 := new(fe)
fromMont(e2, e)
return e2.bytes()
}
func toBig(e *fe) *big.Int {
e2 := new(fe)
fromMont(e2, e)
return e2.big()
}
func toString(e *fe) (s string) {
e2 := new(fe)
fromMont(e2, e)
return e2.string()
}
func toMont(c, a *fe) {
mul(c, a, r2)
}
func fromMont(c, a *fe) {
mul(c, a, &fe{1})
}
func exp(c, a *fe, e *big.Int) {
z := new(fe).set(r1)
for i := e.BitLen(); i >= 0; i-- {
mul(z, z, z)
if e.Bit(i) == 1 {
mul(z, z, a)
}
}
c.set(z)
}
func inverse(inv, e *fe) {
if e.isZero() {
inv.zero()
return
}
u := new(fe).set(&modulus)
v := new(fe).set(e)
s := &fe{1}
r := &fe{0}
var k int
var z uint64
var found = false
// Phase 1
for i := 0; i < 768; i++ {
if v.isZero() {
found = true
break
}
if u.isEven() {
u.div2(0)
s.mul2()
} else if v.isEven() {
v.div2(0)
z += r.mul2()
} else if u.cmp(v) == 1 {
lsubAssign(u, v)
u.div2(0)
laddAssign(r, s)
s.mul2()
} else {
lsubAssign(v, u)
v.div2(0)
laddAssign(s, r)
z += r.mul2()
}
k += 1
}
if !found {
inv.zero()
return
}
if k < 381 || k > 381+384 {
inv.zero()
return
}
if r.cmp(&modulus) != -1 || z > 0 {
lsubAssign(r, &modulus)
}
u.set(&modulus)
lsubAssign(u, r)
// Phase 2
for i := k; i < 384*2; i++ {
double(u, u)
}
inv.set(u)
}
func sqrt(c, a *fe) bool {
u, v := new(fe).set(a), new(fe)
exp(c, a, pPlus1Over4)
square(v, c)
return u.equal(v)
}
func isQuadraticNonResidue(elem *fe) bool {
result := new(fe)
exp(result, elem, pMinus1Over2)
return !result.isOne()
}

View File

@@ -0,0 +1,277 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
type fp12 struct {
fp12temp
fp6 *fp6
}
type fp12temp struct {
t2 [9]*fe2
t6 [5]*fe6
t12 *fe12
}
func newFp12Temp() fp12temp {
t2 := [9]*fe2{}
t6 := [5]*fe6{}
for i := 0; i < len(t2); i++ {
t2[i] = &fe2{}
}
for i := 0; i < len(t6); i++ {
t6[i] = &fe6{}
}
return fp12temp{t2, t6, &fe12{}}
}
func newFp12(fp6 *fp6) *fp12 {
t := newFp12Temp()
if fp6 == nil {
return &fp12{t, newFp6(nil)}
}
return &fp12{t, fp6}
}
func (e *fp12) fp2() *fp2 {
return e.fp6.fp2
}
func (e *fp12) fromBytes(in []byte) (*fe12, error) {
if len(in) != 576 {
return nil, errors.New("input string should be larger than 96 bytes")
}
fp6 := e.fp6
c1, err := fp6.fromBytes(in[:288])
if err != nil {
return nil, err
}
c0, err := fp6.fromBytes(in[288:])
if err != nil {
return nil, err
}
return &fe12{*c0, *c1}, nil
}
func (e *fp12) toBytes(a *fe12) []byte {
fp6 := e.fp6
out := make([]byte, 576)
copy(out[:288], fp6.toBytes(&a[1]))
copy(out[288:], fp6.toBytes(&a[0]))
return out
}
func (e *fp12) new() *fe12 {
return new(fe12)
}
func (e *fp12) zero() *fe12 {
return new(fe12)
}
func (e *fp12) one() *fe12 {
return new(fe12).one()
}
func (e *fp12) add(c, a, b *fe12) {
fp6 := e.fp6
fp6.add(&c[0], &a[0], &b[0])
fp6.add(&c[1], &a[1], &b[1])
}
func (e *fp12) double(c, a *fe12) {
fp6 := e.fp6
fp6.double(&c[0], &a[0])
fp6.double(&c[1], &a[1])
}
func (e *fp12) sub(c, a, b *fe12) {
fp6 := e.fp6
fp6.sub(&c[0], &a[0], &b[0])
fp6.sub(&c[1], &a[1], &b[1])
}
func (e *fp12) neg(c, a *fe12) {
fp6 := e.fp6
fp6.neg(&c[0], &a[0])
fp6.neg(&c[1], &a[1])
}
func (e *fp12) conjugate(c, a *fe12) {
fp6 := e.fp6
c[0].set(&a[0])
fp6.neg(&c[1], &a[1])
}
func (e *fp12) square(c, a *fe12) {
fp6, t := e.fp6, e.t6
fp6.add(t[0], &a[0], &a[1])
fp6.mul(t[2], &a[0], &a[1])
fp6.mulByNonResidue(t[1], &a[1])
fp6.addAssign(t[1], &a[0])
fp6.mulByNonResidue(t[3], t[2])
fp6.mulAssign(t[0], t[1])
fp6.subAssign(t[0], t[2])
fp6.sub(&c[0], t[0], t[3])
fp6.double(&c[1], t[2])
}
func (e *fp12) cyclotomicSquare(c, a *fe12) {
t, fp2 := e.t2, e.fp2()
e.fp4Square(t[3], t[4], &a[0][0], &a[1][1])
fp2.sub(t[2], t[3], &a[0][0])
fp2.doubleAssign(t[2])
fp2.add(&c[0][0], t[2], t[3])
fp2.add(t[2], t[4], &a[1][1])
fp2.doubleAssign(t[2])
fp2.add(&c[1][1], t[2], t[4])
e.fp4Square(t[3], t[4], &a[1][0], &a[0][2])
e.fp4Square(t[5], t[6], &a[0][1], &a[1][2])
fp2.sub(t[2], t[3], &a[0][1])
fp2.doubleAssign(t[2])
fp2.add(&c[0][1], t[2], t[3])
fp2.add(t[2], t[4], &a[1][2])
fp2.doubleAssign(t[2])
fp2.add(&c[1][2], t[2], t[4])
fp2.mulByNonResidue(t[3], t[6])
fp2.add(t[2], t[3], &a[1][0])
fp2.doubleAssign(t[2])
fp2.add(&c[1][0], t[2], t[3])
fp2.sub(t[2], t[5], &a[0][2])
fp2.doubleAssign(t[2])
fp2.add(&c[0][2], t[2], t[5])
}
func (e *fp12) mul(c, a, b *fe12) {
t, fp6 := e.t6, e.fp6
fp6.mul(t[1], &a[0], &b[0])
fp6.mul(t[2], &a[1], &b[1])
fp6.add(t[0], t[1], t[2])
fp6.mulByNonResidue(t[2], t[2])
fp6.add(t[3], t[1], t[2])
fp6.add(t[1], &a[0], &a[1])
fp6.add(t[2], &b[0], &b[1])
fp6.mulAssign(t[1], t[2])
c[0].set(t[3])
fp6.sub(&c[1], t[1], t[0])
}
func (e *fp12) mulAssign(a, b *fe12) {
t, fp6 := e.t6, e.fp6
fp6.mul(t[1], &a[0], &b[0])
fp6.mul(t[2], &a[1], &b[1])
fp6.add(t[0], t[1], t[2])
fp6.mulByNonResidue(t[2], t[2])
fp6.add(t[3], t[1], t[2])
fp6.add(t[1], &a[0], &a[1])
fp6.add(t[2], &b[0], &b[1])
fp6.mulAssign(t[1], t[2])
a[0].set(t[3])
fp6.sub(&a[1], t[1], t[0])
}
func (e *fp12) fp4Square(c0, c1, a0, a1 *fe2) {
t, fp2 := e.t2, e.fp2()
fp2.square(t[0], a0)
fp2.square(t[1], a1)
fp2.mulByNonResidue(t[2], t[1])
fp2.add(c0, t[2], t[0])
fp2.add(t[2], a0, a1)
fp2.squareAssign(t[2])
fp2.subAssign(t[2], t[0])
fp2.sub(c1, t[2], t[1])
}
func (e *fp12) inverse(c, a *fe12) {
fp6, t := e.fp6, e.t6
fp6.square(t[0], &a[0])
fp6.square(t[1], &a[1])
fp6.mulByNonResidue(t[1], t[1])
fp6.sub(t[1], t[0], t[1])
fp6.inverse(t[0], t[1])
fp6.mul(&c[0], &a[0], t[0])
fp6.mulAssign(t[0], &a[1])
fp6.neg(&c[1], t[0])
}
func (e *fp12) mulBy014Assign(a *fe12, c0, c1, c4 *fe2) {
fp2, fp6, t, t2 := e.fp2(), e.fp6, e.t6, e.t2[0]
fp6.mulBy01(t[0], &a[0], c0, c1)
fp6.mulBy1(t[1], &a[1], c4)
fp2.add(t2, c1, c4)
fp6.add(t[2], &a[1], &a[0])
fp6.mulBy01Assign(t[2], c0, t2)
fp6.subAssign(t[2], t[0])
fp6.sub(&a[1], t[2], t[1])
fp6.mulByNonResidue(t[1], t[1])
fp6.add(&a[0], t[1], t[0])
}
func (e *fp12) exp(c, a *fe12, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.square(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp12) cyclotomicExp(c, a *fe12, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.cyclotomicSquare(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp12) frobeniusMap(c, a *fe12, power uint) {
fp6 := e.fp6
fp6.frobeniusMap(&c[0], &a[0], power)
fp6.frobeniusMap(&c[1], &a[1], power)
switch power {
case 0:
return
case 6:
fp6.neg(&c[1], &c[1])
default:
fp6.mulByBaseField(&c[1], &c[1], &frobeniusCoeffs12[power])
}
}
func (e *fp12) frobeniusMapAssign(a *fe12, power uint) {
fp6 := e.fp6
fp6.frobeniusMapAssign(&a[0], power)
fp6.frobeniusMapAssign(&a[1], power)
switch power {
case 0:
return
case 6:
fp6.neg(&a[1], &a[1])
default:
fp6.mulByBaseField(&a[1], &a[1], &frobeniusCoeffs12[power])
}
}

View File

@@ -0,0 +1,252 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
type fp2Temp struct {
t [4]*fe
}
type fp2 struct {
fp2Temp
}
func newFp2Temp() fp2Temp {
t := [4]*fe{}
for i := 0; i < len(t); i++ {
t[i] = &fe{}
}
return fp2Temp{t}
}
func newFp2() *fp2 {
t := newFp2Temp()
return &fp2{t}
}
func (e *fp2) fromBytes(in []byte) (*fe2, error) {
if len(in) != 96 {
return nil, errors.New("length of input string should be 96 bytes")
}
c1, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
c0, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
return &fe2{*c0, *c1}, nil
}
func (e *fp2) toBytes(a *fe2) []byte {
out := make([]byte, 96)
copy(out[:48], toBytes(&a[1]))
copy(out[48:], toBytes(&a[0]))
return out
}
func (e *fp2) new() *fe2 {
return new(fe2).zero()
}
func (e *fp2) zero() *fe2 {
return new(fe2).zero()
}
func (e *fp2) one() *fe2 {
return new(fe2).one()
}
func (e *fp2) add(c, a, b *fe2) {
add(&c[0], &a[0], &b[0])
add(&c[1], &a[1], &b[1])
}
func (e *fp2) addAssign(a, b *fe2) {
addAssign(&a[0], &b[0])
addAssign(&a[1], &b[1])
}
func (e *fp2) ladd(c, a, b *fe2) {
ladd(&c[0], &a[0], &b[0])
ladd(&c[1], &a[1], &b[1])
}
func (e *fp2) double(c, a *fe2) {
double(&c[0], &a[0])
double(&c[1], &a[1])
}
func (e *fp2) doubleAssign(a *fe2) {
doubleAssign(&a[0])
doubleAssign(&a[1])
}
func (e *fp2) ldouble(c, a *fe2) {
ldouble(&c[0], &a[0])
ldouble(&c[1], &a[1])
}
func (e *fp2) sub(c, a, b *fe2) {
sub(&c[0], &a[0], &b[0])
sub(&c[1], &a[1], &b[1])
}
func (e *fp2) subAssign(c, a *fe2) {
subAssign(&c[0], &a[0])
subAssign(&c[1], &a[1])
}
func (e *fp2) neg(c, a *fe2) {
neg(&c[0], &a[0])
neg(&c[1], &a[1])
}
func (e *fp2) mul(c, a, b *fe2) {
t := e.t
mul(t[1], &a[0], &b[0])
mul(t[2], &a[1], &b[1])
add(t[0], &a[0], &a[1])
add(t[3], &b[0], &b[1])
sub(&c[0], t[1], t[2])
addAssign(t[1], t[2])
mul(t[0], t[0], t[3])
sub(&c[1], t[0], t[1])
}
func (e *fp2) mulAssign(a, b *fe2) {
t := e.t
mul(t[1], &a[0], &b[0])
mul(t[2], &a[1], &b[1])
add(t[0], &a[0], &a[1])
add(t[3], &b[0], &b[1])
sub(&a[0], t[1], t[2])
addAssign(t[1], t[2])
mul(t[0], t[0], t[3])
sub(&a[1], t[0], t[1])
}
func (e *fp2) square(c, a *fe2) {
t := e.t
ladd(t[0], &a[0], &a[1])
sub(t[1], &a[0], &a[1])
ldouble(t[2], &a[0])
mul(&c[0], t[0], t[1])
mul(&c[1], t[2], &a[1])
}
func (e *fp2) squareAssign(a *fe2) {
t := e.t
ladd(t[0], &a[0], &a[1])
sub(t[1], &a[0], &a[1])
ldouble(t[2], &a[0])
mul(&a[0], t[0], t[1])
mul(&a[1], t[2], &a[1])
}
func (e *fp2) mulByNonResidue(c, a *fe2) {
t := e.t
sub(t[0], &a[0], &a[1])
add(&c[1], &a[0], &a[1])
c[0].set(t[0])
}
func (e *fp2) mulByB(c, a *fe2) {
t := e.t
double(t[0], &a[0])
double(t[1], &a[1])
doubleAssign(t[0])
doubleAssign(t[1])
sub(&c[0], t[0], t[1])
add(&c[1], t[0], t[1])
}
func (e *fp2) inverse(c, a *fe2) {
t := e.t
square(t[0], &a[0])
square(t[1], &a[1])
addAssign(t[0], t[1])
inverse(t[0], t[0])
mul(&c[0], &a[0], t[0])
mul(t[0], t[0], &a[1])
neg(&c[1], t[0])
}
func (e *fp2) mulByFq(c, a *fe2, b *fe) {
mul(&c[0], &a[0], b)
mul(&c[1], &a[1], b)
}
func (e *fp2) exp(c, a *fe2, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.square(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp2) frobeniusMap(c, a *fe2, power uint) {
c[0].set(&a[0])
if power%2 == 1 {
neg(&c[1], &a[1])
return
}
c[1].set(&a[1])
}
func (e *fp2) frobeniusMapAssign(a *fe2, power uint) {
if power%2 == 1 {
neg(&a[1], &a[1])
return
}
}
func (e *fp2) sqrt(c, a *fe2) bool {
u, x0, a1, alpha := &fe2{}, &fe2{}, &fe2{}, &fe2{}
u.set(a)
e.exp(a1, a, pMinus3Over4)
e.square(alpha, a1)
e.mul(alpha, alpha, a)
e.mul(x0, a1, a)
if alpha.equal(negativeOne2) {
neg(&c[0], &x0[1])
c[1].set(&x0[0])
return true
}
e.add(alpha, alpha, e.one())
e.exp(alpha, alpha, pMinus1Over2)
e.mul(c, alpha, x0)
e.square(alpha, c)
return alpha.equal(u)
}
func (e *fp2) isQuadraticNonResidue(a *fe2) bool {
// https://github.com/leovt/constructible/wiki/Taking-Square-Roots-in-quadratic-extension-Fields
c0, c1 := new(fe), new(fe)
square(c0, &a[0])
square(c1, &a[1])
add(c1, c1, c0)
return isQuadraticNonResidue(c1)
}

View File

@@ -0,0 +1,351 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
type fp6Temp struct {
t [6]*fe2
}
type fp6 struct {
fp2 *fp2
fp6Temp
}
func newFp6Temp() fp6Temp {
t := [6]*fe2{}
for i := 0; i < len(t); i++ {
t[i] = &fe2{}
}
return fp6Temp{t}
}
func newFp6(f *fp2) *fp6 {
t := newFp6Temp()
if f == nil {
return &fp6{newFp2(), t}
}
return &fp6{f, t}
}
func (e *fp6) fromBytes(b []byte) (*fe6, error) {
if len(b) < 288 {
return nil, errors.New("input string should be larger than 288 bytes")
}
fp2 := e.fp2
u2, err := fp2.fromBytes(b[:96])
if err != nil {
return nil, err
}
u1, err := fp2.fromBytes(b[96:192])
if err != nil {
return nil, err
}
u0, err := fp2.fromBytes(b[192:])
if err != nil {
return nil, err
}
return &fe6{*u0, *u1, *u2}, nil
}
func (e *fp6) toBytes(a *fe6) []byte {
fp2 := e.fp2
out := make([]byte, 288)
copy(out[:96], fp2.toBytes(&a[2]))
copy(out[96:192], fp2.toBytes(&a[1]))
copy(out[192:], fp2.toBytes(&a[0]))
return out
}
func (e *fp6) new() *fe6 {
return new(fe6)
}
func (e *fp6) zero() *fe6 {
return new(fe6)
}
func (e *fp6) one() *fe6 {
return new(fe6).one()
}
func (e *fp6) add(c, a, b *fe6) {
fp2 := e.fp2
fp2.add(&c[0], &a[0], &b[0])
fp2.add(&c[1], &a[1], &b[1])
fp2.add(&c[2], &a[2], &b[2])
}
func (e *fp6) addAssign(a, b *fe6) {
fp2 := e.fp2
fp2.addAssign(&a[0], &b[0])
fp2.addAssign(&a[1], &b[1])
fp2.addAssign(&a[2], &b[2])
}
func (e *fp6) double(c, a *fe6) {
fp2 := e.fp2
fp2.double(&c[0], &a[0])
fp2.double(&c[1], &a[1])
fp2.double(&c[2], &a[2])
}
func (e *fp6) doubleAssign(a *fe6) {
fp2 := e.fp2
fp2.doubleAssign(&a[0])
fp2.doubleAssign(&a[1])
fp2.doubleAssign(&a[2])
}
func (e *fp6) sub(c, a, b *fe6) {
fp2 := e.fp2
fp2.sub(&c[0], &a[0], &b[0])
fp2.sub(&c[1], &a[1], &b[1])
fp2.sub(&c[2], &a[2], &b[2])
}
func (e *fp6) subAssign(a, b *fe6) {
fp2 := e.fp2
fp2.subAssign(&a[0], &b[0])
fp2.subAssign(&a[1], &b[1])
fp2.subAssign(&a[2], &b[2])
}
func (e *fp6) neg(c, a *fe6) {
fp2 := e.fp2
fp2.neg(&c[0], &a[0])
fp2.neg(&c[1], &a[1])
fp2.neg(&c[2], &a[2])
}
func (e *fp6) mul(c, a, b *fe6) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], &b[0])
fp2.mul(t[1], &a[1], &b[1])
fp2.mul(t[2], &a[2], &b[2])
fp2.add(t[3], &a[1], &a[2])
fp2.add(t[4], &b[1], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[1], t[2])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[3], t[3])
fp2.add(t[5], t[0], t[3])
fp2.add(t[3], &a[0], &a[1])
fp2.add(t[4], &b[0], &b[1])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[1])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[4], t[2])
fp2.add(&c[1], t[3], t[4])
fp2.add(t[3], &a[0], &a[2])
fp2.add(t[4], &b[0], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[2])
fp2.subAssign(t[3], t[4])
fp2.add(&c[2], t[1], t[3])
c[0].set(t[5])
}
func (e *fp6) mulAssign(a, b *fe6) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], &b[0])
fp2.mul(t[1], &a[1], &b[1])
fp2.mul(t[2], &a[2], &b[2])
fp2.add(t[3], &a[1], &a[2])
fp2.add(t[4], &b[1], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[1], t[2])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[3], t[3])
fp2.add(t[5], t[0], t[3])
fp2.add(t[3], &a[0], &a[1])
fp2.add(t[4], &b[0], &b[1])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[1])
fp2.subAssign(t[3], t[4])
fp2.mulByNonResidue(t[4], t[2])
fp2.add(&a[1], t[3], t[4])
fp2.add(t[3], &a[0], &a[2])
fp2.add(t[4], &b[0], &b[2])
fp2.mulAssign(t[3], t[4])
fp2.add(t[4], t[0], t[2])
fp2.subAssign(t[3], t[4])
fp2.add(&a[2], t[1], t[3])
a[0].set(t[5])
}
func (e *fp6) square(c, a *fe6) {
fp2, t := e.fp2, e.t
fp2.square(t[0], &a[0])
fp2.mul(t[1], &a[0], &a[1])
fp2.doubleAssign(t[1])
fp2.sub(t[2], &a[0], &a[1])
fp2.addAssign(t[2], &a[2])
fp2.squareAssign(t[2])
fp2.mul(t[3], &a[1], &a[2])
fp2.doubleAssign(t[3])
fp2.square(t[4], &a[2])
fp2.mulByNonResidue(t[5], t[3])
fp2.add(&c[0], t[0], t[5])
fp2.mulByNonResidue(t[5], t[4])
fp2.add(&c[1], t[1], t[5])
fp2.addAssign(t[1], t[2])
fp2.addAssign(t[1], t[3])
fp2.addAssign(t[0], t[4])
fp2.sub(&c[2], t[1], t[0])
}
func (e *fp6) mulBy01Assign(a *fe6, b0, b1 *fe2) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], b0)
fp2.mul(t[1], &a[1], b1)
fp2.add(t[5], &a[1], &a[2])
fp2.mul(t[2], b1, t[5])
fp2.subAssign(t[2], t[1])
fp2.mulByNonResidue(t[2], t[2])
fp2.add(t[5], &a[0], &a[2])
fp2.mul(t[3], b0, t[5])
fp2.subAssign(t[3], t[0])
fp2.add(&a[2], t[3], t[1])
fp2.add(t[4], b0, b1)
fp2.add(t[5], &a[0], &a[1])
fp2.mulAssign(t[4], t[5])
fp2.subAssign(t[4], t[0])
fp2.sub(&a[1], t[4], t[1])
fp2.add(&a[0], t[2], t[0])
}
func (e *fp6) mulBy01(c, a *fe6, b0, b1 *fe2) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[0], b0)
fp2.mul(t[1], &a[1], b1)
fp2.add(t[2], &a[1], &a[2])
fp2.mulAssign(t[2], b1)
fp2.subAssign(t[2], t[1])
fp2.mulByNonResidue(t[2], t[2])
fp2.add(t[3], &a[0], &a[2])
fp2.mulAssign(t[3], b0)
fp2.subAssign(t[3], t[0])
fp2.add(&c[2], t[3], t[1])
fp2.add(t[4], b0, b1)
fp2.add(t[3], &a[0], &a[1])
fp2.mulAssign(t[4], t[3])
fp2.subAssign(t[4], t[0])
fp2.sub(&c[1], t[4], t[1])
fp2.add(&c[0], t[2], t[0])
}
func (e *fp6) mulBy1(c, a *fe6, b1 *fe2) {
fp2, t := e.fp2, e.t
fp2.mul(t[0], &a[2], b1)
fp2.mul(&c[2], &a[1], b1)
fp2.mul(&c[1], &a[0], b1)
fp2.mulByNonResidue(&c[0], t[0])
}
func (e *fp6) mulByNonResidue(c, a *fe6) {
fp2, t := e.fp2, e.t
t[0].set(&a[0])
fp2.mulByNonResidue(&c[0], &a[2])
c[2].set(&a[1])
c[1].set(t[0])
}
func (e *fp6) mulByBaseField(c, a *fe6, b *fe2) {
fp2 := e.fp2
fp2.mul(&c[0], &a[0], b)
fp2.mul(&c[1], &a[1], b)
fp2.mul(&c[2], &a[2], b)
}
func (e *fp6) exp(c, a *fe6, s *big.Int) {
z := e.one()
for i := s.BitLen() - 1; i >= 0; i-- {
e.square(z, z)
if s.Bit(i) == 1 {
e.mul(z, z, a)
}
}
c.set(z)
}
func (e *fp6) inverse(c, a *fe6) {
fp2, t := e.fp2, e.t
fp2.square(t[0], &a[0])
fp2.mul(t[1], &a[1], &a[2])
fp2.mulByNonResidue(t[1], t[1])
fp2.subAssign(t[0], t[1])
fp2.square(t[1], &a[1])
fp2.mul(t[2], &a[0], &a[2])
fp2.subAssign(t[1], t[2])
fp2.square(t[2], &a[2])
fp2.mulByNonResidue(t[2], t[2])
fp2.mul(t[3], &a[0], &a[1])
fp2.subAssign(t[2], t[3])
fp2.mul(t[3], &a[2], t[2])
fp2.mul(t[4], &a[1], t[1])
fp2.addAssign(t[3], t[4])
fp2.mulByNonResidue(t[3], t[3])
fp2.mul(t[4], &a[0], t[0])
fp2.addAssign(t[3], t[4])
fp2.inverse(t[3], t[3])
fp2.mul(&c[0], t[0], t[3])
fp2.mul(&c[1], t[2], t[3])
fp2.mul(&c[2], t[1], t[3])
}
func (e *fp6) frobeniusMap(c, a *fe6, power uint) {
fp2 := e.fp2
fp2.frobeniusMap(&c[0], &a[0], power)
fp2.frobeniusMap(&c[1], &a[1], power)
fp2.frobeniusMap(&c[2], &a[2], power)
switch power % 6 {
case 0:
return
case 3:
neg(&c[0][0], &a[1][1])
c[1][1].set(&a[1][0])
fp2.neg(&a[2], &a[2])
default:
fp2.mul(&c[1], &c[1], &frobeniusCoeffs61[power%6])
fp2.mul(&c[2], &c[2], &frobeniusCoeffs62[power%6])
}
}
func (e *fp6) frobeniusMapAssign(a *fe6, power uint) {
fp2 := e.fp2
fp2.frobeniusMapAssign(&a[0], power)
fp2.frobeniusMapAssign(&a[1], power)
fp2.frobeniusMapAssign(&a[2], power)
t := e.t
switch power % 6 {
case 0:
return
case 3:
neg(&t[0][0], &a[1][1])
a[1][1].set(&a[1][0])
a[1][0].set(&t[0][0])
fp2.neg(&a[2], &a[2])
default:
fp2.mulAssign(&a[1], &frobeniusCoeffs61[power%6])
fp2.mulAssign(&a[2], &frobeniusCoeffs62[power%6])
}
}

View File

@@ -0,0 +1,434 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math"
"math/big"
)
// PointG1 is type for point in G1.
// PointG1 is both used for Affine and Jacobian point representation.
// If z is equal to one the point is considered as in affine form.
type PointG1 [3]fe
func (p *PointG1) Set(p2 *PointG1) *PointG1 {
p[0].set(&p2[0])
p[1].set(&p2[1])
p[2].set(&p2[2])
return p
}
// Zero returns G1 point in point at infinity representation
func (p *PointG1) Zero() *PointG1 {
p[0].zero()
p[1].one()
p[2].zero()
return p
}
type tempG1 struct {
t [9]*fe
}
// G1 is struct for G1 group.
type G1 struct {
tempG1
}
// NewG1 constructs a new G1 instance.
func NewG1() *G1 {
t := newTempG1()
return &G1{t}
}
func newTempG1() tempG1 {
t := [9]*fe{}
for i := 0; i < 9; i++ {
t[i] = &fe{}
}
return tempG1{t}
}
// Q returns group order in big.Int.
func (g *G1) Q() *big.Int {
return new(big.Int).Set(q)
}
func (g *G1) fromBytesUnchecked(in []byte) (*PointG1, error) {
p0, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
p1, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
p2 := new(fe).one()
return &PointG1{*p0, *p1, *p2}, nil
}
// FromBytes constructs a new point given uncompressed byte input.
// FromBytes does not take zcash flags into account.
// Byte input expected to be larger than 96 bytes.
// First 96 bytes should be concatenation of x and y values.
// Point (0, 0) is considered as infinity.
func (g *G1) FromBytes(in []byte) (*PointG1, error) {
if len(in) != 96 {
return nil, errors.New("input string should be equal or larger than 96")
}
p0, err := fromBytes(in[:48])
if err != nil {
return nil, err
}
p1, err := fromBytes(in[48:])
if err != nil {
return nil, err
}
// check if given input points to infinity
if p0.isZero() && p1.isZero() {
return g.Zero(), nil
}
p2 := new(fe).one()
p := &PointG1{*p0, *p1, *p2}
if !g.IsOnCurve(p) {
return nil, errors.New("point is not on curve")
}
return p, nil
}
// DecodePoint given encoded (x, y) coordinates in 128 bytes returns a valid G1 Point.
func (g *G1) DecodePoint(in []byte) (*PointG1, error) {
if len(in) != 128 {
return nil, errors.New("invalid g1 point length")
}
pointBytes := make([]byte, 96)
// decode x
xBytes, err := decodeFieldElement(in[:64])
if err != nil {
return nil, err
}
// decode y
yBytes, err := decodeFieldElement(in[64:])
if err != nil {
return nil, err
}
copy(pointBytes[:48], xBytes)
copy(pointBytes[48:], yBytes)
return g.FromBytes(pointBytes)
}
// ToBytes serializes a point into bytes in uncompressed form.
// ToBytes does not take zcash flags into account.
// ToBytes returns (0, 0) if point is infinity.
func (g *G1) ToBytes(p *PointG1) []byte {
out := make([]byte, 96)
if g.IsZero(p) {
return out
}
g.Affine(p)
copy(out[:48], toBytes(&p[0]))
copy(out[48:], toBytes(&p[1]))
return out
}
// EncodePoint encodes a point into 128 bytes.
func (g *G1) EncodePoint(p *PointG1) []byte {
outRaw := g.ToBytes(p)
out := make([]byte, 128)
// encode x
copy(out[16:], outRaw[:48])
// encode y
copy(out[64+16:], outRaw[48:])
return out
}
// New creates a new G1 Point which is equal to zero in other words point at infinity.
func (g *G1) New() *PointG1 {
return g.Zero()
}
// Zero returns a new G1 Point which is equal to point at infinity.
func (g *G1) Zero() *PointG1 {
return new(PointG1).Zero()
}
// One returns a new G1 Point which is equal to generator point.
func (g *G1) One() *PointG1 {
p := &PointG1{}
return p.Set(&g1One)
}
// IsZero returns true if given point is equal to zero.
func (g *G1) IsZero(p *PointG1) bool {
return p[2].isZero()
}
// Equal checks if given two G1 point is equal in their affine form.
func (g *G1) Equal(p1, p2 *PointG1) bool {
if g.IsZero(p1) {
return g.IsZero(p2)
}
if g.IsZero(p2) {
return g.IsZero(p1)
}
t := g.t
square(t[0], &p1[2])
square(t[1], &p2[2])
mul(t[2], t[0], &p2[0])
mul(t[3], t[1], &p1[0])
mul(t[0], t[0], &p1[2])
mul(t[1], t[1], &p2[2])
mul(t[1], t[1], &p1[1])
mul(t[0], t[0], &p2[1])
return t[0].equal(t[1]) && t[2].equal(t[3])
}
// InCorrectSubgroup checks whether given point is in correct subgroup.
func (g *G1) InCorrectSubgroup(p *PointG1) bool {
tmp := &PointG1{}
g.MulScalar(tmp, p, q)
return g.IsZero(tmp)
}
// IsOnCurve checks a G1 point is on curve.
func (g *G1) IsOnCurve(p *PointG1) bool {
if g.IsZero(p) {
return true
}
t := g.t
square(t[0], &p[1])
square(t[1], &p[0])
mul(t[1], t[1], &p[0])
square(t[2], &p[2])
square(t[3], t[2])
mul(t[2], t[2], t[3])
mul(t[2], b, t[2])
add(t[1], t[1], t[2])
return t[0].equal(t[1])
}
// IsAffine checks a G1 point whether it is in affine form.
func (g *G1) IsAffine(p *PointG1) bool {
return p[2].isOne()
}
// Affine calculates affine form of given G1 point.
func (g *G1) Affine(p *PointG1) *PointG1 {
if g.IsZero(p) {
return p
}
if !g.IsAffine(p) {
t := g.t
inverse(t[0], &p[2])
square(t[1], t[0])
mul(&p[0], &p[0], t[1])
mul(t[0], t[0], t[1])
mul(&p[1], &p[1], t[0])
p[2].one()
}
return p
}
// Add adds two G1 points p1, p2 and assigns the result to point at first argument.
func (g *G1) Add(r, p1, p2 *PointG1) *PointG1 {
// http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#addition-add-2007-bl
if g.IsZero(p1) {
return r.Set(p2)
}
if g.IsZero(p2) {
return r.Set(p1)
}
t := g.t
square(t[7], &p1[2])
mul(t[1], &p2[0], t[7])
mul(t[2], &p1[2], t[7])
mul(t[0], &p2[1], t[2])
square(t[8], &p2[2])
mul(t[3], &p1[0], t[8])
mul(t[4], &p2[2], t[8])
mul(t[2], &p1[1], t[4])
if t[1].equal(t[3]) {
if t[0].equal(t[2]) {
return g.Double(r, p1)
}
return r.Zero()
}
sub(t[1], t[1], t[3])
double(t[4], t[1])
square(t[4], t[4])
mul(t[5], t[1], t[4])
sub(t[0], t[0], t[2])
double(t[0], t[0])
square(t[6], t[0])
sub(t[6], t[6], t[5])
mul(t[3], t[3], t[4])
double(t[4], t[3])
sub(&r[0], t[6], t[4])
sub(t[4], t[3], &r[0])
mul(t[6], t[2], t[5])
double(t[6], t[6])
mul(t[0], t[0], t[4])
sub(&r[1], t[0], t[6])
add(t[0], &p1[2], &p2[2])
square(t[0], t[0])
sub(t[0], t[0], t[7])
sub(t[0], t[0], t[8])
mul(&r[2], t[0], t[1])
return r
}
// Double doubles a G1 point p and assigns the result to the point at first argument.
func (g *G1) Double(r, p *PointG1) *PointG1 {
// http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
if g.IsZero(p) {
return r.Set(p)
}
t := g.t
square(t[0], &p[0])
square(t[1], &p[1])
square(t[2], t[1])
add(t[1], &p[0], t[1])
square(t[1], t[1])
sub(t[1], t[1], t[0])
sub(t[1], t[1], t[2])
double(t[1], t[1])
double(t[3], t[0])
add(t[0], t[3], t[0])
square(t[4], t[0])
double(t[3], t[1])
sub(&r[0], t[4], t[3])
sub(t[1], t[1], &r[0])
double(t[2], t[2])
double(t[2], t[2])
double(t[2], t[2])
mul(t[0], t[0], t[1])
sub(t[1], t[0], t[2])
mul(t[0], &p[1], &p[2])
r[1].set(t[1])
double(&r[2], t[0])
return r
}
// Neg negates a G1 point p and assigns the result to the point at first argument.
func (g *G1) Neg(r, p *PointG1) *PointG1 {
r[0].set(&p[0])
r[2].set(&p[2])
neg(&r[1], &p[1])
return r
}
// Sub subtracts two G1 points p1, p2 and assigns the result to point at first argument.
func (g *G1) Sub(c, a, b *PointG1) *PointG1 {
d := &PointG1{}
g.Neg(d, b)
g.Add(c, a, d)
return c
}
// MulScalar multiplies a point by given scalar value in big.Int and assigns the result to point at first argument.
func (g *G1) MulScalar(c, p *PointG1, e *big.Int) *PointG1 {
q, n := &PointG1{}, &PointG1{}
n.Set(p)
l := e.BitLen()
for i := 0; i < l; i++ {
if e.Bit(i) == 1 {
g.Add(q, q, n)
}
g.Double(n, n)
}
return c.Set(q)
}
// ClearCofactor maps given a G1 point to correct subgroup
func (g *G1) ClearCofactor(p *PointG1) {
g.MulScalar(p, p, cofactorEFFG1)
}
// MultiExp calculates multi exponentiation. Given pairs of G1 point and scalar values
// (P_0, e_0), (P_1, e_1), ... (P_n, e_n) calculates r = e_0 * P_0 + e_1 * P_1 + ... + e_n * P_n
// Length of points and scalars are expected to be equal, otherwise an error is returned.
// Result is assigned to point at first argument.
func (g *G1) MultiExp(r *PointG1, points []*PointG1, powers []*big.Int) (*PointG1, error) {
if len(points) != len(powers) {
return nil, errors.New("point and scalar vectors should be in same length")
}
var c uint32 = 3
if len(powers) >= 32 {
c = uint32(math.Ceil(math.Log10(float64(len(powers)))))
}
bucketSize, numBits := (1<<c)-1, uint32(g.Q().BitLen())
windows := make([]*PointG1, numBits/c+1)
bucket := make([]*PointG1, bucketSize)
acc, sum := g.New(), g.New()
for i := 0; i < bucketSize; i++ {
bucket[i] = g.New()
}
mask := (uint64(1) << c) - 1
j := 0
var cur uint32
for cur <= numBits {
acc.Zero()
bucket = make([]*PointG1, (1<<c)-1)
for i := 0; i < len(bucket); i++ {
bucket[i] = g.New()
}
for i := 0; i < len(powers); i++ {
s0 := powers[i].Uint64()
index := uint(s0 & mask)
if index != 0 {
g.Add(bucket[index-1], bucket[index-1], points[i])
}
powers[i] = new(big.Int).Rsh(powers[i], uint(c))
}
sum.Zero()
for i := len(bucket) - 1; i >= 0; i-- {
g.Add(sum, sum, bucket[i])
g.Add(acc, acc, sum)
}
windows[j] = g.New()
windows[j].Set(acc)
j++
cur += c
}
acc.Zero()
for i := len(windows) - 1; i >= 0; i-- {
for j := uint32(0); j < c; j++ {
g.Double(acc, acc)
}
g.Add(acc, acc, windows[i])
}
return r.Set(acc), nil
}
// MapToCurve given a byte slice returns a valid G1 point.
// This mapping function implements the Simplified Shallue-van de Woestijne-Ulas method.
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06
// Input byte slice should be a valid field element, otherwise an error is returned.
func (g *G1) MapToCurve(in []byte) (*PointG1, error) {
u, err := fromBytes(in)
if err != nil {
return nil, err
}
x, y := swuMapG1(u)
isogenyMapG1(x, y)
one := new(fe).one()
p := &PointG1{*x, *y, *one}
g.ClearCofactor(p)
return g.Affine(p), nil
}

View File

@@ -0,0 +1,455 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math"
"math/big"
)
// PointG2 is type for point in G2.
// PointG2 is both used for Affine and Jacobian point representation.
// If z is equal to one the point is considered as in affine form.
type PointG2 [3]fe2
// Set copies valeus of one point to another.
func (p *PointG2) Set(p2 *PointG2) *PointG2 {
p[0].set(&p2[0])
p[1].set(&p2[1])
p[2].set(&p2[2])
return p
}
// Zero returns G2 point in point at infinity representation
func (p *PointG2) Zero() *PointG2 {
p[0].zero()
p[1].one()
p[2].zero()
return p
}
type tempG2 struct {
t [9]*fe2
}
// G2 is struct for G2 group.
type G2 struct {
f *fp2
tempG2
}
// NewG2 constructs a new G2 instance.
func NewG2() *G2 {
return newG2(nil)
}
func newG2(f *fp2) *G2 {
if f == nil {
f = newFp2()
}
t := newTempG2()
return &G2{f, t}
}
func newTempG2() tempG2 {
t := [9]*fe2{}
for i := 0; i < 9; i++ {
t[i] = &fe2{}
}
return tempG2{t}
}
// Q returns group order in big.Int.
func (g *G2) Q() *big.Int {
return new(big.Int).Set(q)
}
func (g *G2) fromBytesUnchecked(in []byte) (*PointG2, error) {
p0, err := g.f.fromBytes(in[:96])
if err != nil {
return nil, err
}
p1, err := g.f.fromBytes(in[96:])
if err != nil {
return nil, err
}
p2 := new(fe2).one()
return &PointG2{*p0, *p1, *p2}, nil
}
// FromBytes constructs a new point given uncompressed byte input.
// FromBytes does not take zcash flags into account.
// Byte input expected to be larger than 96 bytes.
// First 192 bytes should be concatenation of x and y values
// Point (0, 0) is considered as infinity.
func (g *G2) FromBytes(in []byte) (*PointG2, error) {
if len(in) != 192 {
return nil, errors.New("input string should be equal or larger than 192")
}
p0, err := g.f.fromBytes(in[:96])
if err != nil {
return nil, err
}
p1, err := g.f.fromBytes(in[96:])
if err != nil {
return nil, err
}
// check if given input points to infinity
if p0.isZero() && p1.isZero() {
return g.Zero(), nil
}
p2 := new(fe2).one()
p := &PointG2{*p0, *p1, *p2}
if !g.IsOnCurve(p) {
return nil, errors.New("point is not on curve")
}
return p, nil
}
// DecodePoint given encoded (x, y) coordinates in 256 bytes returns a valid G1 Point.
func (g *G2) DecodePoint(in []byte) (*PointG2, error) {
if len(in) != 256 {
return nil, errors.New("invalid g2 point length")
}
pointBytes := make([]byte, 192)
x0Bytes, err := decodeFieldElement(in[:64])
if err != nil {
return nil, err
}
x1Bytes, err := decodeFieldElement(in[64:128])
if err != nil {
return nil, err
}
y0Bytes, err := decodeFieldElement(in[128:192])
if err != nil {
return nil, err
}
y1Bytes, err := decodeFieldElement(in[192:])
if err != nil {
return nil, err
}
copy(pointBytes[:48], x1Bytes)
copy(pointBytes[48:96], x0Bytes)
copy(pointBytes[96:144], y1Bytes)
copy(pointBytes[144:192], y0Bytes)
return g.FromBytes(pointBytes)
}
// ToBytes serializes a point into bytes in uncompressed form,
// does not take zcash flags into account,
// returns (0, 0) if point is infinity.
func (g *G2) ToBytes(p *PointG2) []byte {
out := make([]byte, 192)
if g.IsZero(p) {
return out
}
g.Affine(p)
copy(out[:96], g.f.toBytes(&p[0]))
copy(out[96:], g.f.toBytes(&p[1]))
return out
}
// EncodePoint encodes a point into 256 bytes.
func (g *G2) EncodePoint(p *PointG2) []byte {
// outRaw is 96 bytes
outRaw := g.ToBytes(p)
out := make([]byte, 256)
// encode x
copy(out[16:16+48], outRaw[48:96])
copy(out[80:80+48], outRaw[:48])
// encode y
copy(out[144:144+48], outRaw[144:])
copy(out[208:208+48], outRaw[96:144])
return out
}
// New creates a new G2 Point which is equal to zero in other words point at infinity.
func (g *G2) New() *PointG2 {
return new(PointG2).Zero()
}
// Zero returns a new G2 Point which is equal to point at infinity.
func (g *G2) Zero() *PointG2 {
return new(PointG2).Zero()
}
// One returns a new G2 Point which is equal to generator point.
func (g *G2) One() *PointG2 {
p := &PointG2{}
return p.Set(&g2One)
}
// IsZero returns true if given point is equal to zero.
func (g *G2) IsZero(p *PointG2) bool {
return p[2].isZero()
}
// Equal checks if given two G2 point is equal in their affine form.
func (g *G2) Equal(p1, p2 *PointG2) bool {
if g.IsZero(p1) {
return g.IsZero(p2)
}
if g.IsZero(p2) {
return g.IsZero(p1)
}
t := g.t
g.f.square(t[0], &p1[2])
g.f.square(t[1], &p2[2])
g.f.mul(t[2], t[0], &p2[0])
g.f.mul(t[3], t[1], &p1[0])
g.f.mul(t[0], t[0], &p1[2])
g.f.mul(t[1], t[1], &p2[2])
g.f.mul(t[1], t[1], &p1[1])
g.f.mul(t[0], t[0], &p2[1])
return t[0].equal(t[1]) && t[2].equal(t[3])
}
// InCorrectSubgroup checks whether given point is in correct subgroup.
func (g *G2) InCorrectSubgroup(p *PointG2) bool {
tmp := &PointG2{}
g.MulScalar(tmp, p, q)
return g.IsZero(tmp)
}
// IsOnCurve checks a G2 point is on curve.
func (g *G2) IsOnCurve(p *PointG2) bool {
if g.IsZero(p) {
return true
}
t := g.t
g.f.square(t[0], &p[1])
g.f.square(t[1], &p[0])
g.f.mul(t[1], t[1], &p[0])
g.f.square(t[2], &p[2])
g.f.square(t[3], t[2])
g.f.mul(t[2], t[2], t[3])
g.f.mul(t[2], b2, t[2])
g.f.add(t[1], t[1], t[2])
return t[0].equal(t[1])
}
// IsAffine checks a G2 point whether it is in affine form.
func (g *G2) IsAffine(p *PointG2) bool {
return p[2].isOne()
}
// Affine calculates affine form of given G2 point.
func (g *G2) Affine(p *PointG2) *PointG2 {
if g.IsZero(p) {
return p
}
if !g.IsAffine(p) {
t := g.t
g.f.inverse(t[0], &p[2])
g.f.square(t[1], t[0])
g.f.mul(&p[0], &p[0], t[1])
g.f.mul(t[0], t[0], t[1])
g.f.mul(&p[1], &p[1], t[0])
p[2].one()
}
return p
}
// Add adds two G2 points p1, p2 and assigns the result to point at first argument.
func (g *G2) Add(r, p1, p2 *PointG2) *PointG2 {
// http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#addition-add-2007-bl
if g.IsZero(p1) {
return r.Set(p2)
}
if g.IsZero(p2) {
return r.Set(p1)
}
t := g.t
g.f.square(t[7], &p1[2])
g.f.mul(t[1], &p2[0], t[7])
g.f.mul(t[2], &p1[2], t[7])
g.f.mul(t[0], &p2[1], t[2])
g.f.square(t[8], &p2[2])
g.f.mul(t[3], &p1[0], t[8])
g.f.mul(t[4], &p2[2], t[8])
g.f.mul(t[2], &p1[1], t[4])
if t[1].equal(t[3]) {
if t[0].equal(t[2]) {
return g.Double(r, p1)
}
return r.Zero()
}
g.f.sub(t[1], t[1], t[3])
g.f.double(t[4], t[1])
g.f.square(t[4], t[4])
g.f.mul(t[5], t[1], t[4])
g.f.sub(t[0], t[0], t[2])
g.f.double(t[0], t[0])
g.f.square(t[6], t[0])
g.f.sub(t[6], t[6], t[5])
g.f.mul(t[3], t[3], t[4])
g.f.double(t[4], t[3])
g.f.sub(&r[0], t[6], t[4])
g.f.sub(t[4], t[3], &r[0])
g.f.mul(t[6], t[2], t[5])
g.f.double(t[6], t[6])
g.f.mul(t[0], t[0], t[4])
g.f.sub(&r[1], t[0], t[6])
g.f.add(t[0], &p1[2], &p2[2])
g.f.square(t[0], t[0])
g.f.sub(t[0], t[0], t[7])
g.f.sub(t[0], t[0], t[8])
g.f.mul(&r[2], t[0], t[1])
return r
}
// Double doubles a G2 point p and assigns the result to the point at first argument.
func (g *G2) Double(r, p *PointG2) *PointG2 {
// http://www.hyperelliptic.org/EFD/gp/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
if g.IsZero(p) {
return r.Set(p)
}
t := g.t
g.f.square(t[0], &p[0])
g.f.square(t[1], &p[1])
g.f.square(t[2], t[1])
g.f.add(t[1], &p[0], t[1])
g.f.square(t[1], t[1])
g.f.sub(t[1], t[1], t[0])
g.f.sub(t[1], t[1], t[2])
g.f.double(t[1], t[1])
g.f.double(t[3], t[0])
g.f.add(t[0], t[3], t[0])
g.f.square(t[4], t[0])
g.f.double(t[3], t[1])
g.f.sub(&r[0], t[4], t[3])
g.f.sub(t[1], t[1], &r[0])
g.f.double(t[2], t[2])
g.f.double(t[2], t[2])
g.f.double(t[2], t[2])
g.f.mul(t[0], t[0], t[1])
g.f.sub(t[1], t[0], t[2])
g.f.mul(t[0], &p[1], &p[2])
r[1].set(t[1])
g.f.double(&r[2], t[0])
return r
}
// Neg negates a G2 point p and assigns the result to the point at first argument.
func (g *G2) Neg(r, p *PointG2) *PointG2 {
r[0].set(&p[0])
g.f.neg(&r[1], &p[1])
r[2].set(&p[2])
return r
}
// Sub subtracts two G2 points p1, p2 and assigns the result to point at first argument.
func (g *G2) Sub(c, a, b *PointG2) *PointG2 {
d := &PointG2{}
g.Neg(d, b)
g.Add(c, a, d)
return c
}
// MulScalar multiplies a point by given scalar value in big.Int and assigns the result to point at first argument.
func (g *G2) MulScalar(c, p *PointG2, e *big.Int) *PointG2 {
q, n := &PointG2{}, &PointG2{}
n.Set(p)
l := e.BitLen()
for i := 0; i < l; i++ {
if e.Bit(i) == 1 {
g.Add(q, q, n)
}
g.Double(n, n)
}
return c.Set(q)
}
// ClearCofactor maps given a G2 point to correct subgroup
func (g *G2) ClearCofactor(p *PointG2) {
g.MulScalar(p, p, cofactorEFFG2)
}
// MultiExp calculates multi exponentiation. Given pairs of G2 point and scalar values
// (P_0, e_0), (P_1, e_1), ... (P_n, e_n) calculates r = e_0 * P_0 + e_1 * P_1 + ... + e_n * P_n
// Length of points and scalars are expected to be equal, otherwise an error is returned.
// Result is assigned to point at first argument.
func (g *G2) MultiExp(r *PointG2, points []*PointG2, powers []*big.Int) (*PointG2, error) {
if len(points) != len(powers) {
return nil, errors.New("point and scalar vectors should be in same length")
}
var c uint32 = 3
if len(powers) >= 32 {
c = uint32(math.Ceil(math.Log10(float64(len(powers)))))
}
bucketSize, numBits := (1<<c)-1, uint32(g.Q().BitLen())
windows := make([]*PointG2, numBits/c+1)
bucket := make([]*PointG2, bucketSize)
acc, sum := g.New(), g.New()
for i := 0; i < bucketSize; i++ {
bucket[i] = g.New()
}
mask := (uint64(1) << c) - 1
j := 0
var cur uint32
for cur <= numBits {
acc.Zero()
bucket = make([]*PointG2, (1<<c)-1)
for i := 0; i < len(bucket); i++ {
bucket[i] = g.New()
}
for i := 0; i < len(powers); i++ {
s0 := powers[i].Uint64()
index := uint(s0 & mask)
if index != 0 {
g.Add(bucket[index-1], bucket[index-1], points[i])
}
powers[i] = new(big.Int).Rsh(powers[i], uint(c))
}
sum.Zero()
for i := len(bucket) - 1; i >= 0; i-- {
g.Add(sum, sum, bucket[i])
g.Add(acc, acc, sum)
}
windows[j] = g.New()
windows[j].Set(acc)
j++
cur += c
}
acc.Zero()
for i := len(windows) - 1; i >= 0; i-- {
for j := uint32(0); j < c; j++ {
g.Double(acc, acc)
}
g.Add(acc, acc, windows[i])
}
return r.Set(acc), nil
}
// MapToCurve given a byte slice returns a valid G2 point.
// This mapping function implements the Simplified Shallue-van de Woestijne-Ulas method.
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-05#section-6.6.2
// Input byte slice should be a valid field element, otherwise an error is returned.
func (g *G2) MapToCurve(in []byte) (*PointG2, error) {
fp2 := g.f
u, err := fp2.fromBytes(in)
if err != nil {
return nil, err
}
x, y := swuMapG2(fp2, u)
isogenyMapG2(fp2, x, y)
z := new(fe2).one()
q := &PointG2{*x, *y, *z}
g.ClearCofactor(q)
return g.Affine(q), nil
}

View File

@@ -0,0 +1,121 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
)
// E is type for target group element
type E = fe12
// GT is type for target multiplicative group GT.
type GT struct {
fp12 *fp12
}
func (e *E) Set(e2 *E) *E {
return e.set(e2)
}
// One sets a new target group element to one
func (e *E) One() *E {
e = new(fe12).one()
return e
}
// IsOne returns true if given element equals to one
func (e *E) IsOne() bool {
return e.isOne()
}
// Equal returns true if given two element is equal, otherwise returns false
func (g *E) Equal(g2 *E) bool {
return g.equal(g2)
}
// NewGT constructs new target group instance.
func NewGT() *GT {
fp12 := newFp12(nil)
return &GT{fp12}
}
// Q returns group order in big.Int.
func (g *GT) Q() *big.Int {
return new(big.Int).Set(q)
}
// FromBytes expects 576 byte input and returns target group element
// FromBytes returns error if given element is not on correct subgroup.
func (g *GT) FromBytes(in []byte) (*E, error) {
e, err := g.fp12.fromBytes(in)
if err != nil {
return nil, err
}
if !g.IsValid(e) {
return e, errors.New("invalid element")
}
return e, nil
}
// ToBytes serializes target group element.
func (g *GT) ToBytes(e *E) []byte {
return g.fp12.toBytes(e)
}
// IsValid checks whether given target group element is in correct subgroup.
func (g *GT) IsValid(e *E) bool {
r := g.New()
g.fp12.exp(r, e, q)
return r.isOne()
}
// New initializes a new target group element which is equal to one
func (g *GT) New() *E {
return new(E).One()
}
// Add adds two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Add(c, a, b *E) {
g.fp12.add(c, a, b)
}
// Sub subtracts two field element `a` and `b`, and assigns the result to the element in first argument.
func (g *GT) Sub(c, a, b *E) {
g.fp12.sub(c, a, b)
}
// Mul multiplies two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Mul(c, a, b *E) {
g.fp12.mul(c, a, b)
}
// Square squares an element `a` and assigns the result to the element in first argument.
func (g *GT) Square(c, a *E) {
g.fp12.cyclotomicSquare(c, a)
}
// Exp exponents an element `a` by a scalar `s` and assigns the result to the element in first argument.
func (g *GT) Exp(c, a *E, s *big.Int) {
g.fp12.cyclotomicExp(c, a, s)
}
// Inverse inverses an element `a` and assigns the result to the element in first argument.
func (g *GT) Inverse(c, a *E) {
g.fp12.inverse(c, a)
}

View File

@@ -0,0 +1,227 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
// isogenyMapG1 applies 11-isogeny map for BLS12-381 G1 defined at draft-irtf-cfrg-hash-to-curve-06.
func isogenyMapG1(x, y *fe) {
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06#appendix-C.2
params := isogenyConstantsG1
degree := 15
xNum, xDen, yNum, yDen := new(fe), new(fe), new(fe), new(fe)
xNum.set(params[0][degree])
xDen.set(params[1][degree])
yNum.set(params[2][degree])
yDen.set(params[3][degree])
for i := degree - 1; i >= 0; i-- {
mul(xNum, xNum, x)
mul(xDen, xDen, x)
mul(yNum, yNum, x)
mul(yDen, yDen, x)
add(xNum, xNum, params[0][i])
add(xDen, xDen, params[1][i])
add(yNum, yNum, params[2][i])
add(yDen, yDen, params[3][i])
}
inverse(xDen, xDen)
inverse(yDen, yDen)
mul(xNum, xNum, xDen)
mul(yNum, yNum, yDen)
mul(yNum, yNum, y)
x.set(xNum)
y.set(yNum)
}
// isogenyMapG2 applies 11-isogeny map for BLS12-381 G1 defined at draft-irtf-cfrg-hash-to-curve-06.
func isogenyMapG2(e *fp2, x, y *fe2) {
if e == nil {
e = newFp2()
}
// https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-06#appendix-C.2
params := isogenyConstantsG2
degree := 3
xNum := new(fe2).set(params[0][degree])
xDen := new(fe2).set(params[1][degree])
yNum := new(fe2).set(params[2][degree])
yDen := new(fe2).set(params[3][degree])
for i := degree - 1; i >= 0; i-- {
e.mul(xNum, xNum, x)
e.mul(xDen, xDen, x)
e.mul(yNum, yNum, x)
e.mul(yDen, yDen, x)
e.add(xNum, xNum, params[0][i])
e.add(xDen, xDen, params[1][i])
e.add(yNum, yNum, params[2][i])
e.add(yDen, yDen, params[3][i])
}
e.inverse(xDen, xDen)
e.inverse(yDen, yDen)
e.mul(xNum, xNum, xDen)
e.mul(yNum, yNum, yDen)
e.mul(yNum, yNum, y)
x.set(xNum)
y.set(yNum)
}
var isogenyConstantsG1 = [4][16]*fe{
{
{0x4d18b6f3af00131c, 0x19fa219793fee28c, 0x3f2885f1467f19ae, 0x23dcea34f2ffb304, 0xd15b58d2ffc00054, 0x0913be200a20bef4},
{0x898985385cdbbd8b, 0x3c79e43cc7d966aa, 0x1597e193f4cd233a, 0x8637ef1e4d6623ad, 0x11b22deed20d827b, 0x07097bc5998784ad},
{0xa542583a480b664b, 0xfc7169c026e568c6, 0x5ba2ef314ed8b5a6, 0x5b5491c05102f0e7, 0xdf6e99707d2a0079, 0x0784151ed7605524},
{0x494e212870f72741, 0xab9be52fbda43021, 0x26f5577994e34c3d, 0x049dfee82aefbd60, 0x65dadd7828505289, 0x0e93d431ea011aeb},
{0x90ee774bd6a74d45, 0x7ada1c8a41bfb185, 0x0f1a8953b325f464, 0x104c24211be4805c, 0x169139d319ea7a8f, 0x09f20ead8e532bf6},
{0x6ddd93e2f43626b7, 0xa5482c9aa1ccd7bd, 0x143245631883f4bd, 0x2e0a94ccf77ec0db, 0xb0282d480e56489f, 0x18f4bfcbb4368929},
{0x23c5f0c953402dfd, 0x7a43ff6958ce4fe9, 0x2c390d3d2da5df63, 0xd0df5c98e1f9d70f, 0xffd89869a572b297, 0x1277ffc72f25e8fe},
{0x79f4f0490f06a8a6, 0x85f894a88030fd81, 0x12da3054b18b6410, 0xe2a57f6505880d65, 0xbba074f260e400f1, 0x08b76279f621d028},
{0xe67245ba78d5b00b, 0x8456ba9a1f186475, 0x7888bff6e6b33bb4, 0xe21585b9a30f86cb, 0x05a69cdcef55feee, 0x09e699dd9adfa5ac},
{0x0de5c357bff57107, 0x0a0db4ae6b1a10b2, 0xe256bb67b3b3cd8d, 0x8ad456574e9db24f, 0x0443915f50fd4179, 0x098c4bf7de8b6375},
{0xe6b0617e7dd929c7, 0xfe6e37d442537375, 0x1dafdeda137a489e, 0xe4efd1ad3f767ceb, 0x4a51d8667f0fe1cf, 0x054fdf4bbf1d821c},
{0x72db2a50658d767b, 0x8abf91faa257b3d5, 0xe969d6833764ab47, 0x464170142a1009eb, 0xb14f01aadb30be2f, 0x18ae6a856f40715d},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
},
{
{0xb962a077fdb0f945, 0xa6a9740fefda13a0, 0xc14d568c3ed6c544, 0xb43fc37b908b133e, 0x9c0b3ac929599016, 0x0165aa6c93ad115f},
{0x23279a3ba506c1d9, 0x92cfca0a9465176a, 0x3b294ab13755f0ff, 0x116dda1c5070ae93, 0xed4530924cec2045, 0x083383d6ed81f1ce},
{0x9885c2a6449fecfc, 0x4a2b54ccd37733f0, 0x17da9ffd8738c142, 0xa0fba72732b3fafd, 0xff364f36e54b6812, 0x0f29c13c660523e2},
{0xe349cc118278f041, 0xd487228f2f3204fb, 0xc9d325849ade5150, 0x43a92bd69c15c2df, 0x1c2c7844bc417be4, 0x12025184f407440c},
{0x587f65ae6acb057b, 0x1444ef325140201f, 0xfbf995e71270da49, 0xccda066072436a42, 0x7408904f0f186bb2, 0x13b93c63edf6c015},
{0xfb918622cd141920, 0x4a4c64423ecaddb4, 0x0beb232927f7fb26, 0x30f94df6f83a3dc2, 0xaeedd424d780f388, 0x06cc402dd594bbeb},
{0xd41f761151b23f8f, 0x32a92465435719b3, 0x64f436e888c62cb9, 0xdf70a9a1f757c6e4, 0x6933a38d5b594c81, 0x0c6f7f7237b46606},
{0x693c08747876c8f7, 0x22c9850bf9cf80f0, 0x8e9071dab950c124, 0x89bc62d61c7baf23, 0xbc6be2d8dad57c23, 0x17916987aa14a122},
{0x1be3ff439c1316fd, 0x9965243a7571dfa7, 0xc7f7f62962f5cd81, 0x32c6aa9af394361c, 0xbbc2ee18e1c227f4, 0x0c102cbac531bb34},
{0x997614c97bacbf07, 0x61f86372b99192c0, 0x5b8c95fc14353fc3, 0xca2b066c2a87492f, 0x16178f5bbf698711, 0x12a6dcd7f0f4e0e8},
{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
},
{
{0x2b567ff3e2837267, 0x1d4d9e57b958a767, 0xce028fea04bd7373, 0xcc31a30a0b6cd3df, 0x7d7b18a682692693, 0x0d300744d42a0310},
{0x99c2555fa542493f, 0xfe7f53cc4874f878, 0x5df0608b8f97608a, 0x14e03832052b49c8, 0x706326a6957dd5a4, 0x0a8dadd9c2414555},
{0x13d942922a5cf63a, 0x357e33e36e261e7d, 0xcf05a27c8456088d, 0x0000bd1de7ba50f0, 0x83d0c7532f8c1fde, 0x13f70bf38bbf2905},
{0x5c57fd95bfafbdbb, 0x28a359a65e541707, 0x3983ceb4f6360b6d, 0xafe19ff6f97e6d53, 0xb3468f4550192bf7, 0x0bb6cde49d8ba257},
{0x590b62c7ff8a513f, 0x314b4ce372cacefd, 0x6bef32ce94b8a800, 0x6ddf84a095713d5f, 0x64eace4cb0982191, 0x0386213c651b888d},
{0xa5310a31111bbcdd, 0xa14ac0f5da148982, 0xf9ad9cc95423d2e9, 0xaa6ec095283ee4a7, 0xcf5b1f022e1c9107, 0x01fddf5aed881793},
{0x65a572b0d7a7d950, 0xe25c2d8183473a19, 0xc2fcebe7cb877dbd, 0x05b2d36c769a89b0, 0xba12961be86e9efb, 0x07eb1b29c1dfde1f},
{0x93e09572f7c4cd24, 0x364e929076795091, 0x8569467e68af51b5, 0xa47da89439f5340f, 0xf4fa918082e44d64, 0x0ad52ba3e6695a79},
{0x911429844e0d5f54, 0xd03f51a3516bb233, 0x3d587e5640536e66, 0xfa86d2a3a9a73482, 0xa90ed5adf1ed5537, 0x149c9c326a5e7393},
{0x462bbeb03c12921a, 0xdc9af5fa0a274a17, 0x9a558ebde836ebed, 0x649ef8f11a4fae46, 0x8100e1652b3cdc62, 0x1862bd62c291dacb},
{0x05c9b8ca89f12c26, 0x0194160fa9b9ac4f, 0x6a643d5a6879fa2c, 0x14665bdd8846e19d, 0xbb1d0d53af3ff6bf, 0x12c7e1c3b28962e5},
{0xb55ebf900b8a3e17, 0xfedc77ec1a9201c4, 0x1f07db10ea1a4df4, 0x0dfbd15dc41a594d, 0x389547f2334a5391, 0x02419f98165871a4},
{0xb416af000745fc20, 0x8e563e9d1ea6d0f5, 0x7c763e17763a0652, 0x01458ef0159ebbef, 0x8346fe421f96bb13, 0x0d2d7b829ce324d2},
{0x93096bb538d64615, 0x6f2a2619951d823a, 0x8f66b3ea59514fa4, 0xf563e63704f7092f, 0x724b136c4cf2d9fa, 0x046959cfcfd0bf49},
{0xea748d4b6e405346, 0x91e9079c2c02d58f, 0x41064965946d9b59, 0xa06731f1d2bbe1ee, 0x07f897e267a33f1b, 0x1017290919210e5f},
{0x872aa6c17d985097, 0xeecc53161264562a, 0x07afe37afff55002, 0x54759078e5be6838, 0xc4b92d15db8acca8, 0x106d87d1b51d13b9},
},
{
{0xeb6c359d47e52b1c, 0x18ef5f8a10634d60, 0xddfa71a0889d5b7e, 0x723e71dcc5fc1323, 0x52f45700b70d5c69, 0x0a8b981ee47691f1},
{0x616a3c4f5535b9fb, 0x6f5f037395dbd911, 0xf25f4cc5e35c65da, 0x3e50dffea3c62658, 0x6a33dca523560776, 0x0fadeff77b6bfe3e},
{0x2be9b66df470059c, 0x24a2c159a3d36742, 0x115dbe7ad10c2a37, 0xb6634a652ee5884d, 0x04fe8bb2b8d81af4, 0x01c2a7a256fe9c41},
{0xf27bf8ef3b75a386, 0x898b367476c9073f, 0x24482e6b8c2f4e5f, 0xc8e0bbd6fe110806, 0x59b0c17f7631448a, 0x11037cd58b3dbfbd},
{0x31c7912ea267eec6, 0x1dbf6f1c5fcdb700, 0xd30d4fe3ba86fdb1, 0x3cae528fbee9a2a4, 0xb1cce69b6aa9ad9a, 0x044393bb632d94fb},
{0xc66ef6efeeb5c7e8, 0x9824c289dd72bb55, 0x71b1a4d2f119981d, 0x104fc1aafb0919cc, 0x0e49df01d942a628, 0x096c3a09773272d4},
{0x9abc11eb5fadeff4, 0x32dca50a885728f0, 0xfb1fa3721569734c, 0xc4b76271ea6506b3, 0xd466a75599ce728e, 0x0c81d4645f4cb6ed},
{0x4199f10e5b8be45b, 0xda64e495b1e87930, 0xcb353efe9b33e4ff, 0x9e9efb24aa6424c6, 0xf08d33680a237465, 0x0d3378023e4c7406},
{0x7eb4ae92ec74d3a5, 0xc341b4aa9fac3497, 0x5be603899e907687, 0x03bfd9cca75cbdeb, 0x564c2935a96bfa93, 0x0ef3c33371e2fdb5},
{0x7ee91fd449f6ac2e, 0xe5d5bd5cb9357a30, 0x773a8ca5196b1380, 0xd0fda172174ed023, 0x6cb95e0fa776aead, 0x0d22d5a40cec7cff},
{0xf727e09285fd8519, 0xdc9d55a83017897b, 0x7549d8bd057894ae, 0x178419613d90d8f8, 0xfce95ebdeb5b490a, 0x0467ffaef23fc49e},
{0xc1769e6a7c385f1b, 0x79bc930deac01c03, 0x5461c75a23ede3b5, 0x6e20829e5c230c45, 0x828e0f1e772a53cd, 0x116aefa749127bff},
{0x101c10bf2744c10a, 0xbbf18d053a6a3154, 0xa0ecf39ef026f602, 0xfc009d4996dc5153, 0xb9000209d5bd08d3, 0x189e5fe4470cd73c},
{0x7ebd546ca1575ed2, 0xe47d5a981d081b55, 0x57b2b625b6d4ca21, 0xb0a1ba04228520cc, 0x98738983c2107ff3, 0x13dddbc4799d81d6},
{0x09319f2e39834935, 0x039e952cbdb05c21, 0x55ba77a9a2f76493, 0xfd04e3dfc6086467, 0xfb95832e7d78742e, 0x0ef9c24eccaf5e0e},
{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
},
}
var isogenyConstantsG2 = [4][4]*fe2{
{
{
fe{0x47f671c71ce05e62, 0x06dd57071206393e, 0x7c80cd2af3fd71a2, 0x048103ea9e6cd062, 0xc54516acc8d037f6, 0x13808f550920ea41},
fe{0x47f671c71ce05e62, 0x06dd57071206393e, 0x7c80cd2af3fd71a2, 0x048103ea9e6cd062, 0xc54516acc8d037f6, 0x13808f550920ea41},
},
{
fe{0, 0, 0, 0, 0, 0},
fe{0x5fe55555554c71d0, 0x873fffdd236aaaa3, 0x6a6b4619b26ef918, 0x21c2888408874945, 0x2836cda7028cabc5, 0x0ac73310a7fd5abd},
},
{
fe{0x0a0c5555555971c3, 0xdb0c00101f9eaaae, 0xb1fb2f941d797997, 0xd3960742ef416e1c, 0xb70040e2c20556f4, 0x149d7861e581393b},
fe{0xaff2aaaaaaa638e8, 0x439fffee91b55551, 0xb535a30cd9377c8c, 0x90e144420443a4a2, 0x941b66d3814655e2, 0x0563998853fead5e},
},
{
fe{0x40aac71c71c725ed, 0x190955557a84e38e, 0xd817050a8f41abc3, 0xd86485d4c87f6fb1, 0x696eb479f885d059, 0x198e1a74328002d2},
fe{0, 0, 0, 0, 0, 0},
},
},
{
{
fe{0, 0, 0, 0, 0, 0},
fe{0x1f3affffff13ab97, 0xf25bfc611da3ff3e, 0xca3757cb3819b208, 0x3e6427366f8cec18, 0x03977bc86095b089, 0x04f69db13f39a952},
},
{
fe{0x447600000027552e, 0xdcb8009a43480020, 0x6f7ee9ce4a6e8b59, 0xb10330b7c0a95bc6, 0x6140b1fcfb1e54b7, 0x0381be097f0bb4e1},
fe{0x7588ffffffd8557d, 0x41f3ff646e0bffdf, 0xf7b1e8d2ac426aca, 0xb3741acd32dbb6f8, 0xe9daf5b9482d581f, 0x167f53e0ba7431b8},
},
{
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
fe{0, 0, 0, 0, 0, 0},
},
{
fe{0, 0, 0, 0, 0, 0},
fe{0, 0, 0, 0, 0, 0},
},
},
{
{
fe{0x96d8f684bdfc77be, 0xb530e4f43b66d0e2, 0x184a88ff379652fd, 0x57cb23ecfae804e1, 0x0fd2e39eada3eba9, 0x08c8055e31c5d5c3},
fe{0x96d8f684bdfc77be, 0xb530e4f43b66d0e2, 0x184a88ff379652fd, 0x57cb23ecfae804e1, 0x0fd2e39eada3eba9, 0x08c8055e31c5d5c3},
},
{
fe{0, 0, 0, 0, 0, 0},
fe{0xbf0a71c71c91b406, 0x4d6d55d28b7638fd, 0x9d82f98e5f205aee, 0xa27aa27b1d1a18d5, 0x02c3b2b2d2938e86, 0x0c7d13420b09807f},
},
{
fe{0xd7f9555555531c74, 0x21cffff748daaaa8, 0x5a9ad1866c9bbe46, 0x4870a2210221d251, 0x4a0db369c0a32af1, 0x02b1ccc429ff56af},
fe{0xe205aaaaaaac8e37, 0xfcdc000768795556, 0x0c96011a8a1537dd, 0x1c06a963f163406e, 0x010df44c82a881e6, 0x174f45260f808feb},
},
{
fe{0xa470bda12f67f35c, 0xc0fe38e23327b425, 0xc9d3d0f2c6f0678d, 0x1c55c9935b5a982e, 0x27f6c0e2f0746764, 0x117c5e6e28aa9054},
fe{0, 0, 0, 0, 0, 0},
},
},
{
{
fe{0x0162fffffa765adf, 0x8f7bea480083fb75, 0x561b3c2259e93611, 0x11e19fc1a9c875d5, 0xca713efc00367660, 0x03c6a03d41da1151},
fe{0x0162fffffa765adf, 0x8f7bea480083fb75, 0x561b3c2259e93611, 0x11e19fc1a9c875d5, 0xca713efc00367660, 0x03c6a03d41da1151},
},
{
fe{0, 0, 0, 0, 0, 0},
fe{0x5db0fffffd3b02c5, 0xd713f52358ebfdba, 0x5ea60761a84d161a, 0xbb2c75a34ea6c44a, 0x0ac6735921c1119b, 0x0ee3d913bdacfbf6},
},
{
fe{0x66b10000003affc5, 0xcb1400e764ec0030, 0xa73e5eb56fa5d106, 0x8984c913a0fe09a9, 0x11e10afb78ad7f13, 0x05429d0e3e918f52},
fe{0x534dffffffc4aae6, 0x5397ff174c67ffcf, 0xbff273eb870b251d, 0xdaf2827152870915, 0x393a9cbaca9e2dc3, 0x14be74dbfaee5748},
},
{
fe{0x760900000002fffd, 0xebf4000bc40c0002, 0x5f48985753c758ba, 0x77ce585370525745, 0x5c071a97a256ec6d, 0x15f65ec3fa80e493},
fe{0, 0, 0, 0, 0, 0},
},
},
}

View File

@@ -0,0 +1,282 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
type pair struct {
g1 *PointG1
g2 *PointG2
}
func newPair(g1 *PointG1, g2 *PointG2) pair {
return pair{g1, g2}
}
// Engine is BLS12-381 elliptic curve pairing engine
type Engine struct {
G1 *G1
G2 *G2
fp12 *fp12
fp2 *fp2
pairingEngineTemp
pairs []pair
}
// NewPairingEngine creates new pairing engine instance.
func NewPairingEngine() *Engine {
fp2 := newFp2()
fp6 := newFp6(fp2)
fp12 := newFp12(fp6)
g1 := NewG1()
g2 := newG2(fp2)
return &Engine{
fp2: fp2,
fp12: fp12,
G1: g1,
G2: g2,
pairingEngineTemp: newEngineTemp(),
}
}
type pairingEngineTemp struct {
t2 [10]*fe2
t12 [9]fe12
}
func newEngineTemp() pairingEngineTemp {
t2 := [10]*fe2{}
for i := 0; i < 10; i++ {
t2[i] = &fe2{}
}
t12 := [9]fe12{}
return pairingEngineTemp{t2, t12}
}
// AddPair adds a g1, g2 point pair to pairing engine
func (e *Engine) AddPair(g1 *PointG1, g2 *PointG2) *Engine {
p := newPair(g1, g2)
if !e.isZero(p) {
e.affine(p)
e.pairs = append(e.pairs, p)
}
return e
}
// AddPairInv adds a G1, G2 point pair to pairing engine. G1 point is negated.
func (e *Engine) AddPairInv(g1 *PointG1, g2 *PointG2) *Engine {
e.G1.Neg(g1, g1)
e.AddPair(g1, g2)
return e
}
// Reset deletes added pairs.
func (e *Engine) Reset() *Engine {
e.pairs = []pair{}
return e
}
func (e *Engine) isZero(p pair) bool {
return e.G1.IsZero(p.g1) || e.G2.IsZero(p.g2)
}
func (e *Engine) affine(p pair) {
e.G1.Affine(p.g1)
e.G2.Affine(p.g2)
}
func (e *Engine) doublingStep(coeff *[3]fe2, r *PointG2) {
// Adaptation of Formula 3 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &r[0], &r[1])
fp2.mulByFq(t[0], t[0], twoInv)
fp2.square(t[1], &r[1])
fp2.square(t[2], &r[2])
fp2.double(t[7], t[2])
fp2.add(t[7], t[7], t[2])
fp2.mulByB(t[3], t[7])
fp2.double(t[4], t[3])
fp2.add(t[4], t[4], t[3])
fp2.add(t[5], t[1], t[4])
fp2.mulByFq(t[5], t[5], twoInv)
fp2.add(t[6], &r[1], &r[2])
fp2.square(t[6], t[6])
fp2.add(t[7], t[2], t[1])
fp2.sub(t[6], t[6], t[7])
fp2.sub(&coeff[0], t[3], t[1])
fp2.square(t[7], &r[0])
fp2.sub(t[4], t[1], t[4])
fp2.mul(&r[0], t[4], t[0])
fp2.square(t[2], t[3])
fp2.double(t[3], t[2])
fp2.add(t[3], t[3], t[2])
fp2.square(t[5], t[5])
fp2.sub(&r[1], t[5], t[3])
fp2.mul(&r[2], t[1], t[6])
fp2.double(t[0], t[7])
fp2.add(&coeff[1], t[0], t[7])
fp2.neg(&coeff[2], t[6])
}
func (e *Engine) additionStep(coeff *[3]fe2, r, q *PointG2) {
// Algorithm 12 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &q[1], &r[2])
fp2.neg(t[0], t[0])
fp2.add(t[0], t[0], &r[1])
fp2.mul(t[1], &q[0], &r[2])
fp2.neg(t[1], t[1])
fp2.add(t[1], t[1], &r[0])
fp2.square(t[2], t[0])
fp2.square(t[3], t[1])
fp2.mul(t[4], t[1], t[3])
fp2.mul(t[2], &r[2], t[2])
fp2.mul(t[3], &r[0], t[3])
fp2.double(t[5], t[3])
fp2.sub(t[5], t[4], t[5])
fp2.add(t[5], t[5], t[2])
fp2.mul(&r[0], t[1], t[5])
fp2.sub(t[2], t[3], t[5])
fp2.mul(t[2], t[2], t[0])
fp2.mul(t[3], &r[1], t[4])
fp2.sub(&r[1], t[2], t[3])
fp2.mul(&r[2], &r[2], t[4])
fp2.mul(t[2], t[1], &q[1])
fp2.mul(t[3], t[0], &q[0])
fp2.sub(&coeff[0], t[3], t[2])
fp2.neg(&coeff[1], t[0])
coeff[2].set(t[1])
}
func (e *Engine) preCompute(ellCoeffs *[68][3]fe2, twistPoint *PointG2) {
// Algorithm 5 in https://eprint.iacr.org/2019/077.pdf
if e.G2.IsZero(twistPoint) {
return
}
r := new(PointG2).Set(twistPoint)
j := 0
for i := x.BitLen() - 2; i >= 0; i-- {
e.doublingStep(&ellCoeffs[j], r)
if x.Bit(i) != 0 {
j++
ellCoeffs[j] = fe6{}
e.additionStep(&ellCoeffs[j], r, twistPoint)
}
j++
}
}
func (e *Engine) millerLoop(f *fe12) {
pairs := e.pairs
ellCoeffs := make([][68][3]fe2, len(pairs))
for i := 0; i < len(pairs); i++ {
e.preCompute(&ellCoeffs[i], pairs[i].g2)
}
fp12, fp2 := e.fp12, e.fp2
t := e.t2
f.one()
j := 0
for i := 62; /* x.BitLen() - 2 */ i >= 0; i-- {
if i != 62 {
fp12.square(f, f)
}
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
if x.Bit(i) != 0 {
j++
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
}
j++
}
fp12.conjugate(f, f)
}
func (e *Engine) exp(c, a *fe12) {
fp12 := e.fp12
fp12.cyclotomicExp(c, a, x)
fp12.conjugate(c, c)
}
func (e *Engine) finalExp(f *fe12) {
fp12 := e.fp12
t := e.t12
// easy part
fp12.frobeniusMap(&t[0], f, 6)
fp12.inverse(&t[1], f)
fp12.mul(&t[2], &t[0], &t[1])
t[1].set(&t[2])
fp12.frobeniusMapAssign(&t[2], 2)
fp12.mulAssign(&t[2], &t[1])
fp12.cyclotomicSquare(&t[1], &t[2])
fp12.conjugate(&t[1], &t[1])
// hard part
e.exp(&t[3], &t[2])
fp12.cyclotomicSquare(&t[4], &t[3])
fp12.mul(&t[5], &t[1], &t[3])
e.exp(&t[1], &t[5])
e.exp(&t[0], &t[1])
e.exp(&t[6], &t[0])
fp12.mulAssign(&t[6], &t[4])
e.exp(&t[4], &t[6])
fp12.conjugate(&t[5], &t[5])
fp12.mulAssign(&t[4], &t[5])
fp12.mulAssign(&t[4], &t[2])
fp12.conjugate(&t[5], &t[2])
fp12.mulAssign(&t[1], &t[2])
fp12.frobeniusMapAssign(&t[1], 3)
fp12.mulAssign(&t[6], &t[5])
fp12.frobeniusMapAssign(&t[6], 1)
fp12.mulAssign(&t[3], &t[0])
fp12.frobeniusMapAssign(&t[3], 2)
fp12.mulAssign(&t[3], &t[1])
fp12.mulAssign(&t[3], &t[6])
fp12.mul(f, &t[3], &t[4])
}
func (e *Engine) calculate() *fe12 {
f := e.fp12.one()
if len(e.pairs) == 0 {
return f
}
e.millerLoop(f)
e.finalExp(f)
return f
}
// Check computes pairing and checks if result is equal to one
func (e *Engine) Check() bool {
return e.calculate().isOne()
}
// Result computes pairing and returns target group element as result.
func (e *Engine) Result() *E {
r := e.calculate()
e.Reset()
return r
}
// GT returns target group instance.
func (e *Engine) GT() *GT {
return NewGT()
}

View File

@@ -0,0 +1,158 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
// swuMapG1 is implementation of Simplified Shallue-van de Woestijne-Ulas Method
// follows the implementation at draft-irtf-cfrg-hash-to-curve-06.
func swuMapG1(u *fe) (*fe, *fe) {
var params = swuParamsForG1
var tv [4]*fe
for i := 0; i < 4; i++ {
tv[i] = new(fe)
}
square(tv[0], u)
mul(tv[0], tv[0], params.z)
square(tv[1], tv[0])
x1 := new(fe)
add(x1, tv[0], tv[1])
inverse(x1, x1)
e1 := x1.isZero()
one := new(fe).one()
add(x1, x1, one)
if e1 {
x1.set(params.zInv)
}
mul(x1, x1, params.minusBOverA)
gx1 := new(fe)
square(gx1, x1)
add(gx1, gx1, params.a)
mul(gx1, gx1, x1)
add(gx1, gx1, params.b)
x2 := new(fe)
mul(x2, tv[0], x1)
mul(tv[1], tv[0], tv[1])
gx2 := new(fe)
mul(gx2, gx1, tv[1])
e2 := !isQuadraticNonResidue(gx1)
x, y2 := new(fe), new(fe)
if e2 {
x.set(x1)
y2.set(gx1)
} else {
x.set(x2)
y2.set(gx2)
}
y := new(fe)
sqrt(y, y2)
if y.sign() != u.sign() {
neg(y, y)
}
return x, y
}
// swuMapG2 is implementation of Simplified Shallue-van de Woestijne-Ulas Method
// defined at draft-irtf-cfrg-hash-to-curve-06.
func swuMapG2(e *fp2, u *fe2) (*fe2, *fe2) {
if e == nil {
e = newFp2()
}
params := swuParamsForG2
var tv [4]*fe2
for i := 0; i < 4; i++ {
tv[i] = e.new()
}
e.square(tv[0], u)
e.mul(tv[0], tv[0], params.z)
e.square(tv[1], tv[0])
x1 := e.new()
e.add(x1, tv[0], tv[1])
e.inverse(x1, x1)
e1 := x1.isZero()
e.add(x1, x1, e.one())
if e1 {
x1.set(params.zInv)
}
e.mul(x1, x1, params.minusBOverA)
gx1 := e.new()
e.square(gx1, x1)
e.add(gx1, gx1, params.a)
e.mul(gx1, gx1, x1)
e.add(gx1, gx1, params.b)
x2 := e.new()
e.mul(x2, tv[0], x1)
e.mul(tv[1], tv[0], tv[1])
gx2 := e.new()
e.mul(gx2, gx1, tv[1])
e2 := !e.isQuadraticNonResidue(gx1)
x, y2 := e.new(), e.new()
if e2 {
x.set(x1)
y2.set(gx1)
} else {
x.set(x2)
y2.set(gx2)
}
y := e.new()
e.sqrt(y, y2)
if y.sign() != u.sign() {
e.neg(y, y)
}
return x, y
}
var swuParamsForG1 = struct {
z *fe
zInv *fe
a *fe
b *fe
minusBOverA *fe
}{
a: &fe{0x2f65aa0e9af5aa51, 0x86464c2d1e8416c3, 0xb85ce591b7bd31e2, 0x27e11c91b5f24e7c, 0x28376eda6bfc1835, 0x155455c3e5071d85},
b: &fe{0xfb996971fe22a1e0, 0x9aa93eb35b742d6f, 0x8c476013de99c5c4, 0x873e27c3a221e571, 0xca72b5e45a52d888, 0x06824061418a386b},
z: &fe{0x886c00000023ffdc, 0x0f70008d3090001d, 0x77672417ed5828c3, 0x9dac23e943dc1740, 0x50553f1b9c131521, 0x078c712fbe0ab6e8},
zInv: &fe{0x0e8a2e8ba2e83e10, 0x5b28ba2ca4d745d1, 0x678cd5473847377a, 0x4c506dd8a8076116, 0x9bcb227d79284139, 0x0e8d3154b0ba099a},
minusBOverA: &fe{0x052583c93555a7fe, 0x3b40d72430f93c82, 0x1b75faa0105ec983, 0x2527e7dc63851767, 0x99fffd1f34fc181d, 0x097cab54770ca0d3},
}
var swuParamsForG2 = struct {
z *fe2
zInv *fe2
a *fe2
b *fe2
minusBOverA *fe2
}{
a: &fe2{
fe{0, 0, 0, 0, 0, 0},
fe{0xe53a000003135242, 0x01080c0fdef80285, 0xe7889edbe340f6bd, 0x0b51375126310601, 0x02d6985717c744ab, 0x1220b4e979ea5467},
},
b: &fe2{
fe{0x22ea00000cf89db2, 0x6ec832df71380aa4, 0x6e1b94403db5a66e, 0x75bf3c53a79473ba, 0x3dd3a569412c0a34, 0x125cdb5e74dc4fd1},
fe{0x22ea00000cf89db2, 0x6ec832df71380aa4, 0x6e1b94403db5a66e, 0x75bf3c53a79473ba, 0x3dd3a569412c0a34, 0x125cdb5e74dc4fd1},
},
z: &fe2{
fe{0x87ebfffffff9555c, 0x656fffe5da8ffffa, 0x0fd0749345d33ad2, 0xd951e663066576f4, 0xde291a3d41e980d3, 0x0815664c7dfe040d},
fe{0x43f5fffffffcaaae, 0x32b7fff2ed47fffd, 0x07e83a49a2e99d69, 0xeca8f3318332bb7a, 0xef148d1ea0f4c069, 0x040ab3263eff0206},
},
zInv: &fe2{
fe{0xacd0000000011110, 0x9dd9999dc88ccccd, 0xb5ca2ac9b76352bf, 0xf1b574bcf4bc90ce, 0x42dab41f28a77081, 0x132fc6ac14cd1e12},
fe{0xe396ffffffff2223, 0x4fbf332fcd0d9998, 0x0c4bbd3c1aff4cc4, 0x6b9c91267926ca58, 0x29ae4da6aef7f496, 0x10692e942f195791},
},
minusBOverA: &fe2{
fe{0x903c555555474fb3, 0x5f98cc95ce451105, 0x9f8e582eefe0fade, 0xc68946b6aebbd062, 0x467a4ad10ee6de53, 0x0e7146f483e23a05},
fe{0x29c2aaaaaab85af8, 0xbf133368e30eeefa, 0xc7a27a7206cffb45, 0x9dee04ce44c9425c, 0x04a15ce53464ce83, 0x0b8fcaf5b59dac95},
},
}

View File

@@ -0,0 +1,45 @@
// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package bls12381
import (
"errors"
"math/big"
"github.com/ethereum/go-ethereum/common"
)
func bigFromHex(hex string) *big.Int {
return new(big.Int).SetBytes(common.FromHex(hex))
}
// decodeFieldElement expects 64 byte input with zero top 16 bytes,
// returns lower 48 bytes.
func decodeFieldElement(in []byte) ([]byte, error) {
if len(in) != 64 {
return nil, errors.New("invalid field element length")
}
// check top bytes
for i := 0; i < 16; i++ {
if in[i] != byte(0x00) {
return nil, errors.New("invalid field element top bytes")
}
}
out := make([]byte, 48)
copy(out[:], in[16:])
return out, nil
}

View File

@@ -0,0 +1,28 @@
Copyright (c) 2012 The Go Authors. All rights reserved.
Copyright (c) 2018 Péter Szilágyi. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,26 @@
// Copyright 2018 Péter Szilágyi. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file.
//go:build amd64 || arm64
// +build amd64 arm64
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
package bn256
import (
bn256cf "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
)
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 = bn256cf.G1
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 = bn256cf.G2
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
return bn256cf.PairingCheck(a, b)
}

View File

@@ -0,0 +1,24 @@
// Copyright 2018 Péter Szilágyi. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file.
//go:build !amd64 && !arm64
// +build !amd64,!arm64
// Package bn256 implements the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve.
package bn256
import bn256 "github.com/ethereum/go-ethereum/crypto/bn256/google"
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 = bn256.G1
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 = bn256.G2
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
return bn256.PairingCheck(a, b)
}

View File

@@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,495 @@
// Package bn256 implements a particular bilinear group at the 128-bit security
// level.
//
// Bilinear groups are the basis of many of the new cryptographic protocols that
// have been proposed over the past decade. They consist of a triplet of groups
// (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ (where gₓ
// is a generator of the respective group). That function is called a pairing
// function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is not
// compatible with the implementation described in that paper, as different
// parameters are chosen.
//
// (This package previously claimed to operate at a 128-bit security level.
// However, recent improvements in attacks mean that is no longer true. See
// https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
package bn256
import (
"crypto/rand"
"errors"
"io"
"math/big"
)
func randomK(r io.Reader) (k *big.Int, err error) {
for {
k, err = rand.Int(r, Order)
if err != nil || k.Sign() > 0 {
return
}
}
}
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
p *curvePoint
}
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
k, err := randomK(r)
if err != nil {
return nil, nil, err
}
return k, new(G1).ScalarBaseMult(k), nil
}
func (g *G1) String() string {
return "bn256.G1" + g.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and then
// returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Mul(curveGen, k)
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Mul(a.p, k)
return e
}
// Add sets e to a+b and then returns e.
func (e *G1) Add(a, b *G1) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Add(a.p, b.p)
return e
}
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Neg(a.p)
return e
}
// Set sets e to a and then returns e.
func (e *G1) Set(a *G1) *G1 {
if e.p == nil {
e.p = &curvePoint{}
}
e.p.Set(a.p)
return e
}
// Marshal converts e to a byte slice.
func (e *G1) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p == nil {
e.p = &curvePoint{}
}
e.p.MakeAffine()
ret := make([]byte, numBytes*2)
if e.p.IsInfinity() {
return ret
}
temp := &gfP{}
montDecode(temp, &e.p.x)
temp.Marshal(ret)
montDecode(temp, &e.p.y)
temp.Marshal(ret[numBytes:])
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) < 2*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = &curvePoint{}
} else {
e.p.x, e.p.y = gfP{0}, gfP{0}
}
var err error
if err = e.p.x.Unmarshal(m); err != nil {
return nil, err
}
if err = e.p.y.Unmarshal(m[numBytes:]); err != nil {
return nil, err
}
// Encode into Montgomery form and ensure it's on the curve
montEncode(&e.p.x, &e.p.x)
montEncode(&e.p.y, &e.p.y)
zero := gfP{0}
if e.p.x == zero && e.p.y == zero {
// This is the point at infinity.
e.p.y = *newGFp(1)
e.p.z = gfP{0}
e.p.t = gfP{0}
} else {
e.p.z = *newGFp(1)
e.p.t = *newGFp(1)
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[2*numBytes:], nil
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
k, err := randomK(r)
if err != nil {
return nil, nil, err
}
return k, new(G2).ScalarBaseMult(k), nil
}
func (e *G2) String() string {
return "bn256.G2" + e.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and then
// returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Mul(twistGen, k)
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Mul(a.p, k)
return e
}
// Add sets e to a+b and then returns e.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Add(a.p, b.p)
return e
}
// Neg sets e to -a and then returns e.
func (e *G2) Neg(a *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Neg(a.p)
return e
}
// Set sets e to a and then returns e.
func (e *G2) Set(a *G2) *G2 {
if e.p == nil {
e.p = &twistPoint{}
}
e.p.Set(a.p)
return e
}
// Marshal converts e into a byte slice.
func (e *G2) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p == nil {
e.p = &twistPoint{}
}
e.p.MakeAffine()
ret := make([]byte, numBytes*4)
if e.p.IsInfinity() {
return ret
}
temp := &gfP{}
montDecode(temp, &e.p.x.x)
temp.Marshal(ret)
montDecode(temp, &e.p.x.y)
temp.Marshal(ret[numBytes:])
montDecode(temp, &e.p.y.x)
temp.Marshal(ret[2*numBytes:])
montDecode(temp, &e.p.y.y)
temp.Marshal(ret[3*numBytes:])
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) < 4*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = &twistPoint{}
}
var err error
if err = e.p.x.x.Unmarshal(m); err != nil {
return nil, err
}
if err = e.p.x.y.Unmarshal(m[numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.x.Unmarshal(m[2*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.y.Unmarshal(m[3*numBytes:]); err != nil {
return nil, err
}
// Encode into Montgomery form and ensure it's on the curve
montEncode(&e.p.x.x, &e.p.x.x)
montEncode(&e.p.x.y, &e.p.x.y)
montEncode(&e.p.y.x, &e.p.y.x)
montEncode(&e.p.y.y, &e.p.y.y)
if e.p.x.IsZero() && e.p.y.IsZero() {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[4*numBytes:], nil
}
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
p *gfP12
}
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
return &GT{optimalAte(g2.p, g1.p)}
}
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
acc := new(gfP12)
acc.SetOne()
for i := 0; i < len(a); i++ {
if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
continue
}
acc.Mul(acc, miller(b[i].p, a[i].p))
}
return finalExponentiation(acc).IsOne()
}
// Miller applies Miller's algorithm, which is a bilinear function from the
// source groups to F_p^12. Miller(g1, g2).Finalize() is equivalent to Pair(g1,
// g2).
func Miller(g1 *G1, g2 *G2) *GT {
return &GT{miller(g2.p, g1.p)}
}
func (g *GT) String() string {
return "bn256.GT" + g.p.String()
}
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Exp(a.p, k)
return e
}
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Mul(a.p, b.p)
return e
}
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Conjugate(a.p)
return e
}
// Set sets e to a and then returns e.
func (e *GT) Set(a *GT) *GT {
if e.p == nil {
e.p = &gfP12{}
}
e.p.Set(a.p)
return e
}
// Finalize is a linear function from F_p^12 to GT.
func (e *GT) Finalize() *GT {
ret := finalExponentiation(e.p)
e.p.Set(ret)
return e
}
// Marshal converts e into a byte slice.
func (e *GT) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p == nil {
e.p = &gfP12{}
e.p.SetOne()
}
ret := make([]byte, numBytes*12)
temp := &gfP{}
montDecode(temp, &e.p.x.x.x)
temp.Marshal(ret)
montDecode(temp, &e.p.x.x.y)
temp.Marshal(ret[numBytes:])
montDecode(temp, &e.p.x.y.x)
temp.Marshal(ret[2*numBytes:])
montDecode(temp, &e.p.x.y.y)
temp.Marshal(ret[3*numBytes:])
montDecode(temp, &e.p.x.z.x)
temp.Marshal(ret[4*numBytes:])
montDecode(temp, &e.p.x.z.y)
temp.Marshal(ret[5*numBytes:])
montDecode(temp, &e.p.y.x.x)
temp.Marshal(ret[6*numBytes:])
montDecode(temp, &e.p.y.x.y)
temp.Marshal(ret[7*numBytes:])
montDecode(temp, &e.p.y.y.x)
temp.Marshal(ret[8*numBytes:])
montDecode(temp, &e.p.y.y.y)
temp.Marshal(ret[9*numBytes:])
montDecode(temp, &e.p.y.z.x)
temp.Marshal(ret[10*numBytes:])
montDecode(temp, &e.p.y.z.y)
temp.Marshal(ret[11*numBytes:])
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) < 12*numBytes {
return nil, errors.New("bn256: not enough data")
}
if e.p == nil {
e.p = &gfP12{}
}
var err error
if err = e.p.x.x.x.Unmarshal(m); err != nil {
return nil, err
}
if err = e.p.x.x.y.Unmarshal(m[numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.y.x.Unmarshal(m[2*numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.y.y.Unmarshal(m[3*numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.z.x.Unmarshal(m[4*numBytes:]); err != nil {
return nil, err
}
if err = e.p.x.z.y.Unmarshal(m[5*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.x.x.Unmarshal(m[6*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.x.y.Unmarshal(m[7*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.y.x.Unmarshal(m[8*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.y.y.Unmarshal(m[9*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.z.x.Unmarshal(m[10*numBytes:]); err != nil {
return nil, err
}
if err = e.p.y.z.y.Unmarshal(m[11*numBytes:]); err != nil {
return nil, err
}
montEncode(&e.p.x.x.x, &e.p.x.x.x)
montEncode(&e.p.x.x.y, &e.p.x.x.y)
montEncode(&e.p.x.y.x, &e.p.x.y.x)
montEncode(&e.p.x.y.y, &e.p.x.y.y)
montEncode(&e.p.x.z.x, &e.p.x.z.x)
montEncode(&e.p.x.z.y, &e.p.x.z.y)
montEncode(&e.p.y.x.x, &e.p.y.x.x)
montEncode(&e.p.y.x.y, &e.p.y.x.y)
montEncode(&e.p.y.y.x, &e.p.y.y.x)
montEncode(&e.p.y.y.y, &e.p.y.y.y)
montEncode(&e.p.y.z.x, &e.p.y.z.x)
montEncode(&e.p.y.z.y, &e.p.y.z.y)
return m[12*numBytes:], nil
}

View File

@@ -0,0 +1,62 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter.
var u = bigFromBase10("4965661367192848881")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
// Needs to be highly 2-adic for efficient SNARK key and proof generation.
// Order - 1 = 2^28 * 3^2 * 13 * 29 * 983 * 11003 * 237073 * 405928799 * 1670836401704629 * 13818364434197438864469338081.
// Refer to https://eprint.iacr.org/2013/879.pdf and https://eprint.iacr.org/2013/507.pdf for more information on these parameters.
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
// p2 is p, represented as little-endian 64-bit words.
var p2 = [4]uint64{0x3c208c16d87cfd47, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
// np is the negative inverse of p, mod 2^256.
var np = [4]uint64{0x87d20782e4866389, 0x9ede7d651eca6ac9, 0xd8afcbd01833da80, 0xf57a22b791888c6b}
// rN1 is R^-1 where R = 2^256 mod p.
var rN1 = &gfP{0xed84884a014afa37, 0xeb2022850278edf8, 0xcf63e9cfb74492d9, 0x2e67157159e5c639}
// r2 is R^2 where R = 2^256 mod p.
var r2 = &gfP{0xf32cfc5b538afa89, 0xb5e71911d44501fb, 0x47ab1eff0a417ff6, 0x06d89f71cab8351f}
// r3 is R^3 where R = 2^256 mod p.
var r3 = &gfP{0xb1cd6dafda1530df, 0x62f210e6a7283db6, 0xef7f0b0c0ada0afb, 0x20fd6e902d592544}
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
var xiToPMinus1Over6 = &gfP2{gfP{0xa222ae234c492d72, 0xd00f02a4565de15b, 0xdc2ff3a253dfc926, 0x10a75716b3899551}, gfP{0xaf9ba69633144907, 0xca6b1d7387afb78a, 0x11bded5ef08a2087, 0x02f34d751a1f3a7c}}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
var xiToPMinus1Over3 = &gfP2{gfP{0x6e849f1ea0aa4757, 0xaa1c7b6d89f89141, 0xb6e713cdfae0ca3a, 0x26694fbb4e82ebc3}, gfP{0xb5773b104563ab30, 0x347f91c8a9aa6454, 0x7a007127242e0991, 0x1956bcd8118214ec}}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
var xiToPMinus1Over2 = &gfP2{gfP{0xa1d77ce45ffe77c7, 0x07affd117826d1db, 0x6d16bd27bb7edc6b, 0x2c87200285defecc}, gfP{0xe4bbdd0c2936b629, 0xbb30f162e133bacb, 0x31a9d1b6f9645366, 0x253570bea500f8dd}}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
var xiToPSquaredMinus1Over3 = &gfP{0x3350c88e13e80b9c, 0x7dce557cdb5e56b9, 0x6001b4b8b615564a, 0x2682e617020217e0}
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = &gfP{0x71930c11d782e155, 0xa6bb947cffbe3323, 0xaa303344d4741444, 0x2c3b3f0d26594943}
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = &gfP{0xca8d800500fa1bf2, 0xf0c5d61468b39769, 0x0e201271ad0d4418, 0x04290f65bad856e6}
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
var xiTo2PMinus2Over3 = &gfP2{gfP{0x5dddfd154bd8c949, 0x62cb29a5a4445b60, 0x37bc870a0c7dd2b9, 0x24830a9d3171f0fd}, gfP{0x7361d77f843abe92, 0xa5bb2bd3273411fb, 0x9c941f314b3e2399, 0x15df9cddbb9fd3ec}}

View File

@@ -0,0 +1,238 @@
package bn256
import (
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in Jacobian
// form and t=z² when valid. G₁ is the set of points of this curve on GF(p).
type curvePoint struct {
x, y, z, t gfP
}
var curveB = newGFp(3)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
x: *newGFp(1),
y: *newGFp(2),
z: *newGFp(1),
t: *newGFp(1),
}
func (c *curvePoint) String() string {
c.MakeAffine()
x, y := &gfP{}, &gfP{}
montDecode(x, &c.x)
montDecode(y, &c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *curvePoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP{}, &gfP{}
gfpMul(y2, &c.y, &c.y)
gfpMul(x3, &c.x, &c.x)
gfpMul(x3, x3, &c.x)
gfpAdd(x3, x3, curveB)
return *y2 == *x3
}
func (c *curvePoint) SetInfinity() {
c.x = gfP{0}
c.y = *newGFp(1)
c.z = gfP{0}
c.t = gfP{0}
}
func (c *curvePoint) IsInfinity() bool {
return c.z == gfP{0}
}
func (c *curvePoint) Add(a, b *curvePoint) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z12, z22 := &gfP{}, &gfP{}
gfpMul(z12, &a.z, &a.z)
gfpMul(z22, &b.z, &b.z)
u1, u2 := &gfP{}, &gfP{}
gfpMul(u1, &a.x, z22)
gfpMul(u2, &b.x, z12)
t, s1 := &gfP{}, &gfP{}
gfpMul(t, &b.z, z22)
gfpMul(s1, &a.y, t)
s2 := &gfP{}
gfpMul(t, &a.z, z12)
gfpMul(s2, &b.y, t)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := &gfP{}
gfpSub(h, u2, u1)
xEqual := *h == gfP{0}
gfpAdd(t, h, h)
// i = 4h²
i := &gfP{}
gfpMul(i, t, t)
// j = 4h³
j := &gfP{}
gfpMul(j, h, i)
gfpSub(t, s2, s1)
yEqual := *t == gfP{0}
if xEqual && yEqual {
c.Double(a)
return
}
r := &gfP{}
gfpAdd(r, t, t)
v := &gfP{}
gfpMul(v, u1, i)
// t4 = 4(s2-s1)²
t4, t6 := &gfP{}, &gfP{}
gfpMul(t4, r, r)
gfpAdd(t, v, v)
gfpSub(t6, t4, j)
gfpSub(&c.x, t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
gfpSub(t, v, &c.x) // t7
gfpMul(t4, s1, j) // t8
gfpAdd(t6, t4, t4) // t9
gfpMul(t4, r, t) // t10
gfpSub(&c.y, t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
gfpAdd(t, &a.z, &b.z) // t11
gfpMul(t4, t, t) // t12
gfpSub(t, t4, z12) // t13
gfpSub(t4, t, z22) // t14
gfpMul(&c.z, t4, h)
}
func (c *curvePoint) Double(a *curvePoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A, B, C := &gfP{}, &gfP{}, &gfP{}
gfpMul(A, &a.x, &a.x)
gfpMul(B, &a.y, &a.y)
gfpMul(C, B, B)
t, t2 := &gfP{}, &gfP{}
gfpAdd(t, &a.x, B)
gfpMul(t2, t, t)
gfpSub(t, t2, A)
gfpSub(t2, t, C)
d, e, f := &gfP{}, &gfP{}, &gfP{}
gfpAdd(d, t2, t2)
gfpAdd(t, A, A)
gfpAdd(e, t, A)
gfpMul(f, e, e)
gfpAdd(t, d, d)
gfpSub(&c.x, f, t)
gfpMul(&c.z, &a.y, &a.z)
gfpAdd(&c.z, &c.z, &c.z)
gfpAdd(t, C, C)
gfpAdd(t2, t, t)
gfpAdd(t, t2, t2)
gfpSub(&c.y, d, &c.x)
gfpMul(t2, e, &c.y)
gfpSub(&c.y, t2, t)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int) {
precomp := [1 << 2]*curvePoint{nil, {}, {}, {}}
precomp[1].Set(a)
precomp[2].Set(a)
gfpMul(&precomp[2].x, &precomp[2].x, xiTo2PSquaredMinus2Over3)
precomp[3].Add(precomp[1], precomp[2])
multiScalar := curveLattice.Multi(scalar)
sum := &curvePoint{}
sum.SetInfinity()
t := &curvePoint{}
for i := len(multiScalar) - 1; i >= 0; i-- {
t.Double(sum)
if multiScalar[i] == 0 {
sum.Set(t)
} else {
sum.Add(t, precomp[multiScalar[i]])
}
}
c.Set(sum)
}
func (c *curvePoint) MakeAffine() {
if c.z == *newGFp(1) {
return
} else if c.z == *newGFp(0) {
c.x = gfP{0}
c.y = *newGFp(1)
c.t = gfP{0}
return
}
zInv := &gfP{}
zInv.Invert(&c.z)
t, zInv2 := &gfP{}, &gfP{}
gfpMul(t, &c.y, zInv)
gfpMul(zInv2, zInv, zInv)
gfpMul(&c.x, &c.x, zInv2)
gfpMul(&c.y, t, zInv2)
c.z = *newGFp(1)
c.t = *newGFp(1)
}
func (c *curvePoint) Neg(a *curvePoint) {
c.x.Set(&a.x)
gfpNeg(&c.y, &a.y)
c.z.Set(&a.z)
c.t = gfP{0}
}

View File

@@ -0,0 +1,82 @@
package bn256
import (
"errors"
"fmt"
)
type gfP [4]uint64
func newGFp(x int64) (out *gfP) {
if x >= 0 {
out = &gfP{uint64(x)}
} else {
out = &gfP{uint64(-x)}
gfpNeg(out, out)
}
montEncode(out, out)
return out
}
func (e *gfP) String() string {
return fmt.Sprintf("%16.16x%16.16x%16.16x%16.16x", e[3], e[2], e[1], e[0])
}
func (e *gfP) Set(f *gfP) {
e[0] = f[0]
e[1] = f[1]
e[2] = f[2]
e[3] = f[3]
}
func (e *gfP) Invert(f *gfP) {
bits := [4]uint64{0x3c208c16d87cfd45, 0x97816a916871ca8d, 0xb85045b68181585d, 0x30644e72e131a029}
sum, power := &gfP{}, &gfP{}
sum.Set(rN1)
power.Set(f)
for word := 0; word < 4; word++ {
for bit := uint(0); bit < 64; bit++ {
if (bits[word]>>bit)&1 == 1 {
gfpMul(sum, sum, power)
}
gfpMul(power, power, power)
}
}
gfpMul(sum, sum, r3)
e.Set(sum)
}
func (e *gfP) Marshal(out []byte) {
for w := uint(0); w < 4; w++ {
for b := uint(0); b < 8; b++ {
out[8*w+b] = byte(e[3-w] >> (56 - 8*b))
}
}
}
func (e *gfP) Unmarshal(in []byte) error {
// Unmarshal the bytes into little endian form
for w := uint(0); w < 4; w++ {
e[3-w] = 0
for b := uint(0); b < 8; b++ {
e[3-w] += uint64(in[8*w+b]) << (56 - 8*b)
}
}
// Ensure the point respects the curve modulus
for i := 3; i >= 0; i-- {
if e[i] < p2[i] {
return nil
}
if e[i] > p2[i] {
return errors.New("bn256: coordinate exceeds modulus")
}
}
return errors.New("bn256: coordinate equals modulus")
}
func montEncode(c, a *gfP) { gfpMul(c, a, r2) }
func montDecode(c, a *gfP) { gfpMul(c, a, &gfP{1}) }

View File

@@ -0,0 +1,160 @@
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
// where ω²=τ.
type gfP12 struct {
x, y gfP6 // value is xω + y
}
func (e *gfP12) String() string {
return "(" + e.x.String() + "," + e.y.String() + ")"
}
func (e *gfP12) Set(a *gfP12) *gfP12 {
e.x.Set(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP12) SetZero() *gfP12 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP12) SetOne() *gfP12 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP12) IsZero() bool {
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP12) IsOne() bool {
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
e.x.Neg(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP12) Neg(a *gfP12) *gfP12 {
e.x.Neg(&a.x)
e.y.Neg(&a.y)
return e
}
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
func (e *gfP12) Frobenius(a *gfP12) *gfP12 {
e.x.Frobenius(&a.x)
e.y.Frobenius(&a.y)
e.x.MulScalar(&e.x, xiToPMinus1Over6)
return e
}
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
func (e *gfP12) FrobeniusP2(a *gfP12) *gfP12 {
e.x.FrobeniusP2(&a.x)
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over6)
e.y.FrobeniusP2(&a.y)
return e
}
func (e *gfP12) FrobeniusP4(a *gfP12) *gfP12 {
e.x.FrobeniusP4(&a.x)
e.x.MulGFP(&e.x, xiToPSquaredMinus1Over3)
e.y.FrobeniusP4(&a.y)
return e
}
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
e.x.Add(&a.x, &b.x)
e.y.Add(&a.y, &b.y)
return e
}
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
e.x.Sub(&a.x, &b.x)
e.y.Sub(&a.y, &b.y)
return e
}
func (e *gfP12) Mul(a, b *gfP12) *gfP12 {
tx := (&gfP6{}).Mul(&a.x, &b.y)
t := (&gfP6{}).Mul(&b.x, &a.y)
tx.Add(tx, t)
ty := (&gfP6{}).Mul(&a.y, &b.y)
t.Mul(&a.x, &b.x).MulTau(t)
e.x.Set(tx)
e.y.Add(ty, t)
return e
}
func (e *gfP12) MulScalar(a *gfP12, b *gfP6) *gfP12 {
e.x.Mul(&e.x, b)
e.y.Mul(&e.y, b)
return e
}
func (c *gfP12) Exp(a *gfP12, power *big.Int) *gfP12 {
sum := (&gfP12{}).SetOne()
t := &gfP12{}
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum)
if power.Bit(i) != 0 {
sum.Mul(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
return c
}
func (e *gfP12) Square(a *gfP12) *gfP12 {
// Complex squaring algorithm
v0 := (&gfP6{}).Mul(&a.x, &a.y)
t := (&gfP6{}).MulTau(&a.x)
t.Add(&a.y, t)
ty := (&gfP6{}).Add(&a.x, &a.y)
ty.Mul(ty, t).Sub(ty, v0)
t.MulTau(v0)
ty.Sub(ty, t)
e.x.Add(v0, v0)
e.y.Set(ty)
return e
}
func (e *gfP12) Invert(a *gfP12) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP6{}, &gfP6{}
t1.Square(&a.x)
t2.Square(&a.y)
t1.MulTau(t1).Sub(t2, t1)
t2.Invert(t1)
e.x.Neg(&a.x)
e.y.Set(&a.y)
e.MulScalar(e, t2)
return e
}

View File

@@ -0,0 +1,156 @@
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
// gfP2 implements a field of size p² as a quadratic extension of the base field
// where i²=-1.
type gfP2 struct {
x, y gfP // value is xi+y.
}
func gfP2Decode(in *gfP2) *gfP2 {
out := &gfP2{}
montDecode(&out.x, &in.x)
montDecode(&out.y, &in.y)
return out
}
func (e *gfP2) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ")"
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
e.x.Set(&a.x)
e.y.Set(&a.y)
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x = gfP{0}
e.y = gfP{0}
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x = gfP{0}
e.y = *newGFp(1)
return e
}
func (e *gfP2) IsZero() bool {
zero := gfP{0}
return e.x == zero && e.y == zero
}
func (e *gfP2) IsOne() bool {
zero, one := gfP{0}, *newGFp(1)
return e.x == zero && e.y == one
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(&a.y)
gfpNeg(&e.x, &a.x)
return e
}
func (e *gfP2) Neg(a *gfP2) *gfP2 {
gfpNeg(&e.x, &a.x)
gfpNeg(&e.y, &a.y)
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
gfpAdd(&e.x, &a.x, &b.x)
gfpAdd(&e.y, &a.y, &b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
gfpSub(&e.x, &a.x, &b.x)
gfpSub(&e.y, &a.y, &b.y)
return e
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
func (e *gfP2) Mul(a, b *gfP2) *gfP2 {
tx, t := &gfP{}, &gfP{}
gfpMul(tx, &a.x, &b.y)
gfpMul(t, &b.x, &a.y)
gfpAdd(tx, tx, t)
ty := &gfP{}
gfpMul(ty, &a.y, &b.y)
gfpMul(t, &a.x, &b.x)
gfpSub(ty, ty, t)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) MulScalar(a *gfP2, b *gfP) *gfP2 {
gfpMul(&e.x, &a.x, b)
gfpMul(&e.y, &a.y, b)
return e
}
// MulXi sets e=ξa where ξ=i+9 and then returns e.
func (e *gfP2) MulXi(a *gfP2) *gfP2 {
// (xi+y)(i+9) = (9x+y)i+(9y-x)
tx := &gfP{}
gfpAdd(tx, &a.x, &a.x)
gfpAdd(tx, tx, tx)
gfpAdd(tx, tx, tx)
gfpAdd(tx, tx, &a.x)
gfpAdd(tx, tx, &a.y)
ty := &gfP{}
gfpAdd(ty, &a.y, &a.y)
gfpAdd(ty, ty, ty)
gfpAdd(ty, ty, ty)
gfpAdd(ty, ty, &a.y)
gfpSub(ty, ty, &a.x)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) Square(a *gfP2) *gfP2 {
// Complex squaring algorithm:
// (xi+y)² = (x+y)(y-x) + 2*i*x*y
tx, ty := &gfP{}, &gfP{}
gfpSub(tx, &a.y, &a.x)
gfpAdd(ty, &a.x, &a.y)
gfpMul(ty, tx, ty)
gfpMul(tx, &a.x, &a.y)
gfpAdd(tx, tx, tx)
e.x.Set(tx)
e.y.Set(ty)
return e
}
func (e *gfP2) Invert(a *gfP2) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1, t2 := &gfP{}, &gfP{}
gfpMul(t1, &a.x, &a.x)
gfpMul(t2, &a.y, &a.y)
gfpAdd(t1, t1, t2)
inv := &gfP{}
inv.Invert(t1)
gfpNeg(t1, &a.x)
gfpMul(&e.x, t1, inv)
gfpMul(&e.y, &a.y, inv)
return e
}

View File

@@ -0,0 +1,213 @@
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
// and ξ=i+9.
type gfP6 struct {
x, y, z gfP2 // value is xτ² + yτ + z
}
func (e *gfP6) String() string {
return "(" + e.x.String() + ", " + e.y.String() + ", " + e.z.String() + ")"
}
func (e *gfP6) Set(a *gfP6) *gfP6 {
e.x.Set(&a.x)
e.y.Set(&a.y)
e.z.Set(&a.z)
return e
}
func (e *gfP6) SetZero() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetZero()
return e
}
func (e *gfP6) SetOne() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetOne()
return e
}
func (e *gfP6) IsZero() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
}
func (e *gfP6) IsOne() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
}
func (e *gfP6) Neg(a *gfP6) *gfP6 {
e.x.Neg(&a.x)
e.y.Neg(&a.y)
e.z.Neg(&a.z)
return e
}
func (e *gfP6) Frobenius(a *gfP6) *gfP6 {
e.x.Conjugate(&a.x)
e.y.Conjugate(&a.y)
e.z.Conjugate(&a.z)
e.x.Mul(&e.x, xiTo2PMinus2Over3)
e.y.Mul(&e.y, xiToPMinus1Over3)
return e
}
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
e.x.MulScalar(&a.x, xiTo2PSquaredMinus2Over3)
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
e.y.MulScalar(&a.y, xiToPSquaredMinus1Over3)
e.z.Set(&a.z)
return e
}
func (e *gfP6) FrobeniusP4(a *gfP6) *gfP6 {
e.x.MulScalar(&a.x, xiToPSquaredMinus1Over3)
e.y.MulScalar(&a.y, xiTo2PSquaredMinus2Over3)
e.z.Set(&a.z)
return e
}
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
e.x.Add(&a.x, &b.x)
e.y.Add(&a.y, &b.y)
e.z.Add(&a.z, &b.z)
return e
}
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
e.x.Sub(&a.x, &b.x)
e.y.Sub(&a.y, &b.y)
e.z.Sub(&a.z, &b.z)
return e
}
func (e *gfP6) Mul(a, b *gfP6) *gfP6 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
v0 := (&gfP2{}).Mul(&a.z, &b.z)
v1 := (&gfP2{}).Mul(&a.y, &b.y)
v2 := (&gfP2{}).Mul(&a.x, &b.x)
t0 := (&gfP2{}).Add(&a.x, &a.y)
t1 := (&gfP2{}).Add(&b.x, &b.y)
tz := (&gfP2{}).Mul(t0, t1)
tz.Sub(tz, v1).Sub(tz, v2).MulXi(tz).Add(tz, v0)
t0.Add(&a.y, &a.z)
t1.Add(&b.y, &b.z)
ty := (&gfP2{}).Mul(t0, t1)
t0.MulXi(v2)
ty.Sub(ty, v0).Sub(ty, v1).Add(ty, t0)
t0.Add(&a.x, &a.z)
t1.Add(&b.x, &b.z)
tx := (&gfP2{}).Mul(t0, t1)
tx.Sub(tx, v0).Add(tx, v1).Sub(tx, v2)
e.x.Set(tx)
e.y.Set(ty)
e.z.Set(tz)
return e
}
func (e *gfP6) MulScalar(a *gfP6, b *gfP2) *gfP6 {
e.x.Mul(&a.x, b)
e.y.Mul(&a.y, b)
e.z.Mul(&a.z, b)
return e
}
func (e *gfP6) MulGFP(a *gfP6, b *gfP) *gfP6 {
e.x.MulScalar(&a.x, b)
e.y.MulScalar(&a.y, b)
e.z.MulScalar(&a.z, b)
return e
}
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
func (e *gfP6) MulTau(a *gfP6) *gfP6 {
tz := (&gfP2{}).MulXi(&a.x)
ty := (&gfP2{}).Set(&a.y)
e.y.Set(&a.z)
e.x.Set(ty)
e.z.Set(tz)
return e
}
func (e *gfP6) Square(a *gfP6) *gfP6 {
v0 := (&gfP2{}).Square(&a.z)
v1 := (&gfP2{}).Square(&a.y)
v2 := (&gfP2{}).Square(&a.x)
c0 := (&gfP2{}).Add(&a.x, &a.y)
c0.Square(c0).Sub(c0, v1).Sub(c0, v2).MulXi(c0).Add(c0, v0)
c1 := (&gfP2{}).Add(&a.y, &a.z)
c1.Square(c1).Sub(c1, v0).Sub(c1, v1)
xiV2 := (&gfP2{}).MulXi(v2)
c1.Add(c1, xiV2)
c2 := (&gfP2{}).Add(&a.x, &a.z)
c2.Square(c2).Sub(c2, v0).Add(c2, v1).Sub(c2, v2)
e.x.Set(c2)
e.y.Set(c1)
e.z.Set(c0)
return e
}
func (e *gfP6) Invert(a *gfP6) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := (&gfP2{}).Mul(&a.x, &a.y)
t1.MulXi(t1)
A := (&gfP2{}).Square(&a.z)
A.Sub(A, t1)
B := (&gfP2{}).Square(&a.x)
B.MulXi(B)
t1.Mul(&a.y, &a.z)
B.Sub(B, t1)
C := (&gfP2{}).Square(&a.y)
t1.Mul(&a.x, &a.z)
C.Sub(C, t1)
F := (&gfP2{}).Mul(C, &a.y)
F.MulXi(F)
t1.Mul(A, &a.z)
F.Add(F, t1)
t1.Mul(B, &a.x).MulXi(t1)
F.Add(F, t1)
F.Invert(F)
e.x.Mul(C, F)
e.y.Mul(B, F)
e.z.Mul(A, F)
return e
}

View File

@@ -0,0 +1,129 @@
// +build amd64,!generic
#define storeBlock(a0,a1,a2,a3, r) \
MOVQ a0, 0+r \
MOVQ a1, 8+r \
MOVQ a2, 16+r \
MOVQ a3, 24+r
#define loadBlock(r, a0,a1,a2,a3) \
MOVQ 0+r, a0 \
MOVQ 8+r, a1 \
MOVQ 16+r, a2 \
MOVQ 24+r, a3
#define gfpCarry(a0,a1,a2,a3,a4, b0,b1,b2,b3,b4) \
\ // b = a-p
MOVQ a0, b0 \
MOVQ a1, b1 \
MOVQ a2, b2 \
MOVQ a3, b3 \
MOVQ a4, b4 \
\
SUBQ ·p2+0(SB), b0 \
SBBQ ·p2+8(SB), b1 \
SBBQ ·p2+16(SB), b2 \
SBBQ ·p2+24(SB), b3 \
SBBQ $0, b4 \
\
\ // if b is negative then return a
\ // else return b
CMOVQCC b0, a0 \
CMOVQCC b1, a1 \
CMOVQCC b2, a2 \
CMOVQCC b3, a3
#include "mul_amd64.h"
#include "mul_bmi2_amd64.h"
TEXT ·gfpNeg(SB),0,$0-16
MOVQ ·p2+0(SB), R8
MOVQ ·p2+8(SB), R9
MOVQ ·p2+16(SB), R10
MOVQ ·p2+24(SB), R11
MOVQ a+8(FP), DI
SUBQ 0(DI), R8
SBBQ 8(DI), R9
SBBQ 16(DI), R10
SBBQ 24(DI), R11
MOVQ $0, AX
gfpCarry(R8,R9,R10,R11,AX, R12,R13,R14,CX,BX)
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpAdd(SB),0,$0-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
loadBlock(0(DI), R8,R9,R10,R11)
MOVQ $0, R12
ADDQ 0(SI), R8
ADCQ 8(SI), R9
ADCQ 16(SI), R10
ADCQ 24(SI), R11
ADCQ $0, R12
gfpCarry(R8,R9,R10,R11,R12, R13,R14,CX,AX,BX)
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpSub(SB),0,$0-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
loadBlock(0(DI), R8,R9,R10,R11)
MOVQ ·p2+0(SB), R12
MOVQ ·p2+8(SB), R13
MOVQ ·p2+16(SB), R14
MOVQ ·p2+24(SB), CX
MOVQ $0, AX
SUBQ 0(SI), R8
SBBQ 8(SI), R9
SBBQ 16(SI), R10
SBBQ 24(SI), R11
CMOVQCC AX, R12
CMOVQCC AX, R13
CMOVQCC AX, R14
CMOVQCC AX, CX
ADDQ R12, R8
ADCQ R13, R9
ADCQ R14, R10
ADCQ CX, R11
MOVQ c+0(FP), DI
storeBlock(R8,R9,R10,R11, 0(DI))
RET
TEXT ·gfpMul(SB),0,$160-24
MOVQ a+8(FP), DI
MOVQ b+16(FP), SI
// Jump to a slightly different implementation if MULX isn't supported.
CMPB ·hasBMI2(SB), $0
JE nobmi2Mul
mulBMI2(0(DI),8(DI),16(DI),24(DI), 0(SI))
storeBlock( R8, R9,R10,R11, 0(SP))
storeBlock(R12,R13,R14,CX, 32(SP))
gfpReduceBMI2()
JMP end
nobmi2Mul:
mul(0(DI),8(DI),16(DI),24(DI), 0(SI), 0(SP))
gfpReduce(0(SP))
end:
MOVQ c+0(FP), DI
storeBlock(R12,R13,R14,CX, 0(DI))
RET

View File

@@ -0,0 +1,113 @@
// +build arm64,!generic
#define storeBlock(a0,a1,a2,a3, r) \
MOVD a0, 0+r \
MOVD a1, 8+r \
MOVD a2, 16+r \
MOVD a3, 24+r
#define loadBlock(r, a0,a1,a2,a3) \
MOVD 0+r, a0 \
MOVD 8+r, a1 \
MOVD 16+r, a2 \
MOVD 24+r, a3
#define loadModulus(p0,p1,p2,p3) \
MOVD ·p2+0(SB), p0 \
MOVD ·p2+8(SB), p1 \
MOVD ·p2+16(SB), p2 \
MOVD ·p2+24(SB), p3
#include "mul_arm64.h"
TEXT ·gfpNeg(SB),0,$0-16
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
loadModulus(R5,R6,R7,R8)
SUBS R1, R5, R1
SBCS R2, R6, R2
SBCS R3, R7, R3
SBCS R4, R8, R4
SUBS R5, R1, R5
SBCS R6, R2, R6
SBCS R7, R3, R7
SBCS R8, R4, R8
CSEL CS, R5, R1, R1
CSEL CS, R6, R2, R2
CSEL CS, R7, R3, R3
CSEL CS, R8, R4, R4
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET
TEXT ·gfpAdd(SB),0,$0-24
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
MOVD b+16(FP), R0
loadBlock(0(R0), R5,R6,R7,R8)
loadModulus(R9,R10,R11,R12)
MOVD ZR, R0
ADDS R5, R1
ADCS R6, R2
ADCS R7, R3
ADCS R8, R4
ADCS ZR, R0
SUBS R9, R1, R5
SBCS R10, R2, R6
SBCS R11, R3, R7
SBCS R12, R4, R8
SBCS ZR, R0, R0
CSEL CS, R5, R1, R1
CSEL CS, R6, R2, R2
CSEL CS, R7, R3, R3
CSEL CS, R8, R4, R4
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET
TEXT ·gfpSub(SB),0,$0-24
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
MOVD b+16(FP), R0
loadBlock(0(R0), R5,R6,R7,R8)
loadModulus(R9,R10,R11,R12)
SUBS R5, R1
SBCS R6, R2
SBCS R7, R3
SBCS R8, R4
CSEL CS, ZR, R9, R9
CSEL CS, ZR, R10, R10
CSEL CS, ZR, R11, R11
CSEL CS, ZR, R12, R12
ADDS R9, R1
ADCS R10, R2
ADCS R11, R3
ADCS R12, R4
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET
TEXT ·gfpMul(SB),0,$0-24
MOVD a+8(FP), R0
loadBlock(0(R0), R1,R2,R3,R4)
MOVD b+16(FP), R0
loadBlock(0(R0), R5,R6,R7,R8)
mul(R9,R10,R11,R12,R13,R14,R15,R16)
gfpReduce()
MOVD c+0(FP), R0
storeBlock(R1,R2,R3,R4, 0(R0))
RET

View File

@@ -0,0 +1,26 @@
//go:build (amd64 && !generic) || (arm64 && !generic)
// +build amd64,!generic arm64,!generic
package bn256
// This file contains forward declarations for the architecture-specific
// assembly implementations of these functions, provided that they exist.
import (
"golang.org/x/sys/cpu"
)
//nolint:varcheck,unused,deadcode
var hasBMI2 = cpu.X86.HasBMI2
// go:noescape
func gfpNeg(c, a *gfP)
//go:noescape
func gfpAdd(c, a, b *gfP)
//go:noescape
func gfpSub(c, a, b *gfP)
//go:noescape
func gfpMul(c, a, b *gfP)

View File

@@ -0,0 +1,174 @@
//go:build (!amd64 && !arm64) || generic
// +build !amd64,!arm64 generic
package bn256
func gfpCarry(a *gfP, head uint64) {
b := &gfP{}
var carry uint64
for i, pi := range p2 {
ai := a[i]
bi := ai - pi - carry
b[i] = bi
carry = (pi&^ai | (pi|^ai)&bi) >> 63
}
carry = carry &^ head
// If b is negative, then return a.
// Else return b.
carry = -carry
ncarry := ^carry
for i := 0; i < 4; i++ {
a[i] = (a[i] & carry) | (b[i] & ncarry)
}
}
func gfpNeg(c, a *gfP) {
var carry uint64
for i, pi := range p2 {
ai := a[i]
ci := pi - ai - carry
c[i] = ci
carry = (ai&^pi | (ai|^pi)&ci) >> 63
}
gfpCarry(c, 0)
}
func gfpAdd(c, a, b *gfP) {
var carry uint64
for i, ai := range a {
bi := b[i]
ci := ai + bi + carry
c[i] = ci
carry = (ai&bi | (ai|bi)&^ci) >> 63
}
gfpCarry(c, carry)
}
func gfpSub(c, a, b *gfP) {
t := &gfP{}
var carry uint64
for i, pi := range p2 {
bi := b[i]
ti := pi - bi - carry
t[i] = ti
carry = (bi&^pi | (bi|^pi)&ti) >> 63
}
carry = 0
for i, ai := range a {
ti := t[i]
ci := ai + ti + carry
c[i] = ci
carry = (ai&ti | (ai|ti)&^ci) >> 63
}
gfpCarry(c, carry)
}
func mul(a, b [4]uint64) [8]uint64 {
const (
mask16 uint64 = 0x0000ffff
mask32 uint64 = 0xffffffff
)
var buff [32]uint64
for i, ai := range a {
a0, a1, a2, a3 := ai&mask16, (ai>>16)&mask16, (ai>>32)&mask16, ai>>48
for j, bj := range b {
b0, b2 := bj&mask32, bj>>32
off := 4 * (i + j)
buff[off+0] += a0 * b0
buff[off+1] += a1 * b0
buff[off+2] += a2*b0 + a0*b2
buff[off+3] += a3*b0 + a1*b2
buff[off+4] += a2 * b2
buff[off+5] += a3 * b2
}
}
for i := uint(1); i < 4; i++ {
shift := 16 * i
var head, carry uint64
for j := uint(0); j < 8; j++ {
block := 4 * j
xi := buff[block]
yi := (buff[block+i] << shift) + head
zi := xi + yi + carry
buff[block] = zi
carry = (xi&yi | (xi|yi)&^zi) >> 63
head = buff[block+i] >> (64 - shift)
}
}
return [8]uint64{buff[0], buff[4], buff[8], buff[12], buff[16], buff[20], buff[24], buff[28]}
}
func halfMul(a, b [4]uint64) [4]uint64 {
const (
mask16 uint64 = 0x0000ffff
mask32 uint64 = 0xffffffff
)
var buff [18]uint64
for i, ai := range a {
a0, a1, a2, a3 := ai&mask16, (ai>>16)&mask16, (ai>>32)&mask16, ai>>48
for j, bj := range b {
if i+j > 3 {
break
}
b0, b2 := bj&mask32, bj>>32
off := 4 * (i + j)
buff[off+0] += a0 * b0
buff[off+1] += a1 * b0
buff[off+2] += a2*b0 + a0*b2
buff[off+3] += a3*b0 + a1*b2
buff[off+4] += a2 * b2
buff[off+5] += a3 * b2
}
}
for i := uint(1); i < 4; i++ {
shift := 16 * i
var head, carry uint64
for j := uint(0); j < 4; j++ {
block := 4 * j
xi := buff[block]
yi := (buff[block+i] << shift) + head
zi := xi + yi + carry
buff[block] = zi
carry = (xi&yi | (xi|yi)&^zi) >> 63
head = buff[block+i] >> (64 - shift)
}
}
return [4]uint64{buff[0], buff[4], buff[8], buff[12]}
}
func gfpMul(c, a, b *gfP) {
T := mul(*a, *b)
m := halfMul([4]uint64{T[0], T[1], T[2], T[3]}, np)
t := mul([4]uint64{m[0], m[1], m[2], m[3]}, p2)
var carry uint64
for i, Ti := range T {
ti := t[i]
zi := Ti + ti + carry
T[i] = zi
carry = (Ti&ti | (Ti|ti)&^zi) >> 63
}
*c = gfP{T[4], T[5], T[6], T[7]}
gfpCarry(c, carry)
}

View File

@@ -0,0 +1,115 @@
package bn256
import (
"math/big"
)
var half = new(big.Int).Rsh(Order, 1)
var curveLattice = &lattice{
vectors: [][]*big.Int{
{bigFromBase10("147946756881789319000765030803803410728"), bigFromBase10("147946756881789319010696353538189108491")},
{bigFromBase10("147946756881789319020627676272574806254"), bigFromBase10("-147946756881789318990833708069417712965")},
},
inverse: []*big.Int{
bigFromBase10("147946756881789318990833708069417712965"),
bigFromBase10("147946756881789319010696353538189108491"),
},
det: bigFromBase10("43776485743678550444492811490514550177096728800832068687396408373151616991234"),
}
var targetLattice = &lattice{
vectors: [][]*big.Int{
{bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697761"), bigFromBase10("9931322734385697763"), bigFromBase10("9931322734385697764")},
{bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("4965661367192848882"), bigFromBase10("-9931322734385697762")},
{bigFromBase10("-9931322734385697762"), bigFromBase10("-4965661367192848881"), bigFromBase10("4965661367192848881"), bigFromBase10("-4965661367192848882")},
{bigFromBase10("9931322734385697763"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881"), bigFromBase10("-4965661367192848881")},
},
inverse: []*big.Int{
bigFromBase10("734653495049373973658254490726798021314063399421879442165"),
bigFromBase10("147946756881789319000765030803803410728"),
bigFromBase10("-147946756881789319005730692170996259609"),
bigFromBase10("1469306990098747947464455738335385361643788813749140841702"),
},
det: new(big.Int).Set(Order),
}
type lattice struct {
vectors [][]*big.Int
inverse []*big.Int
det *big.Int
}
// decompose takes a scalar mod Order as input and finds a short, positive decomposition of it wrt to the lattice basis.
func (l *lattice) decompose(k *big.Int) []*big.Int {
n := len(l.inverse)
// Calculate closest vector in lattice to <k,0,0,...> with Babai's rounding.
c := make([]*big.Int, n)
for i := 0; i < n; i++ {
c[i] = new(big.Int).Mul(k, l.inverse[i])
round(c[i], l.det)
}
// Transform vectors according to c and subtract <k,0,0,...>.
out := make([]*big.Int, n)
temp := new(big.Int)
for i := 0; i < n; i++ {
out[i] = new(big.Int)
for j := 0; j < n; j++ {
temp.Mul(c[j], l.vectors[j][i])
out[i].Add(out[i], temp)
}
out[i].Neg(out[i])
out[i].Add(out[i], l.vectors[0][i]).Add(out[i], l.vectors[0][i])
}
out[0].Add(out[0], k)
return out
}
func (l *lattice) Precompute(add func(i, j uint)) {
n := uint(len(l.vectors))
total := uint(1) << n
for i := uint(0); i < n; i++ {
for j := uint(0); j < total; j++ {
if (j>>i)&1 == 1 {
add(i, j)
}
}
}
}
func (l *lattice) Multi(scalar *big.Int) []uint8 {
decomp := l.decompose(scalar)
maxLen := 0
for _, x := range decomp {
if x.BitLen() > maxLen {
maxLen = x.BitLen()
}
}
out := make([]uint8, maxLen)
for j, x := range decomp {
for i := 0; i < maxLen; i++ {
out[i] += uint8(x.Bit(i)) << uint(j)
}
}
return out
}
// round sets num to num/denom rounded to the nearest integer.
func round(num, denom *big.Int) {
r := new(big.Int)
num.DivMod(num, denom, r)
if r.Cmp(half) == 1 {
num.Add(num, big.NewInt(1))
}
}

View File

@@ -0,0 +1,181 @@
#define mul(a0,a1,a2,a3, rb, stack) \
MOVQ a0, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a0, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a0, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a0, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
storeBlock(R8,R9,R10,R11, 0+stack) \
MOVQ R12, 32+stack \
\
MOVQ a1, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a1, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a1, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a1, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 8+stack, R8 \
ADCQ 16+stack, R9 \
ADCQ 24+stack, R10 \
ADCQ 32+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 8+stack) \
MOVQ R12, 40+stack \
\
MOVQ a2, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a2, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a2, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a2, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 16+stack, R8 \
ADCQ 24+stack, R9 \
ADCQ 32+stack, R10 \
ADCQ 40+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 16+stack) \
MOVQ R12, 48+stack \
\
MOVQ a3, AX \
MULQ 0+rb \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ a3, AX \
MULQ 8+rb \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ a3, AX \
MULQ 16+rb \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ a3, AX \
MULQ 24+rb \
ADDQ AX, R11 \
ADCQ $0, DX \
MOVQ DX, R12 \
\
ADDQ 24+stack, R8 \
ADCQ 32+stack, R9 \
ADCQ 40+stack, R10 \
ADCQ 48+stack, R11 \
ADCQ $0, R12 \
storeBlock(R8,R9,R10,R11, 24+stack) \
MOVQ R12, 56+stack
#define gfpReduce(stack) \
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
MOVQ ·np+0(SB), AX \
MULQ 0+stack \
MOVQ AX, R8 \
MOVQ DX, R9 \
MOVQ ·np+0(SB), AX \
MULQ 8+stack \
ADDQ AX, R9 \
ADCQ $0, DX \
MOVQ DX, R10 \
MOVQ ·np+0(SB), AX \
MULQ 16+stack \
ADDQ AX, R10 \
ADCQ $0, DX \
MOVQ DX, R11 \
MOVQ ·np+0(SB), AX \
MULQ 24+stack \
ADDQ AX, R11 \
\
MOVQ ·np+8(SB), AX \
MULQ 0+stack \
MOVQ AX, R12 \
MOVQ DX, R13 \
MOVQ ·np+8(SB), AX \
MULQ 8+stack \
ADDQ AX, R13 \
ADCQ $0, DX \
MOVQ DX, R14 \
MOVQ ·np+8(SB), AX \
MULQ 16+stack \
ADDQ AX, R14 \
\
ADDQ R12, R9 \
ADCQ R13, R10 \
ADCQ R14, R11 \
\
MOVQ ·np+16(SB), AX \
MULQ 0+stack \
MOVQ AX, R12 \
MOVQ DX, R13 \
MOVQ ·np+16(SB), AX \
MULQ 8+stack \
ADDQ AX, R13 \
\
ADDQ R12, R10 \
ADCQ R13, R11 \
\
MOVQ ·np+24(SB), AX \
MULQ 0+stack \
ADDQ AX, R11 \
\
storeBlock(R8,R9,R10,R11, 64+stack) \
\
\ // m * N
mul(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64+stack, 96+stack) \
\
\ // Add the 512-bit intermediate to m*N
loadBlock(96+stack, R8,R9,R10,R11) \
loadBlock(128+stack, R12,R13,R14,CX) \
\
MOVQ $0, AX \
ADDQ 0+stack, R8 \
ADCQ 8+stack, R9 \
ADCQ 16+stack, R10 \
ADCQ 24+stack, R11 \
ADCQ 32+stack, R12 \
ADCQ 40+stack, R13 \
ADCQ 48+stack, R14 \
ADCQ 56+stack, CX \
ADCQ $0, AX \
\
gfpCarry(R12,R13,R14,CX,AX, R8,R9,R10,R11,BX)

View File

@@ -0,0 +1,133 @@
#define mul(c0,c1,c2,c3,c4,c5,c6,c7) \
MUL R1, R5, c0 \
UMULH R1, R5, c1 \
MUL R1, R6, R0 \
ADDS R0, c1 \
UMULH R1, R6, c2 \
MUL R1, R7, R0 \
ADCS R0, c2 \
UMULH R1, R7, c3 \
MUL R1, R8, R0 \
ADCS R0, c3 \
UMULH R1, R8, c4 \
ADCS ZR, c4 \
\
MUL R2, R5, R1 \
UMULH R2, R5, R26 \
MUL R2, R6, R0 \
ADDS R0, R26 \
UMULH R2, R6, R27 \
MUL R2, R7, R0 \
ADCS R0, R27 \
UMULH R2, R7, R29 \
MUL R2, R8, R0 \
ADCS R0, R29 \
UMULH R2, R8, c5 \
ADCS ZR, c5 \
ADDS R1, c1 \
ADCS R26, c2 \
ADCS R27, c3 \
ADCS R29, c4 \
ADCS ZR, c5 \
\
MUL R3, R5, R1 \
UMULH R3, R5, R26 \
MUL R3, R6, R0 \
ADDS R0, R26 \
UMULH R3, R6, R27 \
MUL R3, R7, R0 \
ADCS R0, R27 \
UMULH R3, R7, R29 \
MUL R3, R8, R0 \
ADCS R0, R29 \
UMULH R3, R8, c6 \
ADCS ZR, c6 \
ADDS R1, c2 \
ADCS R26, c3 \
ADCS R27, c4 \
ADCS R29, c5 \
ADCS ZR, c6 \
\
MUL R4, R5, R1 \
UMULH R4, R5, R26 \
MUL R4, R6, R0 \
ADDS R0, R26 \
UMULH R4, R6, R27 \
MUL R4, R7, R0 \
ADCS R0, R27 \
UMULH R4, R7, R29 \
MUL R4, R8, R0 \
ADCS R0, R29 \
UMULH R4, R8, c7 \
ADCS ZR, c7 \
ADDS R1, c3 \
ADCS R26, c4 \
ADCS R27, c5 \
ADCS R29, c6 \
ADCS ZR, c7
#define gfpReduce() \
\ // m = (T * N') mod R, store m in R1:R2:R3:R4
MOVD ·np+0(SB), R17 \
MOVD ·np+8(SB), R25 \
MOVD ·np+16(SB), R19 \
MOVD ·np+24(SB), R20 \
\
MUL R9, R17, R1 \
UMULH R9, R17, R2 \
MUL R9, R25, R0 \
ADDS R0, R2 \
UMULH R9, R25, R3 \
MUL R9, R19, R0 \
ADCS R0, R3 \
UMULH R9, R19, R4 \
MUL R9, R20, R0 \
ADCS R0, R4 \
\
MUL R10, R17, R21 \
UMULH R10, R17, R22 \
MUL R10, R25, R0 \
ADDS R0, R22 \
UMULH R10, R25, R23 \
MUL R10, R19, R0 \
ADCS R0, R23 \
ADDS R21, R2 \
ADCS R22, R3 \
ADCS R23, R4 \
\
MUL R11, R17, R21 \
UMULH R11, R17, R22 \
MUL R11, R25, R0 \
ADDS R0, R22 \
ADDS R21, R3 \
ADCS R22, R4 \
\
MUL R12, R17, R21 \
ADDS R21, R4 \
\
\ // m * N
loadModulus(R5,R6,R7,R8) \
mul(R17,R25,R19,R20,R21,R22,R23,R24) \
\
\ // Add the 512-bit intermediate to m*N
MOVD ZR, R0 \
ADDS R9, R17 \
ADCS R10, R25 \
ADCS R11, R19 \
ADCS R12, R20 \
ADCS R13, R21 \
ADCS R14, R22 \
ADCS R15, R23 \
ADCS R16, R24 \
ADCS ZR, R0 \
\
\ // Our output is R21:R22:R23:R24. Reduce mod p if necessary.
SUBS R5, R21, R10 \
SBCS R6, R22, R11 \
SBCS R7, R23, R12 \
SBCS R8, R24, R13 \
\
CSEL CS, R10, R21, R1 \
CSEL CS, R11, R22, R2 \
CSEL CS, R12, R23, R3 \
CSEL CS, R13, R24, R4

View File

@@ -0,0 +1,112 @@
#define mulBMI2(a0,a1,a2,a3, rb) \
MOVQ a0, DX \
MOVQ $0, R13 \
MULXQ 0+rb, R8, R9 \
MULXQ 8+rb, AX, R10 \
ADDQ AX, R9 \
MULXQ 16+rb, AX, R11 \
ADCQ AX, R10 \
MULXQ 24+rb, AX, R12 \
ADCQ AX, R11 \
ADCQ $0, R12 \
ADCQ $0, R13 \
\
MOVQ a1, DX \
MOVQ $0, R14 \
MULXQ 0+rb, AX, BX \
ADDQ AX, R9 \
ADCQ BX, R10 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R11 \
ADCQ BX, R12 \
ADCQ $0, R13 \
MULXQ 8+rb, AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R12 \
ADCQ BX, R13 \
ADCQ $0, R14 \
\
MOVQ a2, DX \
MOVQ $0, CX \
MULXQ 0+rb, AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R12 \
ADCQ BX, R13 \
ADCQ $0, R14 \
MULXQ 8+rb, AX, BX \
ADDQ AX, R11 \
ADCQ BX, R12 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R13 \
ADCQ BX, R14 \
ADCQ $0, CX \
\
MOVQ a3, DX \
MULXQ 0+rb, AX, BX \
ADDQ AX, R11 \
ADCQ BX, R12 \
MULXQ 16+rb, AX, BX \
ADCQ AX, R13 \
ADCQ BX, R14 \
ADCQ $0, CX \
MULXQ 8+rb, AX, BX \
ADDQ AX, R12 \
ADCQ BX, R13 \
MULXQ 24+rb, AX, BX \
ADCQ AX, R14 \
ADCQ BX, CX
#define gfpReduceBMI2() \
\ // m = (T * N') mod R, store m in R8:R9:R10:R11
MOVQ ·np+0(SB), DX \
MULXQ 0(SP), R8, R9 \
MULXQ 8(SP), AX, R10 \
ADDQ AX, R9 \
MULXQ 16(SP), AX, R11 \
ADCQ AX, R10 \
MULXQ 24(SP), AX, BX \
ADCQ AX, R11 \
\
MOVQ ·np+8(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R9 \
ADCQ BX, R10 \
MULXQ 16(SP), AX, BX \
ADCQ AX, R11 \
MULXQ 8(SP), AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
\
MOVQ ·np+16(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R10 \
ADCQ BX, R11 \
MULXQ 8(SP), AX, BX \
ADDQ AX, R11 \
\
MOVQ ·np+24(SB), DX \
MULXQ 0(SP), AX, BX \
ADDQ AX, R11 \
\
storeBlock(R8,R9,R10,R11, 64(SP)) \
\
\ // m * N
mulBMI2(·p2+0(SB),·p2+8(SB),·p2+16(SB),·p2+24(SB), 64(SP)) \
\
\ // Add the 512-bit intermediate to m*N
MOVQ $0, AX \
ADDQ 0(SP), R8 \
ADCQ 8(SP), R9 \
ADCQ 16(SP), R10 \
ADCQ 24(SP), R11 \
ADCQ 32(SP), R12 \
ADCQ 40(SP), R13 \
ADCQ 48(SP), R14 \
ADCQ 56(SP), CX \
ADCQ $0, AX \
\
gfpCarry(R12,R13,R14,CX,AX, R8,R9,R10,R11,BX)

View File

@@ -0,0 +1,271 @@
package bn256
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2) (a, b, c *gfP2, rOut *twistPoint) {
// See the mixed addition algorithm from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
B := (&gfP2{}).Mul(&p.x, &r.t)
D := (&gfP2{}).Add(&p.y, &r.z)
D.Square(D).Sub(D, r2).Sub(D, &r.t).Mul(D, &r.t)
H := (&gfP2{}).Sub(B, &r.x)
I := (&gfP2{}).Square(H)
E := (&gfP2{}).Add(I, I)
E.Add(E, E)
J := (&gfP2{}).Mul(H, E)
L1 := (&gfP2{}).Sub(D, &r.y)
L1.Sub(L1, &r.y)
V := (&gfP2{}).Mul(&r.x, E)
rOut = &twistPoint{}
rOut.x.Square(L1).Sub(&rOut.x, J).Sub(&rOut.x, V).Sub(&rOut.x, V)
rOut.z.Add(&r.z, H).Square(&rOut.z).Sub(&rOut.z, &r.t).Sub(&rOut.z, I)
t := (&gfP2{}).Sub(V, &rOut.x)
t.Mul(t, L1)
t2 := (&gfP2{}).Mul(&r.y, J)
t2.Add(t2, t2)
rOut.y.Sub(t, t2)
rOut.t.Square(&rOut.z)
t.Add(&p.y, &rOut.z).Square(t).Sub(t, r2).Sub(t, &rOut.t)
t2.Mul(L1, &p.x)
t2.Add(t2, t2)
a = (&gfP2{}).Sub(t2, t)
c = (&gfP2{}).MulScalar(&rOut.z, &q.y)
c.Add(c, c)
b = (&gfP2{}).Neg(L1)
b.MulScalar(b, &q.x).Add(b, b)
return
}
func lineFunctionDouble(r *twistPoint, q *curvePoint) (a, b, c *gfP2, rOut *twistPoint) {
// See the doubling algorithm for a=0 from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
A := (&gfP2{}).Square(&r.x)
B := (&gfP2{}).Square(&r.y)
C := (&gfP2{}).Square(B)
D := (&gfP2{}).Add(&r.x, B)
D.Square(D).Sub(D, A).Sub(D, C).Add(D, D)
E := (&gfP2{}).Add(A, A)
E.Add(E, A)
G := (&gfP2{}).Square(E)
rOut = &twistPoint{}
rOut.x.Sub(G, D).Sub(&rOut.x, D)
rOut.z.Add(&r.y, &r.z).Square(&rOut.z).Sub(&rOut.z, B).Sub(&rOut.z, &r.t)
rOut.y.Sub(D, &rOut.x).Mul(&rOut.y, E)
t := (&gfP2{}).Add(C, C)
t.Add(t, t).Add(t, t)
rOut.y.Sub(&rOut.y, t)
rOut.t.Square(&rOut.z)
t.Mul(E, &r.t).Add(t, t)
b = (&gfP2{}).Neg(t)
b.MulScalar(b, &q.x)
a = (&gfP2{}).Add(&r.x, E)
a.Square(a).Sub(a, A).Sub(a, G)
t.Add(B, B).Add(t, t)
a.Sub(a, t)
c = (&gfP2{}).Mul(&rOut.z, &r.t)
c.Add(c, c).MulScalar(c, &q.y)
return
}
func mulLine(ret *gfP12, a, b, c *gfP2) {
a2 := &gfP6{}
a2.y.Set(a)
a2.z.Set(b)
a2.Mul(a2, &ret.x)
t3 := (&gfP6{}).MulScalar(&ret.y, c)
t := (&gfP2{}).Add(b, c)
t2 := &gfP6{}
t2.y.Set(a)
t2.z.Set(t)
ret.x.Add(&ret.x, &ret.y)
ret.y.Set(t3)
ret.x.Mul(&ret.x, t2).Sub(&ret.x, a2).Sub(&ret.x, &ret.y)
a2.MulTau(a2)
ret.y.Add(&ret.y, a2)
}
// sixuPlus2NAF is 6u+2 in non-adjacent form.
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
// miller implements the Miller loop for calculating the Optimal Ate pairing.
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
func miller(q *twistPoint, p *curvePoint) *gfP12 {
ret := (&gfP12{}).SetOne()
aAffine := &twistPoint{}
aAffine.Set(q)
aAffine.MakeAffine()
bAffine := &curvePoint{}
bAffine.Set(p)
bAffine.MakeAffine()
minusA := &twistPoint{}
minusA.Neg(aAffine)
r := &twistPoint{}
r.Set(aAffine)
r2 := (&gfP2{}).Square(&aAffine.y)
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
a, b, c, newR := lineFunctionDouble(r, bAffine)
if i != len(sixuPlus2NAF)-1 {
ret.Square(ret)
}
mulLine(ret, a, b, c)
r = newR
switch sixuPlus2NAF[i-1] {
case 1:
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2)
case -1:
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2)
default:
continue
}
mulLine(ret, a, b, c)
r = newR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of ω² so we
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
// ω².
//
// A similar argument can be made for the y value.
q1 := &twistPoint{}
q1.x.Conjugate(&aAffine.x).Mul(&q1.x, xiToPMinus1Over3)
q1.y.Conjugate(&aAffine.y).Mul(&q1.y, xiToPMinus1Over2)
q1.z.SetOne()
q1.t.SetOne()
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
// out and we are left only with the factors from the isomorphism. In
// the case of x, we end up with a pure number which is why
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
// ignore this to end up with -Q2.
minusQ2 := &twistPoint{}
minusQ2.x.MulScalar(&aAffine.x, xiToPSquaredMinus1Over3)
minusQ2.y.Set(&aAffine.y)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(&q1.y)
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2)
mulLine(ret, a, b, c)
r = newR
r2.Square(&minusQ2.y)
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2)
mulLine(ret, a, b, c)
r = newR
return ret
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
func finalExponentiation(in *gfP12) *gfP12 {
t1 := &gfP12{}
// This is the p^6-Frobenius
t1.x.Neg(&in.x)
t1.y.Set(&in.y)
inv := &gfP12{}
inv.Invert(in)
t1.Mul(t1, inv)
t2 := (&gfP12{}).FrobeniusP2(t1)
t1.Mul(t1, t2)
fp := (&gfP12{}).Frobenius(t1)
fp2 := (&gfP12{}).FrobeniusP2(t1)
fp3 := (&gfP12{}).Frobenius(fp2)
fu := (&gfP12{}).Exp(t1, u)
fu2 := (&gfP12{}).Exp(fu, u)
fu3 := (&gfP12{}).Exp(fu2, u)
y3 := (&gfP12{}).Frobenius(fu)
fu2p := (&gfP12{}).Frobenius(fu2)
fu3p := (&gfP12{}).Frobenius(fu3)
y2 := (&gfP12{}).FrobeniusP2(fu2)
y0 := &gfP12{}
y0.Mul(fp, fp2).Mul(y0, fp3)
y1 := (&gfP12{}).Conjugate(t1)
y5 := (&gfP12{}).Conjugate(fu2)
y3.Conjugate(y3)
y4 := (&gfP12{}).Mul(fu, fu2p)
y4.Conjugate(y4)
y6 := (&gfP12{}).Mul(fu3, fu3p)
y6.Conjugate(y6)
t0 := (&gfP12{}).Square(y6)
t0.Mul(t0, y4).Mul(t0, y5)
t1.Mul(y3, y5).Mul(t1, t0)
t0.Mul(t0, y2)
t1.Square(t1).Mul(t1, t0).Square(t1)
t0.Mul(t1, y1)
t1.Mul(t1, y0)
t0.Square(t0).Mul(t0, t1)
return t0
}
func optimalAte(a *twistPoint, b *curvePoint) *gfP12 {
e := miller(a, b)
ret := finalExponentiation(e)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret
}

View File

@@ -0,0 +1,204 @@
package bn256
import (
"math/big"
)
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t gfP2
}
var twistB = &gfP2{
gfP{0x38e7ecccd1dcff67, 0x65f0b37d93ce0d3e, 0xd749d0dd22ac00aa, 0x0141b9ce4a688d4d},
gfP{0x3bf938e377b802a8, 0x020b1b273633535d, 0x26b7edf049755260, 0x2514c6324384a86d},
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
gfP2{
gfP{0xafb4737da84c6140, 0x6043dd5a5802d8c4, 0x09e950fc52a02f86, 0x14fef0833aea7b6b},
gfP{0x8e83b5d102bc2026, 0xdceb1935497b0172, 0xfbb8264797811adf, 0x19573841af96503b},
},
gfP2{
gfP{0x64095b56c71856ee, 0xdc57f922327d3cbb, 0x55f935be33351076, 0x0da4a0e693fd6482},
gfP{0x619dfa9d886be9f6, 0xfe7fd297f59e9b78, 0xff9e1a62231b7dfe, 0x28fd7eebae9e4206},
},
gfP2{*newGFp(0), *newGFp(1)},
gfP2{*newGFp(0), *newGFp(1)},
}
func (c *twistPoint) String() string {
c.MakeAffine()
x, y := gfP2Decode(&c.x), gfP2Decode(&c.y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(&a.x)
c.y.Set(&a.y)
c.z.Set(&a.z)
c.t.Set(&a.t)
}
// IsOnCurve returns true iff c is on the curve.
func (c *twistPoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP2{}, &gfP2{}
y2.Square(&c.y)
x3.Square(&c.x).Mul(x3, &c.x).Add(x3, twistB)
if *y2 != *x3 {
return false
}
cneg := &twistPoint{}
cneg.Mul(c, Order)
return cneg.z.IsZero()
}
func (c *twistPoint) SetInfinity() {
c.x.SetZero()
c.y.SetOne()
c.z.SetZero()
c.t.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z12 := (&gfP2{}).Square(&a.z)
z22 := (&gfP2{}).Square(&b.z)
u1 := (&gfP2{}).Mul(&a.x, z22)
u2 := (&gfP2{}).Mul(&b.x, z12)
t := (&gfP2{}).Mul(&b.z, z22)
s1 := (&gfP2{}).Mul(&a.y, t)
t.Mul(&a.z, z12)
s2 := (&gfP2{}).Mul(&b.y, t)
h := (&gfP2{}).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := (&gfP2{}).Square(t)
j := (&gfP2{}).Mul(h, i)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a)
return
}
r := (&gfP2{}).Add(t, t)
v := (&gfP2{}).Mul(u1, i)
t4 := (&gfP2{}).Square(r)
t.Add(v, v)
t6 := (&gfP2{}).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, &c.x) // t7
t4.Mul(s1, j) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
c.y.Sub(t4, t6)
t.Add(&a.z, &b.z) // t11
t4.Square(t) // t12
t.Sub(t4, z12) // t13
t4.Sub(t, z22) // t14
c.z.Mul(t4, h)
}
func (c *twistPoint) Double(a *twistPoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := (&gfP2{}).Square(&a.x)
B := (&gfP2{}).Square(&a.y)
C := (&gfP2{}).Square(B)
t := (&gfP2{}).Add(&a.x, B)
t2 := (&gfP2{}).Square(t)
t.Sub(t2, A)
t2.Sub(t, C)
d := (&gfP2{}).Add(t2, t2)
t.Add(A, A)
e := (&gfP2{}).Add(t, A)
f := (&gfP2{}).Square(e)
t.Add(d, d)
c.x.Sub(f, t)
c.z.Mul(&a.y, &a.z)
c.z.Add(&c.z, &c.z)
t.Add(C, C)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, &c.x)
t2.Mul(e, &c.y)
c.y.Sub(t2, t)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
sum, t := &twistPoint{}, &twistPoint{}
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum)
if scalar.Bit(i) != 0 {
sum.Add(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
}
func (c *twistPoint) MakeAffine() {
if c.z.IsOne() {
return
} else if c.z.IsZero() {
c.x.SetZero()
c.y.SetOne()
c.t.SetZero()
return
}
zInv := (&gfP2{}).Invert(&c.z)
t := (&gfP2{}).Mul(&c.y, zInv)
zInv2 := (&gfP2{}).Square(zInv)
c.y.Mul(t, zInv2)
t.Mul(&c.x, zInv2)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
}
func (c *twistPoint) Neg(a *twistPoint) {
c.x.Set(&a.x)
c.y.Neg(&a.y)
c.z.Set(&a.z)
c.t.SetZero()
}

View File

@@ -0,0 +1,460 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bn256 implements a particular bilinear group.
//
// Bilinear groups are the basis of many of the new cryptographic protocols
// that have been proposed over the past decade. They consist of a triplet of
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
// (where gₓ is a generator of the respective group). That function is called
// a pairing function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is not
// compatible with the implementation described in that paper, as different
// parameters are chosen.
//
// (This package previously claimed to operate at a 128-bit security level.
// However, recent improvements in attacks mean that is no longer true. See
// https://moderncrypto.org/mail-archive/curves/2016/000740.html.)
package bn256
import (
"crypto/rand"
"errors"
"io"
"math/big"
)
// BUG(agl): this implementation is not constant time.
// TODO(agl): keep GF(p²) elements in Mongomery form.
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
p *curvePoint
}
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G1).ScalarBaseMult(k), nil
}
func (e *G1) String() string {
return "bn256.G1" + e.p.String()
}
// CurvePoints returns p's curve points in big integer
func (e *G1) CurvePoints() (*big.Int, *big.Int, *big.Int, *big.Int) {
return e.p.x, e.p.y, e.p.z, e.p.t
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(curveGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G1) Add(a, b *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Negative(a.p)
return e
}
// Marshal converts n to a byte slice.
func (e *G1) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p.IsInfinity() {
return make([]byte, numBytes*2)
}
e.p.MakeAffine(nil)
xBytes := new(big.Int).Mod(e.p.x, P).Bytes()
yBytes := new(big.Int).Mod(e.p.y, P).Bytes()
ret := make([]byte, numBytes*2)
copy(ret[1*numBytes-len(xBytes):], xBytes)
copy(ret[2*numBytes-len(yBytes):], yBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 2*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
if e.p.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
// Ensure the point is on the curve
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetInt64(1)
e.p.z.SetInt64(0)
e.p.t.SetInt64(0)
} else {
e.p.z.SetInt64(1)
e.p.t.SetInt64(1)
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[2*numBytes:], nil
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// RandomG1 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G2).ScalarBaseMult(k), nil
}
func (e *G2) String() string {
return "bn256.G2" + e.p.String()
}
// CurvePoints returns the curve points of p which includes the real
// and imaginary parts of the curve point.
func (e *G2) CurvePoints() (*gfP2, *gfP2, *gfP2, *gfP2) {
return e.p.x, e.p.y, e.p.z, e.p.t
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(twistGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
// BUG(agl): this function is not complete: a==b fails.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *G2) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if n.p.IsInfinity() {
return make([]byte, numBytes*4)
}
n.p.MakeAffine(nil)
xxBytes := new(big.Int).Mod(n.p.x.x, P).Bytes()
xyBytes := new(big.Int).Mod(n.p.x.y, P).Bytes()
yxBytes := new(big.Int).Mod(n.p.y.x, P).Bytes()
yyBytes := new(big.Int).Mod(n.p.y.y, P).Bytes()
ret := make([]byte, numBytes*4)
copy(ret[1*numBytes-len(xxBytes):], xxBytes)
copy(ret[2*numBytes-len(xyBytes):], xyBytes)
copy(ret[3*numBytes-len(yxBytes):], yxBytes)
copy(ret[4*numBytes-len(yyBytes):], yyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) ([]byte, error) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 4*numBytes {
return nil, errors.New("bn256: not enough data")
}
// Unmarshal the points and check their caps
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
if e.p.x.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.x.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
if e.p.y.x.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
if e.p.y.y.Cmp(P) >= 0 {
return nil, errors.New("bn256: coordinate exceeds modulus")
}
// Ensure the point is on the curve
if e.p.x.x.Sign() == 0 &&
e.p.x.y.Sign() == 0 &&
e.p.y.x.Sign() == 0 &&
e.p.y.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, errors.New("bn256: malformed point")
}
}
return m[4*numBytes:], nil
}
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
p *gfP12
}
func (g *GT) String() string {
return "bn256.GT" + g.p.String()
}
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Exp(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Mul(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Invert(a.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *GT) Marshal() []byte {
n.p.Minimal()
xxxBytes := n.p.x.x.x.Bytes()
xxyBytes := n.p.x.x.y.Bytes()
xyxBytes := n.p.x.y.x.Bytes()
xyyBytes := n.p.x.y.y.Bytes()
xzxBytes := n.p.x.z.x.Bytes()
xzyBytes := n.p.x.z.y.Bytes()
yxxBytes := n.p.y.x.x.Bytes()
yxyBytes := n.p.y.x.y.Bytes()
yyxBytes := n.p.y.y.x.Bytes()
yyyBytes := n.p.y.y.y.Bytes()
yzxBytes := n.p.y.z.x.Bytes()
yzyBytes := n.p.y.z.y.Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*12)
copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) (*GT, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 12*numBytes {
return nil, false
}
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
return e, true
}
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
return &GT{optimalAte(g2.p, g1.p, new(bnPool))}
}
// PairingCheck calculates the Optimal Ate pairing for a set of points.
func PairingCheck(a []*G1, b []*G2) bool {
pool := new(bnPool)
acc := newGFp12(pool)
acc.SetOne()
for i := 0; i < len(a); i++ {
if a[i].p.IsInfinity() || b[i].p.IsInfinity() {
continue
}
acc.Mul(acc, miller(b[i].p, a[i].p, pool), pool)
}
ret := finalExponentiation(acc, pool)
acc.Put(pool)
return ret.IsOne()
}
// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
// number of allocations made during processing.
type bnPool struct {
bns []*big.Int
count int
}
func (pool *bnPool) Get() *big.Int {
if pool == nil {
return new(big.Int)
}
pool.count++
l := len(pool.bns)
if l == 0 {
return new(big.Int)
}
bn := pool.bns[l-1]
pool.bns = pool.bns[:l-1]
return bn
}
func (pool *bnPool) Put(bn *big.Int) {
if pool == nil {
return
}
pool.bns = append(pool.bns, bn)
pool.count--
}
func (pool *bnPool) Count() int {
return pool.count
}

View File

@@ -0,0 +1,47 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
func bigFromBase10(s string) *big.Int {
n, _ := new(big.Int).SetString(s, 10)
return n
}
// u is the BN parameter that determines the prime.
var u = bigFromBase10("4965661367192848881")
// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
var P = bigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583")
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
// Needs to be highly 2-adic for efficient SNARK key and proof generation.
// Order - 1 = 2^28 * 3^2 * 13 * 29 * 983 * 11003 * 237073 * 405928799 * 1670836401704629 * 13818364434197438864469338081.
// Refer to https://eprint.iacr.org/2013/879.pdf and https://eprint.iacr.org/2013/507.pdf for more information on these parameters.
var Order = bigFromBase10("21888242871839275222246405745257275088548364400416034343698204186575808495617")
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+9.
var xiToPMinus1Over6 = &gfP2{bigFromBase10("16469823323077808223889137241176536799009286646108169935659301613961712198316"), bigFromBase10("8376118865763821496583973867626364092589906065868298776909617916018768340080")}
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+9.
var xiToPMinus1Over3 = &gfP2{bigFromBase10("10307601595873709700152284273816112264069230130616436755625194854815875713954"), bigFromBase10("21575463638280843010398324269430826099269044274347216827212613867836435027261")}
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+9.
var xiToPMinus1Over2 = &gfP2{bigFromBase10("3505843767911556378687030309984248845540243509899259641013678093033130930403"), bigFromBase10("2821565182194536844548159561693502659359617185244120367078079554186484126554")}
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+9.
var xiToPSquaredMinus1Over3 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556616")
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+9 (a cubic root of unity, mod p).
var xiTo2PSquaredMinus2Over3 = bigFromBase10("2203960485148121921418603742825762020974279258880205651966")
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+9 (a cubic root of -1, mod p).
var xiToPSquaredMinus1Over6 = bigFromBase10("21888242871839275220042445260109153167277707414472061641714758635765020556617")
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+9.
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19937756971775647987995932169929341994314640652964949448313374472400716661030"), bigFromBase10("2581911344467009335267311115468803099551665605076196740867805258568234346338")}

View File

@@ -0,0 +1,286 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// curvePoint implements the elliptic curve y²=x³+3. Points are kept in
// Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
// GF(p).
type curvePoint struct {
x, y, z, t *big.Int
}
var curveB = new(big.Int).SetInt64(3)
// curveGen is the generator of G₁.
var curveGen = &curvePoint{
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(2),
new(big.Int).SetInt64(1),
new(big.Int).SetInt64(1),
}
func newCurvePoint(pool *bnPool) *curvePoint {
return &curvePoint{
pool.Get(),
pool.Get(),
pool.Get(),
pool.Get(),
}
}
func (c *curvePoint) String() string {
c.MakeAffine(new(bnPool))
return "(" + c.x.String() + ", " + c.y.String() + ")"
}
func (c *curvePoint) Put(pool *bnPool) {
pool.Put(c.x)
pool.Put(c.y)
pool.Put(c.z)
pool.Put(c.t)
}
func (c *curvePoint) Set(a *curvePoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *curvePoint) IsOnCurve() bool {
yy := new(big.Int).Mul(c.y, c.y)
xxx := new(big.Int).Mul(c.x, c.x)
xxx.Mul(xxx, c.x)
yy.Sub(yy, xxx)
yy.Sub(yy, curveB)
if yy.Sign() < 0 || yy.Cmp(P) >= 0 {
yy.Mod(yy, P)
}
return yy.Sign() == 0
}
func (c *curvePoint) SetInfinity() {
c.z.SetInt64(0)
}
func (c *curvePoint) IsInfinity() bool {
return c.z.Sign() == 0
}
func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
z1z1 := pool.Get().Mul(a.z, a.z)
z1z1.Mod(z1z1, P)
z2z2 := pool.Get().Mul(b.z, b.z)
z2z2.Mod(z2z2, P)
u1 := pool.Get().Mul(a.x, z2z2)
u1.Mod(u1, P)
u2 := pool.Get().Mul(b.x, z1z1)
u2.Mod(u2, P)
t := pool.Get().Mul(b.z, z2z2)
t.Mod(t, P)
s1 := pool.Get().Mul(a.y, t)
s1.Mod(s1, P)
t.Mul(a.z, z1z1)
t.Mod(t, P)
s2 := pool.Get().Mul(b.y, t)
s2.Mod(s2, P)
// Compute x = (2h)²(s²-u1-u2)
// where s = (s2-s1)/(u2-u1) is the slope of the line through
// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
// This is also:
// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
// = r² - j - 2v
// with the notations below.
h := pool.Get().Sub(u2, u1)
xEqual := h.Sign() == 0
t.Add(h, h)
// i = 4h²
i := pool.Get().Mul(t, t)
i.Mod(i, P)
// j = 4h³
j := pool.Get().Mul(h, i)
j.Mod(j, P)
t.Sub(s2, s1)
yEqual := t.Sign() == 0
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := pool.Get().Add(t, t)
v := pool.Get().Mul(u1, i)
v.Mod(v, P)
// t4 = 4(s2-s1)²
t4 := pool.Get().Mul(r, r)
t4.Mod(t4, P)
t.Add(v, v)
t6 := pool.Get().Sub(t4, j)
c.x.Sub(t6, t)
// Set y = -(2h)³(s1 + s*(x/4h²-u1))
// This is also
// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
t.Sub(v, c.x) // t7
t4.Mul(s1, j) // t8
t4.Mod(t4, P)
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
t4.Mod(t4, P)
c.y.Sub(t4, t6)
// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
t.Add(a.z, b.z) // t11
t4.Mul(t, t) // t12
t4.Mod(t4, P)
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h)
c.z.Mod(c.z, P)
pool.Put(z1z1)
pool.Put(z2z2)
pool.Put(u1)
pool.Put(u2)
pool.Put(t)
pool.Put(s1)
pool.Put(s2)
pool.Put(h)
pool.Put(i)
pool.Put(j)
pool.Put(r)
pool.Put(v)
pool.Put(t4)
pool.Put(t6)
}
func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := pool.Get().Mul(a.x, a.x)
A.Mod(A, P)
B := pool.Get().Mul(a.y, a.y)
B.Mod(B, P)
C_ := pool.Get().Mul(B, B)
C_.Mod(C_, P)
t := pool.Get().Add(a.x, B)
t2 := pool.Get().Mul(t, t)
t2.Mod(t2, P)
t.Sub(t2, A)
t2.Sub(t, C_)
d := pool.Get().Add(t2, t2)
t.Add(A, A)
e := pool.Get().Add(t, A)
f := pool.Get().Mul(e, e)
f.Mod(f, P)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C_, C_)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y)
t2.Mod(t2, P)
c.y.Sub(t2, t)
t.Mul(a.y, a.z)
t.Mod(t, P)
c.z.Add(t, t)
pool.Put(A)
pool.Put(B)
pool.Put(C_)
pool.Put(t)
pool.Put(t2)
pool.Put(d)
pool.Put(e)
pool.Put(f)
}
func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
sum := newCurvePoint(pool)
sum.SetInfinity()
t := newCurvePoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
// c to 0 : 1 : 0.
func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
return c
}
if c.IsInfinity() {
c.x.SetInt64(0)
c.y.SetInt64(1)
c.z.SetInt64(0)
c.t.SetInt64(0)
return c
}
zInv := pool.Get().ModInverse(c.z, P)
t := pool.Get().Mul(c.y, zInv)
t.Mod(t, P)
zInv2 := pool.Get().Mul(zInv, zInv)
zInv2.Mod(zInv2, P)
c.y.Mul(t, zInv2)
c.y.Mod(c.y, P)
t.Mul(c.x, zInv2)
t.Mod(t, P)
c.x.Set(t)
c.z.SetInt64(1)
c.t.SetInt64(1)
pool.Put(zInv)
pool.Put(t)
pool.Put(zInv2)
return c
}
func (c *curvePoint) Negative(a *curvePoint) {
c.x.Set(a.x)
c.y.Neg(a.y)
c.z.Set(a.z)
c.t.SetInt64(0)
}

View File

@@ -0,0 +1,200 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP12 implements the field of size p¹² as a quadratic extension of gfP6
// where ω²=τ.
type gfP12 struct {
x, y *gfP6 // value is xω + y
}
func newGFp12(pool *bnPool) *gfP12 {
return &gfP12{newGFp6(pool), newGFp6(pool)}
}
func (e *gfP12) String() string {
return "(" + e.x.String() + "," + e.y.String() + ")"
}
func (e *gfP12) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
}
func (e *gfP12) Set(a *gfP12) *gfP12 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP12) SetZero() *gfP12 {
e.x.SetZero()
e.y.SetZero()
return e
}
func (e *gfP12) SetOne() *gfP12 {
e.x.SetZero()
e.y.SetOne()
return e
}
func (e *gfP12) Minimal() {
e.x.Minimal()
e.y.Minimal()
}
func (e *gfP12) IsZero() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsZero()
}
func (e *gfP12) IsOne() bool {
e.Minimal()
return e.x.IsZero() && e.y.IsOne()
}
func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Set(a.y)
return a
}
func (e *gfP12) Negative(a *gfP12) *gfP12 {
e.x.Negative(a.x)
e.y.Negative(a.y)
return e
}
// Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
e.x.Frobenius(a.x, pool)
e.y.Frobenius(a.y, pool)
e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
return e
}
// FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
e.x.FrobeniusP2(a.x)
e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
e.y.FrobeniusP2(a.y)
return e
}
func (e *gfP12) Add(a, b *gfP12) *gfP12 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
tx := newGFp6(pool)
tx.Mul(a.x, b.y, pool)
t := newGFp6(pool)
t.Mul(b.x, a.y, pool)
tx.Add(tx, t)
ty := newGFp6(pool)
ty.Mul(a.y, b.y, pool)
t.Mul(a.x, b.x, pool)
t.MulTau(t, pool)
e.y.Add(ty, t)
e.x.Set(tx)
tx.Put(pool)
ty.Put(pool)
t.Put(pool)
return e
}
func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
e.x.Mul(e.x, b, pool)
e.y.Mul(e.y, b, pool)
return e
}
func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
sum := newGFp12(pool)
sum.SetOne()
t := newGFp12(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
// Complex squaring algorithm
v0 := newGFp6(pool)
v0.Mul(a.x, a.y, pool)
t := newGFp6(pool)
t.MulTau(a.x, pool)
t.Add(a.y, t)
ty := newGFp6(pool)
ty.Add(a.x, a.y)
ty.Mul(ty, t, pool)
ty.Sub(ty, v0)
t.MulTau(v0, pool)
ty.Sub(ty, t)
e.y.Set(ty)
e.x.Double(v0)
v0.Put(pool)
t.Put(pool)
ty.Put(pool)
return e
}
func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t1 := newGFp6(pool)
t2 := newGFp6(pool)
t1.Square(a.x, pool)
t2.Square(a.y, pool)
t1.MulTau(t1, pool)
t1.Sub(t2, t1)
t2.Invert(t1, pool)
e.x.Negative(a.x)
e.y.Set(a.y)
e.MulScalar(e, t2, pool)
t1.Put(pool)
t2.Put(pool)
return e
}

View File

@@ -0,0 +1,227 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP2 implements a field of size p² as a quadratic extension of the base
// field where i²=-1.
type gfP2 struct {
x, y *big.Int // value is xi+y.
}
func newGFp2(pool *bnPool) *gfP2 {
return &gfP2{pool.Get(), pool.Get()}
}
func (e *gfP2) String() string {
x := new(big.Int).Mod(e.x, P)
y := new(big.Int).Mod(e.y, P)
return "(" + x.String() + "," + y.String() + ")"
}
func (e *gfP2) Put(pool *bnPool) {
pool.Put(e.x)
pool.Put(e.y)
}
func (e *gfP2) Set(a *gfP2) *gfP2 {
e.x.Set(a.x)
e.y.Set(a.y)
return e
}
func (e *gfP2) SetZero() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(0)
return e
}
func (e *gfP2) SetOne() *gfP2 {
e.x.SetInt64(0)
e.y.SetInt64(1)
return e
}
func (e *gfP2) Minimal() {
if e.x.Sign() < 0 || e.x.Cmp(P) >= 0 {
e.x.Mod(e.x, P)
}
if e.y.Sign() < 0 || e.y.Cmp(P) >= 0 {
e.y.Mod(e.y, P)
}
}
func (e *gfP2) IsZero() bool {
return e.x.Sign() == 0 && e.y.Sign() == 0
}
func (e *gfP2) IsOne() bool {
if e.x.Sign() != 0 {
return false
}
words := e.y.Bits()
return len(words) == 1 && words[0] == 1
}
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
e.y.Set(a.y)
e.x.Neg(a.x)
return e
}
func (e *gfP2) Negative(a *gfP2) *gfP2 {
e.x.Neg(a.x)
e.y.Neg(a.y)
return e
}
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
return e
}
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
return e
}
func (e *gfP2) Double(a *gfP2) *gfP2 {
e.x.Lsh(a.x, 1)
e.y.Lsh(a.y, 1)
return e
}
func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
sum := newGFp2(pool)
sum.SetOne()
t := newGFp2(pool)
for i := power.BitLen() - 1; i >= 0; i-- {
t.Square(sum, pool)
if power.Bit(i) != 0 {
sum.Mul(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// See "Multiplication and Squaring in Pairing-Friendly Fields",
// http://eprint.iacr.org/2006/471.pdf
func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
tx := pool.Get().Mul(a.x, b.y)
t := pool.Get().Mul(b.x, a.y)
tx.Add(tx, t)
tx.Mod(tx, P)
ty := pool.Get().Mul(a.y, b.y)
t.Mul(a.x, b.x)
ty.Sub(ty, t)
e.y.Mod(ty, P)
e.x.Set(tx)
pool.Put(tx)
pool.Put(ty)
pool.Put(t)
return e
}
func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
e.x.Mul(a.x, b)
e.y.Mul(a.y, b)
return e
}
// MulXi sets e=ξa where ξ=i+9 and then returns e.
func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
// (xi+y)(i+3) = (9x+y)i+(9y-x)
tx := pool.Get().Lsh(a.x, 3)
tx.Add(tx, a.x)
tx.Add(tx, a.y)
ty := pool.Get().Lsh(a.y, 3)
ty.Add(ty, a.y)
ty.Sub(ty, a.x)
e.x.Set(tx)
e.y.Set(ty)
pool.Put(tx)
pool.Put(ty)
return e
}
func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
// Complex squaring algorithm:
// (xi+b)² = (x+y)(y-x) + 2*i*x*y
t1 := pool.Get().Sub(a.y, a.x)
t2 := pool.Get().Add(a.x, a.y)
ty := pool.Get().Mul(t1, t2)
ty.Mod(ty, P)
t1.Mul(a.x, a.y)
t1.Lsh(t1, 1)
e.x.Mod(t1, P)
e.y.Set(ty)
pool.Put(t1)
pool.Put(t2)
pool.Put(ty)
return e
}
func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
t := pool.Get()
t.Mul(a.y, a.y)
t2 := pool.Get()
t2.Mul(a.x, a.x)
t.Add(t, t2)
inv := pool.Get()
inv.ModInverse(t, P)
e.x.Neg(a.x)
e.x.Mul(e.x, inv)
e.x.Mod(e.x, P)
e.y.Mul(a.y, inv)
e.y.Mod(e.y, P)
pool.Put(t)
pool.Put(t2)
pool.Put(inv)
return e
}
func (e *gfP2) Real() *big.Int {
return e.x
}
func (e *gfP2) Imag() *big.Int {
return e.y
}

View File

@@ -0,0 +1,296 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
// For details of the algorithms used, see "Multiplication and Squaring on
// Pairing-Friendly Fields, Devegili et al.
// http://eprint.iacr.org/2006/471.pdf.
import (
"math/big"
)
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
// and ξ=i+9.
type gfP6 struct {
x, y, z *gfP2 // value is xτ² + yτ + z
}
func newGFp6(pool *bnPool) *gfP6 {
return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
}
func (e *gfP6) String() string {
return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
}
func (e *gfP6) Put(pool *bnPool) {
e.x.Put(pool)
e.y.Put(pool)
e.z.Put(pool)
}
func (e *gfP6) Set(a *gfP6) *gfP6 {
e.x.Set(a.x)
e.y.Set(a.y)
e.z.Set(a.z)
return e
}
func (e *gfP6) SetZero() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetZero()
return e
}
func (e *gfP6) SetOne() *gfP6 {
e.x.SetZero()
e.y.SetZero()
e.z.SetOne()
return e
}
func (e *gfP6) Minimal() {
e.x.Minimal()
e.y.Minimal()
e.z.Minimal()
}
func (e *gfP6) IsZero() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
}
func (e *gfP6) IsOne() bool {
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
}
func (e *gfP6) Negative(a *gfP6) *gfP6 {
e.x.Negative(a.x)
e.y.Negative(a.y)
e.z.Negative(a.z)
return e
}
func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
e.x.Conjugate(a.x)
e.y.Conjugate(a.y)
e.z.Conjugate(a.z)
e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
e.y.Mul(e.y, xiToPMinus1Over3, pool)
return e
}
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
e.z.Set(a.z)
return e
}
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
e.x.Add(a.x, b.x)
e.y.Add(a.y, b.y)
e.z.Add(a.z, b.z)
return e
}
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
e.x.Sub(a.x, b.x)
e.y.Sub(a.y, b.y)
e.z.Sub(a.z, b.z)
return e
}
func (e *gfP6) Double(a *gfP6) *gfP6 {
e.x.Double(a.x)
e.y.Double(a.y)
e.z.Double(a.z)
return e
}
func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
// "Multiplication and Squaring on Pairing-Friendly Fields"
// Section 4, Karatsuba method.
// http://eprint.iacr.org/2006/471.pdf
v0 := newGFp2(pool)
v0.Mul(a.z, b.z, pool)
v1 := newGFp2(pool)
v1.Mul(a.y, b.y, pool)
v2 := newGFp2(pool)
v2.Mul(a.x, b.x, pool)
t0 := newGFp2(pool)
t0.Add(a.x, a.y)
t1 := newGFp2(pool)
t1.Add(b.x, b.y)
tz := newGFp2(pool)
tz.Mul(t0, t1, pool)
tz.Sub(tz, v1)
tz.Sub(tz, v2)
tz.MulXi(tz, pool)
tz.Add(tz, v0)
t0.Add(a.y, a.z)
t1.Add(b.y, b.z)
ty := newGFp2(pool)
ty.Mul(t0, t1, pool)
ty.Sub(ty, v0)
ty.Sub(ty, v1)
t0.MulXi(v2, pool)
ty.Add(ty, t0)
t0.Add(a.x, a.z)
t1.Add(b.x, b.z)
tx := newGFp2(pool)
tx.Mul(t0, t1, pool)
tx.Sub(tx, v0)
tx.Add(tx, v1)
tx.Sub(tx, v2)
e.x.Set(tx)
e.y.Set(ty)
e.z.Set(tz)
t0.Put(pool)
t1.Put(pool)
tx.Put(pool)
ty.Put(pool)
tz.Put(pool)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
return e
}
func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
e.x.Mul(a.x, b, pool)
e.y.Mul(a.y, b, pool)
e.z.Mul(a.z, b, pool)
return e
}
func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
e.x.MulScalar(a.x, b)
e.y.MulScalar(a.y, b)
e.z.MulScalar(a.z, b)
return e
}
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
tz := newGFp2(pool)
tz.MulXi(a.x, pool)
ty := newGFp2(pool)
ty.Set(a.y)
e.y.Set(a.z)
e.x.Set(ty)
e.z.Set(tz)
tz.Put(pool)
ty.Put(pool)
}
func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
v0 := newGFp2(pool).Square(a.z, pool)
v1 := newGFp2(pool).Square(a.y, pool)
v2 := newGFp2(pool).Square(a.x, pool)
c0 := newGFp2(pool).Add(a.x, a.y)
c0.Square(c0, pool)
c0.Sub(c0, v1)
c0.Sub(c0, v2)
c0.MulXi(c0, pool)
c0.Add(c0, v0)
c1 := newGFp2(pool).Add(a.y, a.z)
c1.Square(c1, pool)
c1.Sub(c1, v0)
c1.Sub(c1, v1)
xiV2 := newGFp2(pool).MulXi(v2, pool)
c1.Add(c1, xiV2)
c2 := newGFp2(pool).Add(a.x, a.z)
c2.Square(c2, pool)
c2.Sub(c2, v0)
c2.Add(c2, v1)
c2.Sub(c2, v2)
e.x.Set(c2)
e.y.Set(c1)
e.z.Set(c0)
v0.Put(pool)
v1.Put(pool)
v2.Put(pool)
c0.Put(pool)
c1.Put(pool)
c2.Put(pool)
xiV2.Put(pool)
return e
}
func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
// ftp://136.206.11.249/pub/crypto/pairings.pdf
// Here we can give a short explanation of how it works: let j be a cubic root of
// unity in GF(p²) so that 1+j+j²=0.
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
//
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
//
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
t1 := newGFp2(pool)
A := newGFp2(pool)
A.Square(a.z, pool)
t1.Mul(a.x, a.y, pool)
t1.MulXi(t1, pool)
A.Sub(A, t1)
B := newGFp2(pool)
B.Square(a.x, pool)
B.MulXi(B, pool)
t1.Mul(a.y, a.z, pool)
B.Sub(B, t1)
C_ := newGFp2(pool)
C_.Square(a.y, pool)
t1.Mul(a.x, a.z, pool)
C_.Sub(C_, t1)
F := newGFp2(pool)
F.Mul(C_, a.y, pool)
F.MulXi(F, pool)
t1.Mul(A, a.z, pool)
F.Add(F, t1)
t1.Mul(B, a.x, pool)
t1.MulXi(t1, pool)
F.Add(F, t1)
F.Invert(F, pool)
e.x.Mul(C_, F, pool)
e.y.Mul(B, F, pool)
e.z.Mul(A, F, pool)
t1.Put(pool)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
F.Put(pool)
return e
}

View File

@@ -0,0 +1,397 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the mixed addition algorithm from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
B := newGFp2(pool).Mul(p.x, r.t, pool)
D := newGFp2(pool).Add(p.y, r.z)
D.Square(D, pool)
D.Sub(D, r2)
D.Sub(D, r.t)
D.Mul(D, r.t, pool)
H := newGFp2(pool).Sub(B, r.x)
I := newGFp2(pool).Square(H, pool)
E := newGFp2(pool).Add(I, I)
E.Add(E, E)
J := newGFp2(pool).Mul(H, E, pool)
L1 := newGFp2(pool).Sub(D, r.y)
L1.Sub(L1, r.y)
V := newGFp2(pool).Mul(r.x, E, pool)
rOut = newTwistPoint(pool)
rOut.x.Square(L1, pool)
rOut.x.Sub(rOut.x, J)
rOut.x.Sub(rOut.x, V)
rOut.x.Sub(rOut.x, V)
rOut.z.Add(r.z, H)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, r.t)
rOut.z.Sub(rOut.z, I)
t := newGFp2(pool).Sub(V, rOut.x)
t.Mul(t, L1, pool)
t2 := newGFp2(pool).Mul(r.y, J, pool)
t2.Add(t2, t2)
rOut.y.Sub(t, t2)
rOut.t.Square(rOut.z, pool)
t.Add(p.y, rOut.z)
t.Square(t, pool)
t.Sub(t, r2)
t.Sub(t, rOut.t)
t2.Mul(L1, p.x, pool)
t2.Add(t2, t2)
a = newGFp2(pool)
a.Sub(t2, t)
c = newGFp2(pool)
c.MulScalar(rOut.z, q.y)
c.Add(c, c)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, L1)
b.MulScalar(b, q.x)
b.Add(b, b)
B.Put(pool)
D.Put(pool)
H.Put(pool)
I.Put(pool)
E.Put(pool)
J.Put(pool)
L1.Put(pool)
V.Put(pool)
t.Put(pool)
t2.Put(pool)
return
}
func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
// See the doubling algorithm for a=0 from "Faster Computation of the
// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
A := newGFp2(pool).Square(r.x, pool)
B := newGFp2(pool).Square(r.y, pool)
C_ := newGFp2(pool).Square(B, pool)
D := newGFp2(pool).Add(r.x, B)
D.Square(D, pool)
D.Sub(D, A)
D.Sub(D, C_)
D.Add(D, D)
E := newGFp2(pool).Add(A, A)
E.Add(E, A)
G := newGFp2(pool).Square(E, pool)
rOut = newTwistPoint(pool)
rOut.x.Sub(G, D)
rOut.x.Sub(rOut.x, D)
rOut.z.Add(r.y, r.z)
rOut.z.Square(rOut.z, pool)
rOut.z.Sub(rOut.z, B)
rOut.z.Sub(rOut.z, r.t)
rOut.y.Sub(D, rOut.x)
rOut.y.Mul(rOut.y, E, pool)
t := newGFp2(pool).Add(C_, C_)
t.Add(t, t)
t.Add(t, t)
rOut.y.Sub(rOut.y, t)
rOut.t.Square(rOut.z, pool)
t.Mul(E, r.t, pool)
t.Add(t, t)
b = newGFp2(pool)
b.SetZero()
b.Sub(b, t)
b.MulScalar(b, q.x)
a = newGFp2(pool)
a.Add(r.x, E)
a.Square(a, pool)
a.Sub(a, A)
a.Sub(a, G)
t.Add(B, B)
t.Add(t, t)
a.Sub(a, t)
c = newGFp2(pool)
c.Mul(rOut.z, r.t, pool)
c.Add(c, c)
c.MulScalar(c, q.y)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
D.Put(pool)
E.Put(pool)
G.Put(pool)
t.Put(pool)
return
}
func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
a2 := newGFp6(pool)
a2.x.SetZero()
a2.y.Set(a)
a2.z.Set(b)
a2.Mul(a2, ret.x, pool)
t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
t := newGFp2(pool)
t.Add(b, c)
t2 := newGFp6(pool)
t2.x.SetZero()
t2.y.Set(a)
t2.z.Set(t)
ret.x.Add(ret.x, ret.y)
ret.y.Set(t3)
ret.x.Mul(ret.x, t2, pool)
ret.x.Sub(ret.x, a2)
ret.x.Sub(ret.x, ret.y)
a2.MulTau(a2, pool)
ret.y.Add(ret.y, a2)
a2.Put(pool)
t3.Put(pool)
t2.Put(pool)
t.Put(pool)
}
// sixuPlus2NAF is 6u+2 in non-adjacent form.
var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
// miller implements the Miller loop for calculating the Optimal Ate pairing.
// See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
ret := newGFp12(pool)
ret.SetOne()
aAffine := newTwistPoint(pool)
aAffine.Set(q)
aAffine.MakeAffine(pool)
bAffine := newCurvePoint(pool)
bAffine.Set(p)
bAffine.MakeAffine(pool)
minusA := newTwistPoint(pool)
minusA.Negative(aAffine, pool)
r := newTwistPoint(pool)
r.Set(aAffine)
r2 := newGFp2(pool)
r2.Square(aAffine.y, pool)
for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
if i != len(sixuPlus2NAF)-1 {
ret.Square(ret, pool)
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
switch sixuPlus2NAF[i-1] {
case 1:
a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
case -1:
a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
default:
continue
}
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
}
// In order to calculate Q1 we have to convert q from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
//
// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
// where x̄ is the conjugate of x. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of ω² so we
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
// ω².
//
// A similar argument can be made for the y value.
q1 := newTwistPoint(pool)
q1.x.Conjugate(aAffine.x)
q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
q1.y.Conjugate(aAffine.y)
q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
q1.z.SetOne()
q1.t.SetOne()
// For Q2 we are applying the p² Frobenius. The two conjugations cancel
// out and we are left only with the factors from the isomorphism. In
// the case of x, we end up with a pure number which is why
// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
// ignore this to end up with -Q2.
minusQ2 := newTwistPoint(pool)
minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
minusQ2.y.Set(aAffine.y)
minusQ2.z.SetOne()
minusQ2.t.SetOne()
r2.Square(q1.y, pool)
a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
r2.Square(minusQ2.y, pool)
a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
mulLine(ret, a, b, c, pool)
a.Put(pool)
b.Put(pool)
c.Put(pool)
r.Put(pool)
r = newR
aAffine.Put(pool)
bAffine.Put(pool)
minusA.Put(pool)
r.Put(pool)
r2.Put(pool)
return ret
}
// finalExponentiation computes the (p¹²-1)/Order-th power of an element of
// GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
// http://cryptojedi.org/papers/dclxvi-20100714.pdf)
func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
t1 := newGFp12(pool)
// This is the p^6-Frobenius
t1.x.Negative(in.x)
t1.y.Set(in.y)
inv := newGFp12(pool)
inv.Invert(in, pool)
t1.Mul(t1, inv, pool)
t2 := newGFp12(pool).FrobeniusP2(t1, pool)
t1.Mul(t1, t2, pool)
fp := newGFp12(pool).Frobenius(t1, pool)
fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
fp3 := newGFp12(pool).Frobenius(fp2, pool)
fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
fu.Exp(t1, u, pool)
fu2.Exp(fu, u, pool)
fu3.Exp(fu2, u, pool)
y3 := newGFp12(pool).Frobenius(fu, pool)
fu2p := newGFp12(pool).Frobenius(fu2, pool)
fu3p := newGFp12(pool).Frobenius(fu3, pool)
y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
y0 := newGFp12(pool)
y0.Mul(fp, fp2, pool)
y0.Mul(y0, fp3, pool)
y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
y1.Conjugate(t1)
y5.Conjugate(fu2)
y3.Conjugate(y3)
y4.Mul(fu, fu2p, pool)
y4.Conjugate(y4)
y6 := newGFp12(pool)
y6.Mul(fu3, fu3p, pool)
y6.Conjugate(y6)
t0 := newGFp12(pool)
t0.Square(y6, pool)
t0.Mul(t0, y4, pool)
t0.Mul(t0, y5, pool)
t1.Mul(y3, y5, pool)
t1.Mul(t1, t0, pool)
t0.Mul(t0, y2, pool)
t1.Square(t1, pool)
t1.Mul(t1, t0, pool)
t1.Square(t1, pool)
t0.Mul(t1, y1, pool)
t1.Mul(t1, y0, pool)
t0.Square(t0, pool)
t0.Mul(t0, t1, pool)
inv.Put(pool)
t1.Put(pool)
t2.Put(pool)
fp.Put(pool)
fp2.Put(pool)
fp3.Put(pool)
fu.Put(pool)
fu2.Put(pool)
fu3.Put(pool)
fu2p.Put(pool)
fu3p.Put(pool)
y0.Put(pool)
y1.Put(pool)
y2.Put(pool)
y3.Put(pool)
y4.Put(pool)
y5.Put(pool)
y6.Put(pool)
return t0
}
func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
e := miller(a, b, pool)
ret := finalExponentiation(e, pool)
e.Put(pool)
if a.IsInfinity() || b.IsInfinity() {
ret.SetOne()
}
return ret
}

View File

@@ -0,0 +1,263 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bn256
import (
"math/big"
)
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
x, y, z, t *gfP2
}
var twistB = &gfP2{
bigFromBase10("266929791119991161246907387137283842545076965332900288569378510910307636690"),
bigFromBase10("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
&gfP2{
bigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"),
bigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"),
},
&gfP2{
bigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"),
bigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
&gfP2{
bigFromBase10("0"),
bigFromBase10("1"),
},
}
func newTwistPoint(pool *bnPool) *twistPoint {
return &twistPoint{
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
newGFp2(pool),
}
}
func (c *twistPoint) String() string {
return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
}
func (c *twistPoint) Put(pool *bnPool) {
c.x.Put(pool)
c.y.Put(pool)
c.z.Put(pool)
c.t.Put(pool)
}
func (c *twistPoint) Set(a *twistPoint) {
c.x.Set(a.x)
c.y.Set(a.y)
c.z.Set(a.z)
c.t.Set(a.t)
}
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
func (c *twistPoint) IsOnCurve() bool {
pool := new(bnPool)
yy := newGFp2(pool).Square(c.y, pool)
xxx := newGFp2(pool).Square(c.x, pool)
xxx.Mul(xxx, c.x, pool)
yy.Sub(yy, xxx)
yy.Sub(yy, twistB)
yy.Minimal()
if yy.x.Sign() != 0 || yy.y.Sign() != 0 {
return false
}
cneg := newTwistPoint(pool)
cneg.Mul(c, Order, pool)
return cneg.z.IsZero()
}
func (c *twistPoint) SetInfinity() {
c.z.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z1z1 := newGFp2(pool).Square(a.z, pool)
z2z2 := newGFp2(pool).Square(b.z, pool)
u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
t := newGFp2(pool).Mul(b.z, z2z2, pool)
s1 := newGFp2(pool).Mul(a.y, t, pool)
t.Mul(a.z, z1z1, pool)
s2 := newGFp2(pool).Mul(b.y, t, pool)
h := newGFp2(pool).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := newGFp2(pool).Square(t, pool)
j := newGFp2(pool).Mul(h, i, pool)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a, pool)
return
}
r := newGFp2(pool).Add(t, t)
v := newGFp2(pool).Mul(u1, i, pool)
t4 := newGFp2(pool).Square(r, pool)
t.Add(v, v)
t6 := newGFp2(pool).Sub(t4, j)
c.x.Sub(t6, t)
t.Sub(v, c.x) // t7
t4.Mul(s1, j, pool) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t, pool) // t10
c.y.Sub(t4, t6)
t.Add(a.z, b.z) // t11
t4.Square(t, pool) // t12
t.Sub(t4, z1z1) // t13
t4.Sub(t, z2z2) // t14
c.z.Mul(t4, h, pool)
z1z1.Put(pool)
z2z2.Put(pool)
u1.Put(pool)
u2.Put(pool)
t.Put(pool)
s1.Put(pool)
s2.Put(pool)
h.Put(pool)
i.Put(pool)
j.Put(pool)
r.Put(pool)
v.Put(pool)
t4.Put(pool)
t6.Put(pool)
}
func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := newGFp2(pool).Square(a.x, pool)
B := newGFp2(pool).Square(a.y, pool)
C_ := newGFp2(pool).Square(B, pool)
t := newGFp2(pool).Add(a.x, B)
t2 := newGFp2(pool).Square(t, pool)
t.Sub(t2, A)
t2.Sub(t, C_)
d := newGFp2(pool).Add(t2, t2)
t.Add(A, A)
e := newGFp2(pool).Add(t, A)
f := newGFp2(pool).Square(e, pool)
t.Add(d, d)
c.x.Sub(f, t)
t.Add(C_, C_)
t2.Add(t, t)
t.Add(t2, t2)
c.y.Sub(d, c.x)
t2.Mul(e, c.y, pool)
c.y.Sub(t2, t)
t.Mul(a.y, a.z, pool)
c.z.Add(t, t)
A.Put(pool)
B.Put(pool)
C_.Put(pool)
t.Put(pool)
t2.Put(pool)
d.Put(pool)
e.Put(pool)
f.Put(pool)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
sum := newTwistPoint(pool)
sum.SetInfinity()
t := newTwistPoint(pool)
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum, pool)
if scalar.Bit(i) != 0 {
sum.Add(t, a, pool)
} else {
sum.Set(t)
}
}
c.Set(sum)
sum.Put(pool)
t.Put(pool)
return c
}
// MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
// c to 0 : 1 : 0.
func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
if c.z.IsOne() {
return c
}
if c.IsInfinity() {
c.x.SetZero()
c.y.SetOne()
c.z.SetZero()
c.t.SetZero()
return c
}
zInv := newGFp2(pool).Invert(c.z, pool)
t := newGFp2(pool).Mul(c.y, zInv, pool)
zInv2 := newGFp2(pool).Square(zInv, pool)
c.y.Mul(t, zInv2, pool)
t.Mul(c.x, zInv2, pool)
c.x.Set(t)
c.z.SetOne()
c.t.SetOne()
zInv.Put(pool)
t.Put(pool)
zInv2.Put(pool)
return c
}
func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
c.x.Set(a.x)
c.y.SetZero()
c.y.Sub(c.y, a.y)
c.z.Set(a.z)
c.t.SetZero()
}

284
vendor/github.com/ethereum/go-ethereum/crypto/crypto.go generated vendored Normal file
View File

@@ -0,0 +1,284 @@
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package crypto
import (
"bufio"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"encoding/hex"
"errors"
"fmt"
"hash"
"io"
"math/big"
"os"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/rlp"
"golang.org/x/crypto/sha3"
)
// SignatureLength indicates the byte length required to carry a signature with recovery id.
const SignatureLength = 64 + 1 // 64 bytes ECDSA signature + 1 byte recovery id
// RecoveryIDOffset points to the byte offset within the signature that contains the recovery id.
const RecoveryIDOffset = 64
// DigestLength sets the signature digest exact length
const DigestLength = 32
var (
secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16)
secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2))
)
var errInvalidPubkey = errors.New("invalid secp256k1 public key")
// KeccakState wraps sha3.state. In addition to the usual hash methods, it also supports
// Read to get a variable amount of data from the hash state. Read is faster than Sum
// because it doesn't copy the internal state, but also modifies the internal state.
type KeccakState interface {
hash.Hash
Read([]byte) (int, error)
}
// NewKeccakState creates a new KeccakState
func NewKeccakState() KeccakState {
return sha3.NewLegacyKeccak256().(KeccakState)
}
// HashData hashes the provided data using the KeccakState and returns a 32 byte hash
func HashData(kh KeccakState, data []byte) (h common.Hash) {
kh.Reset()
kh.Write(data)
kh.Read(h[:])
return h
}
// Keccak256 calculates and returns the Keccak256 hash of the input data.
func Keccak256(data ...[]byte) []byte {
b := make([]byte, 32)
d := NewKeccakState()
for _, b := range data {
d.Write(b)
}
d.Read(b)
return b
}
// Keccak256Hash calculates and returns the Keccak256 hash of the input data,
// converting it to an internal Hash data structure.
func Keccak256Hash(data ...[]byte) (h common.Hash) {
d := NewKeccakState()
for _, b := range data {
d.Write(b)
}
d.Read(h[:])
return h
}
// Keccak512 calculates and returns the Keccak512 hash of the input data.
func Keccak512(data ...[]byte) []byte {
d := sha3.NewLegacyKeccak512()
for _, b := range data {
d.Write(b)
}
return d.Sum(nil)
}
// CreateAddress creates an ethereum address given the bytes and the nonce
func CreateAddress(b common.Address, nonce uint64) common.Address {
data, _ := rlp.EncodeToBytes([]interface{}{b, nonce})
return common.BytesToAddress(Keccak256(data)[12:])
}
// CreateAddress2 creates an ethereum address given the address bytes, initial
// contract code hash and a salt.
func CreateAddress2(b common.Address, salt [32]byte, inithash []byte) common.Address {
return common.BytesToAddress(Keccak256([]byte{0xff}, b.Bytes(), salt[:], inithash)[12:])
}
// ToECDSA creates a private key with the given D value.
func ToECDSA(d []byte) (*ecdsa.PrivateKey, error) {
return toECDSA(d, true)
}
// ToECDSAUnsafe blindly converts a binary blob to a private key. It should almost
// never be used unless you are sure the input is valid and want to avoid hitting
// errors due to bad origin encoding (0 prefixes cut off).
func ToECDSAUnsafe(d []byte) *ecdsa.PrivateKey {
priv, _ := toECDSA(d, false)
return priv
}
// toECDSA creates a private key with the given D value. The strict parameter
// controls whether the key's length should be enforced at the curve size or
// it can also accept legacy encodings (0 prefixes).
func toECDSA(d []byte, strict bool) (*ecdsa.PrivateKey, error) {
priv := new(ecdsa.PrivateKey)
priv.PublicKey.Curve = S256()
if strict && 8*len(d) != priv.Params().BitSize {
return nil, fmt.Errorf("invalid length, need %d bits", priv.Params().BitSize)
}
priv.D = new(big.Int).SetBytes(d)
// The priv.D must < N
if priv.D.Cmp(secp256k1N) >= 0 {
return nil, fmt.Errorf("invalid private key, >=N")
}
// The priv.D must not be zero or negative.
if priv.D.Sign() <= 0 {
return nil, fmt.Errorf("invalid private key, zero or negative")
}
priv.PublicKey.X, priv.PublicKey.Y = priv.PublicKey.Curve.ScalarBaseMult(d)
if priv.PublicKey.X == nil {
return nil, errors.New("invalid private key")
}
return priv, nil
}
// FromECDSA exports a private key into a binary dump.
func FromECDSA(priv *ecdsa.PrivateKey) []byte {
if priv == nil {
return nil
}
return math.PaddedBigBytes(priv.D, priv.Params().BitSize/8)
}
// UnmarshalPubkey converts bytes to a secp256k1 public key.
func UnmarshalPubkey(pub []byte) (*ecdsa.PublicKey, error) {
x, y := elliptic.Unmarshal(S256(), pub)
if x == nil {
return nil, errInvalidPubkey
}
return &ecdsa.PublicKey{Curve: S256(), X: x, Y: y}, nil
}
func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
if pub == nil || pub.X == nil || pub.Y == nil {
return nil
}
return elliptic.Marshal(S256(), pub.X, pub.Y)
}
// HexToECDSA parses a secp256k1 private key.
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
b, err := hex.DecodeString(hexkey)
if byteErr, ok := err.(hex.InvalidByteError); ok {
return nil, fmt.Errorf("invalid hex character %q in private key", byte(byteErr))
} else if err != nil {
return nil, errors.New("invalid hex data for private key")
}
return ToECDSA(b)
}
// LoadECDSA loads a secp256k1 private key from the given file.
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
fd, err := os.Open(file)
if err != nil {
return nil, err
}
defer fd.Close()
r := bufio.NewReader(fd)
buf := make([]byte, 64)
n, err := readASCII(buf, r)
if err != nil {
return nil, err
} else if n != len(buf) {
return nil, fmt.Errorf("key file too short, want 64 hex characters")
}
if err := checkKeyFileEnd(r); err != nil {
return nil, err
}
return HexToECDSA(string(buf))
}
// readASCII reads into 'buf', stopping when the buffer is full or
// when a non-printable control character is encountered.
func readASCII(buf []byte, r *bufio.Reader) (n int, err error) {
for ; n < len(buf); n++ {
buf[n], err = r.ReadByte()
switch {
case err == io.EOF || buf[n] < '!':
return n, nil
case err != nil:
return n, err
}
}
return n, nil
}
// checkKeyFileEnd skips over additional newlines at the end of a key file.
func checkKeyFileEnd(r *bufio.Reader) error {
for i := 0; ; i++ {
b, err := r.ReadByte()
switch {
case err == io.EOF:
return nil
case err != nil:
return err
case b != '\n' && b != '\r':
return fmt.Errorf("invalid character %q at end of key file", b)
case i >= 2:
return errors.New("key file too long, want 64 hex characters")
}
}
}
// SaveECDSA saves a secp256k1 private key to the given file with
// restrictive permissions. The key data is saved hex-encoded.
func SaveECDSA(file string, key *ecdsa.PrivateKey) error {
k := hex.EncodeToString(FromECDSA(key))
return os.WriteFile(file, []byte(k), 0600)
}
// GenerateKey generates a new private key.
func GenerateKey() (*ecdsa.PrivateKey, error) {
return ecdsa.GenerateKey(S256(), rand.Reader)
}
// ValidateSignatureValues verifies whether the signature values are valid with
// the given chain rules. The v value is assumed to be either 0 or 1.
func ValidateSignatureValues(v byte, r, s *big.Int, homestead bool) bool {
if r.Cmp(common.Big1) < 0 || s.Cmp(common.Big1) < 0 {
return false
}
// reject upper range of s values (ECDSA malleability)
// see discussion in secp256k1/libsecp256k1/include/secp256k1.h
if homestead && s.Cmp(secp256k1halfN) > 0 {
return false
}
// Frontier: allow s to be in full N range
return r.Cmp(secp256k1N) < 0 && s.Cmp(secp256k1N) < 0 && (v == 0 || v == 1)
}
func PubkeyToAddress(p ecdsa.PublicKey) common.Address {
pubBytes := FromECDSAPub(&p)
return common.BytesToAddress(Keccak256(pubBytes[1:])[12:])
}
func zeroBytes(bytes []byte) {
for i := range bytes {
bytes[i] = 0
}
}

View File

@@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*~

View File

@@ -0,0 +1,28 @@
Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
Copyright (c) 2012 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,94 @@
# NOTE
This implementation is direct fork of Kylom's implementation. I claim no authorship over this code apart from some minor modifications.
Please be aware this code **has not yet been reviewed**.
ecies implements the Elliptic Curve Integrated Encryption Scheme.
The package is designed to be compliant with the appropriate NIST
standards, and therefore doesn't support the full SEC 1 algorithm set.
STATUS:
ecies should be ready for use. The ASN.1 support is only complete so
far as to supported the listed algorithms before.
CAVEATS
1. CMAC support is currently not present.
SUPPORTED ALGORITHMS
SYMMETRIC CIPHERS HASH FUNCTIONS
AES128 SHA-1
AES192 SHA-224
AES256 SHA-256
SHA-384
ELLIPTIC CURVE SHA-512
P256
P384 KEY DERIVATION FUNCTION
P521 NIST SP 800-65a Concatenation KDF
Curve P224 isn't supported because it does not provide a minimum security
level of AES128 with HMAC-SHA1. According to NIST SP 800-57, the security
level of P224 is 112 bits of security. Symmetric ciphers use CTR-mode;
message tags are computed using HMAC-<HASH> function.
CURVE SELECTION
According to NIST SP 800-57, the following curves should be selected:
+----------------+-------+
| SYMMETRIC SIZE | CURVE |
+----------------+-------+
| 128-bit | P256 |
+----------------+-------+
| 192-bit | P384 |
+----------------+-------+
| 256-bit | P521 |
+----------------+-------+
TODO
1. Look at serialising the parameters with the SEC 1 ASN.1 module.
2. Validate ASN.1 formats with SEC 1.
TEST VECTORS
The only test vectors I've found so far date from 1993, predating AES
and including only 163-bit curves. Therefore, there are no published
test vectors to compare to.
LICENSE
ecies is released under the same license as the Go source code. See the
LICENSE file for details.
REFERENCES
* SEC (Standard for Efficient Cryptography) 1, version 2.0: Elliptic
Curve Cryptography; Certicom, May 2009.
http://www.secg.org/sec1-v2.pdf
* GEC (Guidelines for Efficient Cryptography) 2, version 0.3: Test
Vectors for SEC 1; Certicom, September 1999.
http://read.pudn.com/downloads168/doc/772358/TestVectorsforSEC%201-gec2.pdf
* NIST SP 800-56a: Recommendation for Pair-Wise Key Establishment Schemes
Using Discrete Logarithm Cryptography. National Institute of Standards
and Technology, May 2007.
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
* Suite B Implementers Guide to NIST SP 800-56A. National Security
Agency, July 28, 2009.
http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf
* NIST SP 800-57: Recommendation for Key Management Part 1: General
(Revision 3). National Institute of Standards and Technology, July
2012.
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

View File

@@ -0,0 +1,317 @@
// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
// Copyright (c) 2012 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package ecies
import (
"crypto/cipher"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac"
"crypto/subtle"
"encoding/binary"
"fmt"
"hash"
"io"
"math/big"
)
var (
ErrImport = fmt.Errorf("ecies: failed to import key")
ErrInvalidCurve = fmt.Errorf("ecies: invalid elliptic curve")
ErrInvalidPublicKey = fmt.Errorf("ecies: invalid public key")
ErrSharedKeyIsPointAtInfinity = fmt.Errorf("ecies: shared key is point at infinity")
ErrSharedKeyTooBig = fmt.Errorf("ecies: shared key params are too big")
)
// PublicKey is a representation of an elliptic curve public key.
type PublicKey struct {
X *big.Int
Y *big.Int
elliptic.Curve
Params *ECIESParams
}
// Export an ECIES public key as an ECDSA public key.
func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey {
return &ecdsa.PublicKey{Curve: pub.Curve, X: pub.X, Y: pub.Y}
}
// Import an ECDSA public key as an ECIES public key.
func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey {
return &PublicKey{
X: pub.X,
Y: pub.Y,
Curve: pub.Curve,
Params: ParamsFromCurve(pub.Curve),
}
}
// PrivateKey is a representation of an elliptic curve private key.
type PrivateKey struct {
PublicKey
D *big.Int
}
// Export an ECIES private key as an ECDSA private key.
func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey {
pub := &prv.PublicKey
pubECDSA := pub.ExportECDSA()
return &ecdsa.PrivateKey{PublicKey: *pubECDSA, D: prv.D}
}
// Import an ECDSA private key as an ECIES private key.
func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey {
pub := ImportECDSAPublic(&prv.PublicKey)
return &PrivateKey{*pub, prv.D}
}
// Generate an elliptic curve public / private keypair. If params is nil,
// the recommended default parameters for the key will be chosen.
func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) {
pb, x, y, err := elliptic.GenerateKey(curve, rand)
if err != nil {
return
}
prv = new(PrivateKey)
prv.PublicKey.X = x
prv.PublicKey.Y = y
prv.PublicKey.Curve = curve
prv.D = new(big.Int).SetBytes(pb)
if params == nil {
params = ParamsFromCurve(curve)
}
prv.PublicKey.Params = params
return
}
// MaxSharedKeyLength returns the maximum length of the shared key the
// public key can produce.
func MaxSharedKeyLength(pub *PublicKey) int {
return (pub.Curve.Params().BitSize + 7) / 8
}
// ECDH key agreement method used to establish secret keys for encryption.
func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) {
if prv.PublicKey.Curve != pub.Curve {
return nil, ErrInvalidCurve
}
if skLen+macLen > MaxSharedKeyLength(pub) {
return nil, ErrSharedKeyTooBig
}
x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes())
if x == nil {
return nil, ErrSharedKeyIsPointAtInfinity
}
sk = make([]byte, skLen+macLen)
skBytes := x.Bytes()
copy(sk[len(sk)-len(skBytes):], skBytes)
return sk, nil
}
var (
ErrSharedTooLong = fmt.Errorf("ecies: shared secret is too long")
ErrInvalidMessage = fmt.Errorf("ecies: invalid message")
)
// NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1).
func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) []byte {
counterBytes := make([]byte, 4)
k := make([]byte, 0, roundup(kdLen, hash.Size()))
for counter := uint32(1); len(k) < kdLen; counter++ {
binary.BigEndian.PutUint32(counterBytes, counter)
hash.Reset()
hash.Write(counterBytes)
hash.Write(z)
hash.Write(s1)
k = hash.Sum(k)
}
return k[:kdLen]
}
// roundup rounds size up to the next multiple of blocksize.
func roundup(size, blocksize int) int {
return size + blocksize - (size % blocksize)
}
// deriveKeys creates the encryption and MAC keys using concatKDF.
func deriveKeys(hash hash.Hash, z, s1 []byte, keyLen int) (Ke, Km []byte) {
K := concatKDF(hash, z, s1, 2*keyLen)
Ke = K[:keyLen]
Km = K[keyLen:]
hash.Reset()
hash.Write(Km)
Km = hash.Sum(Km[:0])
return Ke, Km
}
// messageTag computes the MAC of a message (called the tag) as per
// SEC 1, 3.5.
func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte {
mac := hmac.New(hash, km)
mac.Write(msg)
mac.Write(shared)
tag := mac.Sum(nil)
return tag
}
// Generate an initialisation vector for CTR mode.
func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) {
iv = make([]byte, params.BlockSize)
_, err = io.ReadFull(rand, iv)
return
}
// symEncrypt carries out CTR encryption using the block cipher specified in the
func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) {
c, err := params.Cipher(key)
if err != nil {
return
}
iv, err := generateIV(params, rand)
if err != nil {
return
}
ctr := cipher.NewCTR(c, iv)
ct = make([]byte, len(m)+params.BlockSize)
copy(ct, iv)
ctr.XORKeyStream(ct[params.BlockSize:], m)
return
}
// symDecrypt carries out CTR decryption using the block cipher specified in
// the parameters
func symDecrypt(params *ECIESParams, key, ct []byte) (m []byte, err error) {
c, err := params.Cipher(key)
if err != nil {
return
}
ctr := cipher.NewCTR(c, ct[:params.BlockSize])
m = make([]byte, len(ct)-params.BlockSize)
ctr.XORKeyStream(m, ct[params.BlockSize:])
return
}
// Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1.
//
// s1 and s2 contain shared information that is not part of the resulting
// ciphertext. s1 is fed into key derivation, s2 is fed into the MAC. If the
// shared information parameters aren't being used, they should be nil.
func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) {
params, err := pubkeyParams(pub)
if err != nil {
return nil, err
}
R, err := GenerateKey(rand, pub.Curve, params)
if err != nil {
return nil, err
}
z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen)
if err != nil {
return nil, err
}
hash := params.Hash()
Ke, Km := deriveKeys(hash, z, s1, params.KeyLen)
em, err := symEncrypt(rand, params, Ke, m)
if err != nil || len(em) <= params.BlockSize {
return nil, err
}
d := messageTag(params.Hash, Km, em, s2)
Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y)
ct = make([]byte, len(Rb)+len(em)+len(d))
copy(ct, Rb)
copy(ct[len(Rb):], em)
copy(ct[len(Rb)+len(em):], d)
return ct, nil
}
// Decrypt decrypts an ECIES ciphertext.
func (prv *PrivateKey) Decrypt(c, s1, s2 []byte) (m []byte, err error) {
if len(c) == 0 {
return nil, ErrInvalidMessage
}
params, err := pubkeyParams(&prv.PublicKey)
if err != nil {
return nil, err
}
hash := params.Hash()
var (
rLen int
hLen int = hash.Size()
mStart int
mEnd int
)
switch c[0] {
case 2, 3, 4:
rLen = (prv.PublicKey.Curve.Params().BitSize + 7) / 4
if len(c) < (rLen + hLen + 1) {
return nil, ErrInvalidMessage
}
default:
return nil, ErrInvalidPublicKey
}
mStart = rLen
mEnd = len(c) - hLen
R := new(PublicKey)
R.Curve = prv.PublicKey.Curve
R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen])
if R.X == nil {
return nil, ErrInvalidPublicKey
}
z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen)
if err != nil {
return nil, err
}
Ke, Km := deriveKeys(hash, z, s1, params.KeyLen)
d := messageTag(params.Hash, Km, c[mStart:mEnd], s2)
if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 {
return nil, ErrInvalidMessage
}
return symDecrypt(params, Ke, c[mStart:mEnd])
}

View File

@@ -0,0 +1,144 @@
// Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is>
// Copyright (c) 2012 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package ecies
// This file contains parameters for ECIES encryption, specifying the
// symmetric encryption and HMAC parameters.
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/elliptic"
"crypto/sha256"
"crypto/sha512"
"fmt"
"hash"
ethcrypto "github.com/ethereum/go-ethereum/crypto"
)
var (
DefaultCurve = ethcrypto.S256()
ErrUnsupportedECDHAlgorithm = fmt.Errorf("ecies: unsupported ECDH algorithm")
ErrUnsupportedECIESParameters = fmt.Errorf("ecies: unsupported ECIES parameters")
ErrInvalidKeyLen = fmt.Errorf("ecies: invalid key size (> %d) in ECIESParams", maxKeyLen)
)
// KeyLen is limited to prevent overflow of the counter
// in concatKDF. While the theoretical limit is much higher,
// no known cipher uses keys larger than 512 bytes.
const maxKeyLen = 512
type ECIESParams struct {
Hash func() hash.Hash // hash function
hashAlgo crypto.Hash
Cipher func([]byte) (cipher.Block, error) // symmetric cipher
BlockSize int // block size of symmetric cipher
KeyLen int // length of symmetric key
}
// Standard ECIES parameters:
// * ECIES using AES128 and HMAC-SHA-256-16
// * ECIES using AES256 and HMAC-SHA-256-32
// * ECIES using AES256 and HMAC-SHA-384-48
// * ECIES using AES256 and HMAC-SHA-512-64
var (
ECIES_AES128_SHA256 = &ECIESParams{
Hash: sha256.New,
hashAlgo: crypto.SHA256,
Cipher: aes.NewCipher,
BlockSize: aes.BlockSize,
KeyLen: 16,
}
ECIES_AES192_SHA384 = &ECIESParams{
Hash: sha512.New384,
hashAlgo: crypto.SHA384,
Cipher: aes.NewCipher,
BlockSize: aes.BlockSize,
KeyLen: 24,
}
ECIES_AES256_SHA256 = &ECIESParams{
Hash: sha256.New,
hashAlgo: crypto.SHA256,
Cipher: aes.NewCipher,
BlockSize: aes.BlockSize,
KeyLen: 32,
}
ECIES_AES256_SHA384 = &ECIESParams{
Hash: sha512.New384,
hashAlgo: crypto.SHA384,
Cipher: aes.NewCipher,
BlockSize: aes.BlockSize,
KeyLen: 32,
}
ECIES_AES256_SHA512 = &ECIESParams{
Hash: sha512.New,
hashAlgo: crypto.SHA512,
Cipher: aes.NewCipher,
BlockSize: aes.BlockSize,
KeyLen: 32,
}
)
var paramsFromCurve = map[elliptic.Curve]*ECIESParams{
ethcrypto.S256(): ECIES_AES128_SHA256,
elliptic.P256(): ECIES_AES128_SHA256,
elliptic.P384(): ECIES_AES192_SHA384,
elliptic.P521(): ECIES_AES256_SHA512,
}
func AddParamsForCurve(curve elliptic.Curve, params *ECIESParams) {
paramsFromCurve[curve] = params
}
// ParamsFromCurve selects parameters optimal for the selected elliptic curve.
// Only the curves P256, P384, and P512 are supported.
func ParamsFromCurve(curve elliptic.Curve) (params *ECIESParams) {
return paramsFromCurve[curve]
}
func pubkeyParams(key *PublicKey) (*ECIESParams, error) {
params := key.Params
if params == nil {
if params = ParamsFromCurve(key.Curve); params == nil {
return nil, ErrUnsupportedECIESParameters
}
}
if params.KeyLen > maxKeyLen {
return nil, ErrInvalidKeyLen
}
return params, nil
}

View File

@@ -0,0 +1,24 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*~

View File

@@ -0,0 +1,31 @@
Copyright (c) 2010 The Go Authors. All rights reserved.
Copyright (c) 2011 ThePiachu. All rights reserved.
Copyright (c) 2015 Jeffrey Wilcke. All rights reserved.
Copyright (c) 2015 Felix Lange. All rights reserved.
Copyright (c) 2015 Gustav Simonsson. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holder. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,297 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// * The name of ThePiachu may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package secp256k1
import (
"crypto/elliptic"
"math/big"
)
const (
// number of bits in a big.Word
wordBits = 32 << (uint64(^big.Word(0)) >> 63)
// number of bytes in a big.Word
wordBytes = wordBits / 8
)
// readBits encodes the absolute value of bigint as big-endian bytes. Callers
// must ensure that buf has enough space. If buf is too short the result will
// be incomplete.
func readBits(bigint *big.Int, buf []byte) {
i := len(buf)
for _, d := range bigint.Bits() {
for j := 0; j < wordBytes && i > 0; j++ {
i--
buf[i] = byte(d)
d >>= 8
}
}
}
// This code is from https://github.com/ThePiachu/GoBit and implements
// several Koblitz elliptic curves over prime fields.
//
// The curve methods, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
// z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
// when the whole calculation can be performed within the transform
// (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
// it's faster to apply and reverse the transform than to operate in
// affine coordinates.
// A BitCurve represents a Koblitz Curve with a=0.
// See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
type BitCurve struct {
P *big.Int // the order of the underlying field
N *big.Int // the order of the base point
B *big.Int // the constant of the BitCurve equation
Gx, Gy *big.Int // (x,y) of the base point
BitSize int // the size of the underlying field
}
func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
return &elliptic.CurveParams{
P: BitCurve.P,
N: BitCurve.N,
B: BitCurve.B,
Gx: BitCurve.Gx,
Gy: BitCurve.Gy,
BitSize: BitCurve.BitSize,
}
}
// IsOnCurve returns true if the given (x,y) lies on the BitCurve.
func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
// y² = x³ + b
y2 := new(big.Int).Mul(y, y) //y²
y2.Mod(y2, BitCurve.P) //y²%P
x3 := new(big.Int).Mul(x, x) //x²
x3.Mul(x3, x) //x³
x3.Add(x3, BitCurve.B) //x³+B
x3.Mod(x3, BitCurve.P) //(x³+B)%P
return x3.Cmp(y2) == 0
}
// affineFromJacobian reverses the Jacobian transform. See the comment at the
// top of the file.
func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
if z.Sign() == 0 {
return new(big.Int), new(big.Int)
}
zinv := new(big.Int).ModInverse(z, BitCurve.P)
zinvsq := new(big.Int).Mul(zinv, zinv)
xOut = new(big.Int).Mul(x, zinvsq)
xOut.Mod(xOut, BitCurve.P)
zinvsq.Mul(zinvsq, zinv)
yOut = new(big.Int).Mul(y, zinvsq)
yOut.Mod(yOut, BitCurve.P)
return
}
// Add returns the sum of (x1,y1) and (x2,y2)
func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
// If one point is at infinity, return the other point.
// Adding the point at infinity to any point will preserve the other point.
if x1.Sign() == 0 && y1.Sign() == 0 {
return x2, y2
}
if x2.Sign() == 0 && y2.Sign() == 0 {
return x1, y1
}
z := new(big.Int).SetInt64(1)
if x1.Cmp(x2) == 0 && y1.Cmp(y2) == 0 {
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z))
}
return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
}
// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
// (x2, y2, z2) and returns their sum, also in Jacobian form.
func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
z1z1 := new(big.Int).Mul(z1, z1)
z1z1.Mod(z1z1, BitCurve.P)
z2z2 := new(big.Int).Mul(z2, z2)
z2z2.Mod(z2z2, BitCurve.P)
u1 := new(big.Int).Mul(x1, z2z2)
u1.Mod(u1, BitCurve.P)
u2 := new(big.Int).Mul(x2, z1z1)
u2.Mod(u2, BitCurve.P)
h := new(big.Int).Sub(u2, u1)
if h.Sign() == -1 {
h.Add(h, BitCurve.P)
}
i := new(big.Int).Lsh(h, 1)
i.Mul(i, i)
j := new(big.Int).Mul(h, i)
s1 := new(big.Int).Mul(y1, z2)
s1.Mul(s1, z2z2)
s1.Mod(s1, BitCurve.P)
s2 := new(big.Int).Mul(y2, z1)
s2.Mul(s2, z1z1)
s2.Mod(s2, BitCurve.P)
r := new(big.Int).Sub(s2, s1)
if r.Sign() == -1 {
r.Add(r, BitCurve.P)
}
r.Lsh(r, 1)
v := new(big.Int).Mul(u1, i)
x3 := new(big.Int).Set(r)
x3.Mul(x3, x3)
x3.Sub(x3, j)
x3.Sub(x3, v)
x3.Sub(x3, v)
x3.Mod(x3, BitCurve.P)
y3 := new(big.Int).Set(r)
v.Sub(v, x3)
y3.Mul(y3, v)
s1.Mul(s1, j)
s1.Lsh(s1, 1)
y3.Sub(y3, s1)
y3.Mod(y3, BitCurve.P)
z3 := new(big.Int).Add(z1, z2)
z3.Mul(z3, z3)
z3.Sub(z3, z1z1)
if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P)
}
z3.Sub(z3, z2z2)
if z3.Sign() == -1 {
z3.Add(z3, BitCurve.P)
}
z3.Mul(z3, h)
z3.Mod(z3, BitCurve.P)
return x3, y3, z3
}
// Double returns 2*(x,y)
func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
z1 := new(big.Int).SetInt64(1)
return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
}
// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
// returns its double, also in Jacobian form.
func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
a := new(big.Int).Mul(x, x) //X1²
b := new(big.Int).Mul(y, y) //Y1²
c := new(big.Int).Mul(b, b) //B²
d := new(big.Int).Add(x, b) //X1+B
d.Mul(d, d) //(X1+B)²
d.Sub(d, a) //(X1+B)²-A
d.Sub(d, c) //(X1+B)²-A-C
d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C)
e := new(big.Int).Mul(big.NewInt(3), a) //3*A
f := new(big.Int).Mul(e, e) //E²
x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
x3.Sub(f, x3) //F-2*D
x3.Mod(x3, BitCurve.P)
y3 := new(big.Int).Sub(d, x3) //D-X3
y3.Mul(e, y3) //E*(D-X3)
y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
y3.Mod(y3, BitCurve.P)
z3 := new(big.Int).Mul(y, z) //Y1*Z1
z3.Mul(big.NewInt(2), z3) //3*Y1*Z1
z3.Mod(z3, BitCurve.P)
return x3, y3, z3
}
// ScalarBaseMult returns k*G, where G is the base point of the group and k is
// an integer in big-endian form.
func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
}
// Marshal converts a point into the form specified in section 4.3.6 of ANSI
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
byteLen := (BitCurve.BitSize + 7) >> 3
ret := make([]byte, 1+2*byteLen)
ret[0] = 4 // uncompressed point flag
readBits(x, ret[1:1+byteLen])
readBits(y, ret[1+byteLen:])
return ret
}
// Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
// error, x = nil.
func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
byteLen := (BitCurve.BitSize + 7) >> 3
if len(data) != 1+2*byteLen {
return
}
if data[0] != 4 { // uncompressed form
return
}
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
y = new(big.Int).SetBytes(data[1+byteLen:])
return
}
var theCurve = new(BitCurve)
func init() {
// See SEC 2 section 2.7.1
// curve parameters taken from:
// http://www.secg.org/sec2-v2.pdf
theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0)
theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0)
theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0)
theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0)
theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0)
theCurve.BitSize = 256
}
// S256 returns a BitCurve which implements secp256k1.
func S256() *BitCurve {
return theCurve
}

View File

@@ -0,0 +1,21 @@
//go:build dummy
// +build dummy
// This file is part of a workaround for `go mod vendor` which won't vendor
// C files if there's no Go file in the same directory.
// This would prevent the crypto/secp256k1/libsecp256k1/include/secp256k1.h file to be vendored.
//
// This Go file imports the c directory where there is another dummy.go file which
// is the second part of this workaround.
//
// These two files combined make it so `go mod vendor` behaves correctly.
//
// See this issue for reference: https://github.com/golang/go/issues/26366
package secp256k1
import (
_ "github.com/ethereum/go-ethereum/crypto/secp256k1/libsecp256k1/include"
_ "github.com/ethereum/go-ethereum/crypto/secp256k1/libsecp256k1/src"
_ "github.com/ethereum/go-ethereum/crypto/secp256k1/libsecp256k1/src/modules/recovery"
)

View File

@@ -0,0 +1,130 @@
// Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
// secp256k1_context_create_sign_verify creates a context for signing and signature verification.
static secp256k1_context* secp256k1_context_create_sign_verify() {
return secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
}
// secp256k1_ext_ecdsa_recover recovers the public key of an encoded compact signature.
//
// Returns: 1: recovery was successful
// 0: recovery was not successful
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: pubkey_out: the serialized 65-byte public key of the signer (cannot be NULL)
// In: sigdata: pointer to a 65-byte signature with the recovery id at the end (cannot be NULL)
// msgdata: pointer to a 32-byte message (cannot be NULL)
static int secp256k1_ext_ecdsa_recover(
const secp256k1_context* ctx,
unsigned char *pubkey_out,
const unsigned char *sigdata,
const unsigned char *msgdata
) {
secp256k1_ecdsa_recoverable_signature sig;
secp256k1_pubkey pubkey;
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &sig, sigdata, (int)sigdata[64])) {
return 0;
}
if (!secp256k1_ecdsa_recover(ctx, &pubkey, &sig, msgdata)) {
return 0;
}
size_t outputlen = 65;
return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
}
// secp256k1_ext_ecdsa_verify verifies an encoded compact signature.
//
// Returns: 1: signature is valid
// 0: signature is invalid
// Args: ctx: pointer to a context object (cannot be NULL)
// In: sigdata: pointer to a 64-byte signature (cannot be NULL)
// msgdata: pointer to a 32-byte message (cannot be NULL)
// pubkeydata: pointer to public key data (cannot be NULL)
// pubkeylen: length of pubkeydata
static int secp256k1_ext_ecdsa_verify(
const secp256k1_context* ctx,
const unsigned char *sigdata,
const unsigned char *msgdata,
const unsigned char *pubkeydata,
size_t pubkeylen
) {
secp256k1_ecdsa_signature sig;
secp256k1_pubkey pubkey;
if (!secp256k1_ecdsa_signature_parse_compact(ctx, &sig, sigdata)) {
return 0;
}
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeydata, pubkeylen)) {
return 0;
}
return secp256k1_ecdsa_verify(ctx, &sig, msgdata, &pubkey);
}
// secp256k1_ext_reencode_pubkey decodes then encodes a public key. It can be used to
// convert between public key formats. The input/output formats are chosen depending on the
// length of the input/output buffers.
//
// Returns: 1: conversion successful
// 0: conversion unsuccessful
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: out: output buffer that will contain the reencoded key (cannot be NULL)
// In: outlen: length of out (33 for compressed keys, 65 for uncompressed keys)
// pubkeydata: the input public key (cannot be NULL)
// pubkeylen: length of pubkeydata
static int secp256k1_ext_reencode_pubkey(
const secp256k1_context* ctx,
unsigned char *out,
size_t outlen,
const unsigned char *pubkeydata,
size_t pubkeylen
) {
secp256k1_pubkey pubkey;
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeydata, pubkeylen)) {
return 0;
}
unsigned int flag = (outlen == 33) ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED;
return secp256k1_ec_pubkey_serialize(ctx, out, &outlen, &pubkey, flag);
}
// secp256k1_ext_scalar_mul multiplies a point by a scalar in constant time.
//
// Returns: 1: multiplication was successful
// 0: scalar was invalid (zero or overflow)
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: point: the multiplied point (usually secret)
// In: point: pointer to a 64-byte public point,
// encoded as two 256bit big-endian numbers.
// scalar: a 32-byte scalar with which to multiply the point
int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, unsigned char *point, const unsigned char *scalar) {
int ret = 0;
int overflow = 0;
secp256k1_fe feX, feY;
secp256k1_gej res;
secp256k1_ge ge;
secp256k1_scalar s;
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
(void)ctx;
secp256k1_fe_set_b32(&feX, point);
secp256k1_fe_set_b32(&feY, point+32);
secp256k1_ge_set_xy(&ge, &feX, &feY);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
if (overflow || secp256k1_scalar_is_zero(&s)) {
ret = 0;
} else {
secp256k1_ecmult_const(&res, &ge, &s);
secp256k1_ge_set_gej(&ge, &res);
/* Note: can't use secp256k1_pubkey_save here because it is not constant time. */
secp256k1_fe_normalize(&ge.x);
secp256k1_fe_normalize(&ge.y);
secp256k1_fe_get_b32(point, &ge.x);
secp256k1_fe_get_b32(point+32, &ge.y);
ret = 1;
}
secp256k1_scalar_clear(&s);
return ret;
}

View File

@@ -0,0 +1,19 @@
Copyright (c) 2013 Pieter Wuille
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@@ -0,0 +1,8 @@
//go:build dummy
// +build dummy
// Package c contains only a C file.
//
// This Go file is part of a workaround for `go mod vendor`.
// Please see the file crypto/secp256k1/dummy.go for more information.
package include

View File

@@ -0,0 +1,577 @@
#ifndef _SECP256K1_
# define _SECP256K1_
# ifdef __cplusplus
extern "C" {
# endif
#include <stddef.h>
/* These rules specify the order of arguments in API calls:
*
* 1. Context pointers go first, followed by output arguments, combined
* output/input arguments, and finally input-only arguments.
* 2. Array lengths always immediately the follow the argument whose length
* they describe, even if this violates rule 1.
* 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
* later go first. This means: signatures, public nonces, private nonces,
* messages, public keys, secret keys, tweaks.
* 4. Arguments that are not data pointers go last, from more complex to less
* complex: function pointers, algorithm names, messages, void pointers,
* counts, flags, booleans.
* 5. Opaque data pointers follow the function pointer they are to be passed to.
*/
/** Opaque data structure that holds context information (precomputed tables etc.).
*
* The purpose of context structures is to cache large precomputed data tables
* that are expensive to construct, and also to maintain the randomization data
* for blinding.
*
* Do not create a new context object for each operation, as construction is
* far slower than all other API calls (~100 times slower than an ECDSA
* verification).
*
* A constructed context can safely be used from multiple threads
* simultaneously, but API call that take a non-const pointer to a context
* need exclusive access to it. In particular this is the case for
* secp256k1_context_destroy and secp256k1_context_randomize.
*
* Regarding randomization, either do it once at creation time (in which case
* you do not need any locking for the other calls), or use a read-write lock.
*/
typedef struct secp256k1_context_struct secp256k1_context;
/** Opaque data structure that holds a parsed and valid public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
*/
typedef struct {
unsigned char data[64];
} secp256k1_pubkey;
/** Opaque data structured that holds a parsed ECDSA signature.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_serialize_* functions.
*/
typedef struct {
unsigned char data[64];
} secp256k1_ecdsa_signature;
/** A pointer to a function to deterministically generate a nonce.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
* In: msg32: the 32-byte message hash being verified (will not be NULL)
* key32: pointer to a 32-byte secret key (will not be NULL)
* algo16: pointer to a 16-byte array describing the signature
* algorithm (will be NULL for ECDSA for compatibility).
* data: Arbitrary data pointer that is passed through.
* attempt: how many iterations we have tried to find a nonce.
* This will almost always be 0, but different attempt values
* are required to result in a different nonce.
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the algorithm, the key and the attempt.
*/
typedef int (*secp256k1_nonce_function)(
unsigned char *nonce32,
const unsigned char *msg32,
const unsigned char *key32,
const unsigned char *algo16,
void *data,
unsigned int attempt
);
# if !defined(SECP256K1_GNUC_PREREQ)
# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
# define SECP256K1_GNUC_PREREQ(_maj,_min) \
((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
# else
# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
# endif
# endif
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
# if SECP256K1_GNUC_PREREQ(2,7)
# define SECP256K1_INLINE __inline__
# elif (defined(_MSC_VER))
# define SECP256K1_INLINE __inline
# else
# define SECP256K1_INLINE
# endif
# else
# define SECP256K1_INLINE inline
# endif
#ifndef SECP256K1_API
# if defined(_WIN32)
# ifdef SECP256K1_BUILD
# define SECP256K1_API __declspec(dllexport)
# else
# define SECP256K1_API
# endif
# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
# define SECP256K1_API __attribute__ ((visibility ("default")))
# else
# define SECP256K1_API
# endif
#endif
/**Warning attributes
* NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
* some paranoid null checks. */
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
# else
# define SECP256K1_WARN_UNUSED_RESULT
# endif
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
# else
# define SECP256K1_ARG_NONNULL(_x)
# endif
/** All flags' lower 8 bits indicate what they're for. Do not use directly. */
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
/** The higher bits contain the actual data. Do not use directly. */
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
/** Flags to pass to secp256k1_context_create. */
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
/** Create a secp256k1 context object.
*
* Returns: a newly created context object.
* In: flags: which parts of the context to initialize.
*/
SECP256K1_API secp256k1_context* secp256k1_context_create(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Copies a secp256k1 context object.
*
* Returns: a newly created context object.
* Args: ctx: an existing context to copy (cannot be NULL)
*/
SECP256K1_API secp256k1_context* secp256k1_context_clone(
const secp256k1_context* ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object.
*
* The context pointer may not be used afterwards.
* Args: ctx: an existing context to destroy (cannot be NULL)
*/
SECP256K1_API void secp256k1_context_destroy(
secp256k1_context* ctx
);
/** Set a callback function to be called when an illegal argument is passed to
* an API call. It will only trigger for violations that are mentioned
* explicitly in the header.
*
* The philosophy is that these shouldn't be dealt with through a
* specific return value, as calling code should not have branches to deal with
* the case that this code itself is broken.
*
* On the other hand, during debug stage, one would want to be informed about
* such mistakes, and the default (crashing) may be inadvisable.
* When this callback is triggered, the API function called is guaranteed not
* to cause a crash, though its return value and output arguments are
* undefined.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an illegal argument is
* passed to the API, taking a message and an opaque pointer
* (NULL restores a default handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_illegal_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an internal consistency check
* fails. The default is crashing.
*
* This can only trigger in case of a hardware failure, miscompilation,
* memory corruption, serious bug in the library, or other error would can
* otherwise result in undefined behaviour. It will not trigger due to mere
* incorrect usage of the API (see secp256k1_context_set_illegal_callback
* for that). After this callback returns, anything may happen, including
* crashing.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an internal error occurs,
* taking a message and an opaque pointer (NULL restores a default
* handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_error_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Parse a variable-length public key into the pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
* Args: ctx: a secp256k1 context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, its value is undefined.
* In: input: pointer to a serialized public key
* inputlen: length of the array pointed to by input
*
* This function supports parsing compressed (33 bytes, header byte 0x02 or
* 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
* byte 0x06 or 0x07) format public keys.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
const secp256k1_context* ctx,
secp256k1_pubkey* pubkey,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a pubkey object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
* compressed==1) byte array to place the serialized key
* in.
* In/Out: outputlen: a pointer to an integer which is initially set to the
* size of output, and is overwritten with the written
* size.
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key.
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
*/
SECP256K1_API int secp256k1_ec_pubkey_serialize(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_pubkey* pubkey,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Parse an ECDSA signature in compact (64 bytes) format.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to the 64-byte array to parse
*
* The signature must consist of a 32-byte big endian R value, followed by a
* 32-byte big endian S value. If R or S fall outside of [0..order-1], the
* encoding is invalid. R and S with value 0 are allowed in the encoding.
*
* After the call, sig will always be initialized. If parsing failed or R or
* S are zero, the resulting sig value is guaranteed to fail validation for any
* message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a DER ECDSA signature.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in DER format.
*
* Returns: 1 if enough space was available to serialize, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: output: a pointer to an array to store the DER serialization
* In/Out: outputlen: a pointer to a length integer. Initially, this integer
* should be set to the length of output. After the call
* it will be set to the length of the serialization (even
* if 0 was returned).
* In: sig: a pointer to an initialized signature object
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Serialize an ECDSA signature in compact (64 byte) format.
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array to store the compact serialization
* In: sig: a pointer to an initialized signature object
*
* See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify an ECDSA signature.
*
* Returns: 1: correct signature
* 0: incorrect or unparseable signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig: the signature being verified (cannot be NULL)
* msg32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: pointer to an initialized public key to verify with (cannot be NULL)
*
* To avoid accepting malleable signatures, only ECDSA signatures in lower-S
* form are accepted.
*
* If you need to accept ECDSA signatures from sources that do not obey this
* rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
* validation, but be aware that doing so results in malleable signatures.
*
* For details, see the comments for that function.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const secp256k1_context* ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Convert a signature to a normalized lower-S form.
*
* Returns: 1 if sigin was not normalized, 0 if it already was.
* Args: ctx: a secp256k1 context object
* Out: sigout: a pointer to a signature to fill with the normalized form,
* or copy if the input was already normalized. (can be NULL if
* you're only interested in whether the input was already
* normalized).
* In: sigin: a pointer to a signature to check/normalize (cannot be NULL,
* can be identical to sigout)
*
* With ECDSA a third-party can forge a second distinct signature of the same
* message, given a single initial signature, but without knowing the key. This
* is done by negating the S value modulo the order of the curve, 'flipping'
* the sign of the random point R which is not included in the signature.
*
* Forgery of the same message isn't universally problematic, but in systems
* where message malleability or uniqueness of signatures is important this can
* cause issues. This forgery can be blocked by all verifiers forcing signers
* to use a normalized form.
*
* The lower-S form reduces the size of signatures slightly on average when
* variable length encodings (such as DER) are used and is cheap to verify,
* making it a good choice. Security of always using lower-S is assured because
* anyone can trivially modify a signature after the fact to enforce this
* property anyway.
*
* The lower S value is always between 0x1 and
* 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
* inclusive.
*
* No other forms of ECDSA malleability are known and none seem likely, but
* there is no formal proof that ECDSA, even with this additional restriction,
* is free of other malleability. Commonly used serialization schemes will also
* accept various non-unique encodings, so care should be taken when this
* property is required for an application.
*
* The secp256k1_ecdsa_sign function will by default create signatures in the
* lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
* signatures come from a system that cannot enforce this property,
* secp256k1_ecdsa_signature_normalize must be called before verification.
*/
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sigout,
const secp256k1_ecdsa_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* extra entropy.
*/
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_default;
/** Create an ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*
* The created signature is always in lower-S form. See
* secp256k1_ecdsa_signature_normalize for more details.
*/
SECP256K1_API int secp256k1_ecdsa_sign(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA secret key.
*
* Returns: 1: secret key is valid
* 0: secret key is invalid
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
const secp256k1_context* ctx,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Compute the public key for a secret key.
*
* Returns: 1: secret was valid, public key stores
* 0: secret was invalid, try again
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: pubkey: pointer to the created public key (cannot be NULL)
* In: seckey: pointer to a 32-byte private key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a private key by adding tweak to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting private key
* would be invalid (only when the tweak is the complement of the
* private key). 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by adding tweak times the generator to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting public key
* would be invalid (only when the tweak is the complement of the
* corresponding private key). 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key object.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a private key by multiplying it by a tweak.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by multiplying it by a tweak value.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key obkect.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Updates the context randomization.
* Returns: 1: randomization successfully updated
* 0: error
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
secp256k1_context* ctx,
const unsigned char *seed32
) SECP256K1_ARG_NONNULL(1);
/** Add a number of public keys together.
* Returns: 1: the sum of the public keys is valid.
* 0: the sum of the public keys is not valid.
* Args: ctx: pointer to a context object
* Out: out: pointer to a public key object for placing the resulting public key
* (cannot be NULL)
* In: ins: pointer to array of pointers to public keys (cannot be NULL)
* n: the number of public keys to add together (must be at least 1)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
const secp256k1_context* ctx,
secp256k1_pubkey *out,
const secp256k1_pubkey * const * ins,
size_t n
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
# ifdef __cplusplus
}
# endif
#endif

View File

@@ -0,0 +1,31 @@
#ifndef _SECP256K1_ECDH_
# define _SECP256K1_ECDH_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Compute an EC Diffie-Hellman secret in constant time
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow)
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: result: a 32-byte array which will be populated by an ECDH
* secret computed from the point and scalar
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key
* privkey: a 32-byte scalar with which to multiply the point
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context* ctx,
unsigned char *result,
const secp256k1_pubkey *pubkey,
const unsigned char *privkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
# ifdef __cplusplus
}
# endif
#endif

View File

@@ -0,0 +1,110 @@
#ifndef _SECP256K1_RECOVERY_
# define _SECP256K1_RECOVERY_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Opaque data structured that holds a parsed ECDSA signature,
* supporting pubkey recovery.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 65 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*
* Furthermore, it is guaranteed that identical signatures (including their
* recoverability) will have identical representation, so they can be
* memcmp'ed.
*/
typedef struct {
unsigned char data[65];
} secp256k1_ecdsa_recoverable_signature;
/** Parse a compact ECDSA signature (64 bytes + recovery id).
*
* Returns: 1 when the signature could be parsed, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to a 64-byte compact signature
* recid: the recovery id (0, 1, 2 or 3)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature* sig,
const unsigned char *input64,
int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Convert a recoverable signature into a normal signature.
*
* Returns: 1
* Out: sig: a pointer to a normal signature (cannot be NULL).
* In: sigin: a pointer to a recoverable signature (cannot be NULL).
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const secp256k1_ecdsa_recoverable_signature* sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL)
* recid: a pointer to an integer to hold the recovery id (can be NULL).
* In: sig: a pointer to an initialized signature object (cannot be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_recoverable_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Create a recoverable ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a signature.
*
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
* Out: pubkey: pointer to the recovered public key (cannot be NULL)
* In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
# ifdef __cplusplus
}
# endif
#endif

View File

@@ -0,0 +1,32 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_BASIC_CONFIG_
#define _SECP256K1_BASIC_CONFIG_
#ifdef USE_BASIC_CONFIG
#undef USE_ASM_X86_64
#undef USE_ENDOMORPHISM
#undef USE_FIELD_10X26
#undef USE_FIELD_5X52
#undef USE_FIELD_INV_BUILTIN
#undef USE_FIELD_INV_NUM
#undef USE_NUM_GMP
#undef USE_NUM_NONE
#undef USE_SCALAR_4X64
#undef USE_SCALAR_8X32
#undef USE_SCALAR_INV_BUILTIN
#undef USE_SCALAR_INV_NUM
#define USE_NUM_NONE 1
#define USE_FIELD_INV_BUILTIN 1
#define USE_SCALAR_INV_BUILTIN 1
#define USE_FIELD_10X26 1
#define USE_SCALAR_8X32 1
#endif // USE_BASIC_CONFIG
#endif // _SECP256K1_BASIC_CONFIG_

View File

@@ -0,0 +1,66 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_BENCH_H_
#define _SECP256K1_BENCH_H_
#include <stdio.h>
#include <math.h>
#include "sys/time.h"
static double gettimedouble(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec * 0.000001 + tv.tv_sec;
}
void print_number(double x) {
double y = x;
int c = 0;
if (y < 0.0) {
y = -y;
}
while (y < 100.0) {
y *= 10.0;
c++;
}
printf("%.*f", c, x);
}
void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) {
int i;
double min = HUGE_VAL;
double sum = 0.0;
double max = 0.0;
for (i = 0; i < count; i++) {
double begin, total;
if (setup != NULL) {
setup(data);
}
begin = gettimedouble();
benchmark(data);
total = gettimedouble() - begin;
if (teardown != NULL) {
teardown(data);
}
if (total < min) {
min = total;
}
if (total > max) {
max = total;
}
sum += total;
}
printf("%s: min ", name);
print_number(min * 1000000.0 / iter);
printf("us / avg ");
print_number((sum / count) * 1000000.0 / iter);
printf("us / max ");
print_number(max * 1000000.0 / iter);
printf("us\n");
}
#endif

View File

@@ -0,0 +1,54 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include "include/secp256k1.h"
#include "include/secp256k1_ecdh.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context *ctx;
secp256k1_pubkey point;
unsigned char scalar[32];
} bench_ecdh_t;
static void bench_ecdh_setup(void* arg) {
int i;
bench_ecdh_t *data = (bench_ecdh_t*)arg;
const unsigned char point[] = {
0x03,
0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06,
0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd,
0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb,
0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
};
/* create a context with no capabilities */
data->ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT);
for (i = 0; i < 32; i++) {
data->scalar[i] = i + 1;
}
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1);
}
static void bench_ecdh(void* arg) {
int i;
unsigned char res[32];
bench_ecdh_t *data = (bench_ecdh_t*)arg;
for (i = 0; i < 20000; i++) {
CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1);
}
}
int main(void) {
bench_ecdh_t data;
run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000);
return 0;
}

View File

@@ -0,0 +1,382 @@
/**********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include "include/secp256k1.h"
#include "util.h"
#include "hash_impl.h"
#include "num_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
#include "secp256k1.c"
typedef struct {
secp256k1_scalar scalar_x, scalar_y;
secp256k1_fe fe_x, fe_y;
secp256k1_ge ge_x, ge_y;
secp256k1_gej gej_x, gej_y;
unsigned char data[64];
int wnaf[256];
} bench_inv_t;
void bench_setup(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
static const unsigned char init_x[32] = {
0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
};
static const unsigned char init_y[32] = {
0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
};
secp256k1_scalar_set_b32(&data->scalar_x, init_x, NULL);
secp256k1_scalar_set_b32(&data->scalar_y, init_y, NULL);
secp256k1_fe_set_b32(&data->fe_x, init_x);
secp256k1_fe_set_b32(&data->fe_y, init_y);
CHECK(secp256k1_ge_set_xo_var(&data->ge_x, &data->fe_x, 0));
CHECK(secp256k1_ge_set_xo_var(&data->ge_y, &data->fe_y, 1));
secp256k1_gej_set_ge(&data->gej_x, &data->ge_x);
secp256k1_gej_set_ge(&data->gej_y, &data->ge_y);
memcpy(data->data, init_x, 32);
memcpy(data->data + 32, init_y, 32);
}
void bench_scalar_add(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_scalar_negate(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x);
}
}
void bench_scalar_sqr(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x);
}
}
void bench_scalar_mul(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
#ifdef USE_ENDOMORPHISM
void bench_scalar_split(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_scalar l, r;
secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
#endif
void bench_scalar_inverse(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000; i++) {
secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_scalar_inverse_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000; i++) {
secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_field_normalize(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_fe_normalize(&data->fe_x);
}
}
void bench_field_normalize_weak(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_fe_normalize_weak(&data->fe_x);
}
}
void bench_field_mul(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y);
}
}
void bench_field_sqr(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_fe_sqr(&data->fe_x, &data->fe_x);
}
}
void bench_field_inverse(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_inv(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_field_inverse_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_inv_var(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_field_sqrt(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_sqrt(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_group_double_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL);
}
}
void bench_group_add_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL);
}
}
void bench_group_add_affine(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y);
}
}
void bench_group_add_affine_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL);
}
}
void bench_group_jacobi_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_gej_has_quad_y_var(&data->gej_x);
}
}
void bench_ecmult_wnaf(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_wnaf_const(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_sha256(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_sha256_t sha;
for (i = 0; i < 20000; i++) {
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data->data, 32);
secp256k1_sha256_finalize(&sha, data->data);
}
}
void bench_hmac_sha256(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_hmac_sha256_t hmac;
for (i = 0; i < 20000; i++) {
secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
secp256k1_hmac_sha256_write(&hmac, data->data, 32);
secp256k1_hmac_sha256_finalize(&hmac, data->data);
}
}
void bench_rfc6979_hmac_sha256(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_rfc6979_hmac_sha256_t rng;
for (i = 0; i < 20000; i++) {
secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
}
}
void bench_context_verify(void* arg) {
int i;
(void)arg;
for (i = 0; i < 20; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
}
}
void bench_context_sign(void* arg) {
int i;
(void)arg;
for (i = 0; i < 200; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
}
}
#ifndef USE_NUM_NONE
void bench_num_jacobi(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_num nx, norder;
secp256k1_scalar_get_num(&nx, &data->scalar_x);
secp256k1_scalar_order_get_num(&norder);
secp256k1_scalar_get_num(&norder, &data->scalar_y);
for (i = 0; i < 200000; i++) {
secp256k1_num_jacobi(&nx, &norder);
}
}
#endif
int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
argv++;
if (argv == argm) {
return 1;
}
while (argv != NULL && argv != argm) {
if (strcmp(*argv, flag) == 0) {
return 1;
}
argv++;
}
return 0;
}
int main(int argc, char **argv) {
bench_inv_t data;
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, 200000);
#ifdef USE_ENDOMORPHISM
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, 20000);
#endif
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
#ifndef USE_NUM_NONE
if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000);
#endif
return 0;
}

View File

@@ -0,0 +1,60 @@
/**********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
#include "include/secp256k1_recovery.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char sig[64];
} bench_recover_t;
void bench_recover(void* arg) {
int i;
bench_recover_t *data = (bench_recover_t*)arg;
secp256k1_pubkey pubkey;
unsigned char pubkeyc[33];
for (i = 0; i < 20000; i++) {
int j;
size_t pubkeylen = 33;
secp256k1_ecdsa_recoverable_signature sig;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2));
CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
for (j = 0; j < 32; j++) {
data->sig[j + 32] = data->msg[j]; /* Move former message to S. */
data->msg[j] = data->sig[j]; /* Move former R to message. */
data->sig[j] = pubkeyc[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */
}
}
}
void bench_recover_setup(void* arg) {
int i;
bench_recover_t *data = (bench_recover_t*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = 1 + i;
}
for (i = 0; i < 64; i++) {
data->sig[i] = 65 + i;
}
}
int main(void) {
bench_recover_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@@ -0,0 +1,73 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include <string.h>
#include "include/secp256k1.h"
#include "include/secp256k1_schnorr.h"
#include "util.h"
#include "bench.h"
typedef struct {
unsigned char key[32];
unsigned char sig[64];
unsigned char pubkey[33];
size_t pubkeylen;
} benchmark_schnorr_sig_t;
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
benchmark_schnorr_sig_t sigs[64];
int numsigs;
} benchmark_schnorr_verify_t;
static void benchmark_schnorr_init(void* arg) {
int i, k;
benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = 1 + i;
}
for (k = 0; k < data->numsigs; k++) {
secp256k1_pubkey pubkey;
for (i = 0; i < 32; i++) {
data->sigs[k].key[i] = 33 + i + k;
}
secp256k1_schnorr_sign(data->ctx, data->sigs[k].sig, data->msg, data->sigs[k].key, NULL, NULL);
data->sigs[k].pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->sigs[k].key));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->sigs[k].pubkey, &data->sigs[k].pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
}
}
static void benchmark_schnorr_verify(void* arg) {
int i;
benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
for (i = 0; i < 20000 / data->numsigs; i++) {
secp256k1_pubkey pubkey;
data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->sigs[0].pubkey, data->sigs[0].pubkeylen));
CHECK(secp256k1_schnorr_verify(data->ctx, data->sigs[0].sig, data->msg, &pubkey) == ((i & 0xFF) == 0));
data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
}
}
int main(void) {
benchmark_schnorr_verify_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
data.numsigs = 1;
run_benchmark("schnorr_verify", benchmark_schnorr_verify, benchmark_schnorr_init, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@@ -0,0 +1,56 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context* ctx;
unsigned char msg[32];
unsigned char key[32];
} bench_sign_t;
static void bench_sign_setup(void* arg) {
int i;
bench_sign_t *data = (bench_sign_t*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = i + 1;
}
for (i = 0; i < 32; i++) {
data->key[i] = i + 65;
}
}
static void bench_sign(void* arg) {
int i;
bench_sign_t *data = (bench_sign_t*)arg;
unsigned char sig[74];
for (i = 0; i < 20000; i++) {
size_t siglen = 74;
int j;
secp256k1_ecdsa_signature signature;
CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
for (j = 0; j < 32; j++) {
data->msg[j] = sig[j];
data->key[j] = sig[j + 32];
}
}
}
int main(void) {
bench_sign_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
run_benchmark("ecdsa_sign", bench_sign, bench_sign_setup, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@@ -0,0 +1,112 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include <string.h>
#include "include/secp256k1.h"
#include "util.h"
#include "bench.h"
#ifdef ENABLE_OPENSSL_TESTS
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
#endif
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char key[32];
unsigned char sig[72];
size_t siglen;
unsigned char pubkey[33];
size_t pubkeylen;
#ifdef ENABLE_OPENSSL_TESTS
EC_GROUP* ec_group;
#endif
} benchmark_verify_t;
static void benchmark_verify(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#ifdef ENABLE_OPENSSL_TESTS
static void benchmark_verify_openssl(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
{
EC_KEY *pkey = EC_KEY_new();
const unsigned char *pubkey = &data->pubkey[0];
int result;
CHECK(pkey != NULL);
result = EC_KEY_set_group(pkey, data->ec_group);
CHECK(result);
result = (o2i_ECPublicKey(&pkey, &pubkey, data->pubkeylen)) != NULL;
CHECK(result);
result = ECDSA_verify(0, &data->msg[0], sizeof(data->msg), &data->sig[0], data->siglen, pkey) == (i == 0);
CHECK(result);
EC_KEY_free(pkey);
}
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#endif
int main(void) {
int i;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
benchmark_verify_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
for (i = 0; i < 32; i++) {
data.msg[i] = 1 + i;
}
for (i = 0; i < 32; i++) {
data.key[i] = 33 + i;
}
data.siglen = 72;
CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
data.pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
#ifdef ENABLE_OPENSSL_TESTS
data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1);
run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000);
EC_GROUP_free(data.ec_group);
#endif
secp256k1_context_destroy(data.ctx);
return 0;
}

View File

@@ -0,0 +1,8 @@
//go:build dummy
// +build dummy
// Package c contains only a C file.
//
// This Go file is part of a workaround for `go mod vendor`.
// Please see the file crypto/secp256k1/dummy.go for more information.
package src

View File

@@ -0,0 +1,21 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECDSA_
#define _SECP256K1_ECDSA_
#include <stddef.h>
#include "scalar.h"
#include "group.h"
#include "ecmult.h"
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
#endif

View File

@@ -0,0 +1,315 @@
/**********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECDSA_IMPL_H_
#define _SECP256K1_ECDSA_IMPL_H_
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* sage: for t in xrange(1023, -1, -1):
* .. p = 2**256 - 2**32 - t
* .. if p.is_prime():
* .. print '%x'%p
* .. break
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned char *sigend) {
int lenleft, b1;
size_t ret = 0;
if (*sigp >= sigend) {
return -1;
}
b1 = *((*sigp)++);
if (b1 == 0xFF) {
/* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
return -1;
}
if ((b1 & 0x80) == 0) {
/* X.690-0207 8.1.3.4 short form length octets */
return b1;
}
if (b1 == 0x80) {
/* Indefinite length is not allowed in DER. */
return -1;
}
/* X.690-207 8.1.3.5 long form length octets */
lenleft = b1 & 0x7F;
if (lenleft > sigend - *sigp) {
return -1;
}
if (**sigp == 0) {
/* Not the shortest possible length encoding. */
return -1;
}
if ((size_t)lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* certainly longer than the passed array size.
*/
return -1;
}
while (lenleft > 0) {
if ((ret >> ((sizeof(size_t) - 1) * 8)) != 0) {
}
ret = (ret << 8) | **sigp;
if (ret + lenleft > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array. */
return -1;
}
(*sigp)++;
lenleft--;
}
if (ret < 128) {
/* Not the shortest possible length encoding. */
return -1;
}
return ret;
}
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
int overflow = 0;
unsigned char ra[32] = {0};
int rlen;
if (*sig == sigend || **sig != 0x02) {
/* Not a primitive integer (X.690-0207 8.3.1). */
return 0;
}
(*sig)++;
rlen = secp256k1_der_read_len(sig, sigend);
if (rlen <= 0 || (*sig) + rlen > sigend) {
/* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
return 0;
}
if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
/* Excessive 0x00 padding. */
return 0;
}
if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
/* Excessive 0xFF padding. */
return 0;
}
if ((**sig & 0x80) == 0x80) {
/* Negative. */
overflow = 1;
}
while (rlen > 0 && **sig == 0) {
/* Skip leading zero bytes */
rlen--;
(*sig)++;
}
if (rlen > 32) {
overflow = 1;
}
if (!overflow) {
memcpy(ra + 32 - rlen, *sig, rlen);
secp256k1_scalar_set_b32(r, ra, &overflow);
}
if (overflow) {
secp256k1_scalar_set_int(r, 0);
}
(*sig) += rlen;
return 1;
}
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
const unsigned char *sigend = sig + size;
int rlen;
if (sig == sigend || *(sig++) != 0x30) {
/* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
return 0;
}
rlen = secp256k1_der_read_len(&sig, sigend);
if (rlen < 0 || sig + rlen > sigend) {
/* Tuple exceeds bounds */
return 0;
}
if (sig + rlen != sigend) {
/* Garbage after tuple. */
return 0;
}
if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
return 0;
}
if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
return 0;
}
if (sig != sigend) {
/* Trailing garbage inside tuple. */
return 0;
}
return 1;
}
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
size_t lenR = 33, lenS = 33;
secp256k1_scalar_get_b32(&r[1], ar);
secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
memcpy(sig+4, rp, lenR);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
memcpy(sig+lenR+6, sp, lenS);
return 1;
}
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
#if !defined(EXHAUSTIVE_TEST_ORDER)
secp256k1_fe xr;
#endif
secp256k1_gej pubkeyj;
secp256k1_gej pr;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
#if defined(EXHAUSTIVE_TEST_ORDER)
{
secp256k1_scalar computed_r;
secp256k1_ge pr_ge;
secp256k1_ge_set_gej(&pr_ge, &pr);
secp256k1_fe_normalize(&pr_ge.x);
secp256k1_fe_get_b32(c, &pr_ge.x);
secp256k1_scalar_set_b32(&computed_r, c, NULL);
return secp256k1_scalar_eq(sigr, &computed_r);
}
#else
secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
* compute the remainder modulo n, and compare it to xr. However:
*
* xr == X(pr) mod n
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
* [Since 2 * n > p, h can only be 0 or 1]
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
* [Multiplying both sides of the equations by pr.z^2 mod p]
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
*
* Thus, we can avoid the inversion, but we have to check both cases separately.
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + n >= p, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
return 0;
#endif
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
secp256k1_gej rp;
secp256k1_ge r;
secp256k1_scalar n;
int overflow = 0;
secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
/* These two conditions should be checked before calling */
VERIFY_CHECK(!secp256k1_scalar_is_zero(sigr));
VERIFY_CHECK(overflow == 0);
if (recid) {
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
*/
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
}
secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
secp256k1_scalar_inverse(sigs, nonce);
secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
if (secp256k1_scalar_is_zero(sigs)) {
return 0;
}
if (secp256k1_scalar_is_high(sigs)) {
secp256k1_scalar_negate(sigs, sigs);
if (recid) {
*recid ^= 1;
}
}
return 1;
}
#endif

View File

@@ -0,0 +1,25 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECKEY_
#define _SECP256K1_ECKEY_
#include <stddef.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed);
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
#endif

View File

@@ -0,0 +1,99 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECKEY_IMPL_H_
#define _SECP256K1_ECKEY_IMPL_H_
#include "eckey.h"
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
secp256k1_fe x;
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == 0x03);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
secp256k1_fe x, y;
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
return 0;
}
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07)) {
return 0;
}
return secp256k1_ge_is_valid_var(elem);
} else {
return 0;
}
}
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) {
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) {
*size = 33;
pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00);
} else {
*size = 65;
pub[0] = 0x04;
secp256k1_fe_get_b32(&pub[33], &elem->y);
}
return 1;
}
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
if (secp256k1_scalar_is_zero(key)) {
return 0;
}
return 1;
}
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
secp256k1_scalar one;
secp256k1_gej_set_ge(&pt, key);
secp256k1_scalar_set_int(&one, 1);
secp256k1_ecmult(ctx, &pt, &pt, &one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
}
secp256k1_ge_set_gej(key, &pt);
return 1;
}
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_mul(key, key, tweak);
return 1;
}
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_scalar zero;
secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_set_int(&zero, 0);
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}
#endif

View File

@@ -0,0 +1,31 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_
#define _SECP256K1_ECMULT_
#include "num.h"
#include "group.h"
typedef struct {
/* For accelerating the computation of a*P + b*G: */
secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
#endif
} secp256k1_ecmult_context;
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
#endif

View File

@@ -0,0 +1,15 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_CONST_
#define _SECP256K1_ECMULT_CONST_
#include "scalar.h"
#include "group.h"
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
#endif

View File

@@ -0,0 +1,239 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_CONST_IMPL_
#define _SECP256K1_ECMULT_CONST_IMPL_
#include "scalar.h"
#include "group.h"
#include "ecmult_const.h"
#include "ecmult_impl.h"
#ifdef USE_ENDOMORPHISM
#define WNAF_BITS 128
#else
#define WNAF_BITS 256
#endif
#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
int m; \
int abs_n = (n) * (((n) > 0) * 2 - 1); \
int idx_n = abs_n / 2; \
secp256k1_fe neg_y; \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
/* This loop is used to avoid secret data in array indices. See
* the comment in ecmult_gen_impl.h for rationale. */ \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
} \
(r)->infinity = 0; \
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
} while(0)
/** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val)
* with the following guarantees:
* - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
* - each wnaf[i] is nonzero
* - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w
*
* Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
* Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
* CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
*
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
*/
static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
int global_sign;
int skew = 0;
int word = 0;
/* 1 2 3 */
int u_last;
int u;
int flip;
int bit;
secp256k1_scalar neg_s;
int not_neg_one;
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a technique from
* Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
* or 2 (for odd) to the number we are encoding, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication. */
/* Negative numbers will be negated to keep their bit representation below the maximum width */
flip = secp256k1_scalar_is_high(&s);
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
bit = flip ^ !secp256k1_scalar_is_even(&s);
/* We check for negative one, since adding 2 to it will cause an overflow */
secp256k1_scalar_negate(&neg_s, &s);
not_neg_one = !secp256k1_scalar_is_one(&neg_s);
secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
/* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
* that we added two to it and flipped it. In fact for -1 these operations are
* identical. We only flipped, but since skewing is required (in the sense that
* the skew must be 1 or 2, never zero) and flipping is not, we need to change
* our flags to claim that we only skewed. */
global_sign = secp256k1_scalar_cond_negate(&s, flip);
global_sign *= not_neg_one * 2 - 1;
skew = 1 << bit;
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
while (word * w < WNAF_BITS) {
int sign;
int even;
/* 4.1 4.4 */
u = secp256k1_scalar_shr_int(&s, w);
/* 4.2 */
even = ((u & 1) == 0);
sign = 2 * (u_last > 0) - 1;
u += sign * even;
u_last -= sign * even * (1 << w);
/* 4.3, adapted for global sign change */
wnaf[word++] = u_last * global_sign;
u_last = u;
}
wnaf[word] = u * global_sign;
VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
VERIFY_CHECK(word == WNAF_SIZE(w));
return skew;
}
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_lam;
secp256k1_scalar q_1, q_lam;
#endif
int i;
secp256k1_scalar sc = *scalar;
/* build wnaf representation for q. */
#ifdef USE_ENDOMORPHISM
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
#else
skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
#endif
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
*/
secp256k1_gej_set_ge(r, a);
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_normalize_weak(&pre_a[i].y);
}
#ifdef USE_ENDOMORPHISM
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
#endif
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#ifdef USE_ENDOMORPHISM
i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
#endif
/* remaining loop iterations */
for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
int n;
int j;
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double_nonzero(r, r, NULL);
}
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#ifdef USE_ENDOMORPHISM
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#endif
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
{
/* Correct for wNAF skew */
secp256k1_ge correction = *a;
secp256k1_ge_storage correction_1_stor;
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage correction_lam_stor;
#endif
secp256k1_ge_storage a2_stor;
secp256k1_gej tmpj;
secp256k1_gej_set_ge(&tmpj, &correction);
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
secp256k1_ge_set_gej(&correction, &tmpj);
secp256k1_ge_to_storage(&correction_1_stor, a);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_to_storage(&correction_lam_stor, a);
#endif
secp256k1_ge_to_storage(&a2_stor, &correction);
/* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
#endif
/* Apply the correction */
secp256k1_ge_from_storage(&correction, &correction_1_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_from_storage(&correction, &correction_lam_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_ge_mul_lambda(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#endif
}
}
#endif

View File

@@ -0,0 +1,43 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_GEN_
#define _SECP256K1_ECMULT_GEN_
#include "scalar.h"
#include "group.h"
typedef struct {
/* For accelerating the computation of a*G:
* To harden against timing attacks, use the following mechanism:
* * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
* * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
* * U_i = U * 2^i (for i=0..62)
* * U_i = U * (1-2^63) (for i=63)
* where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
* For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
* precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
* None of the resulting prec group elements have a known scalar, and neither do any of
* the intermediate sums while computing a*G.
*/
secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
secp256k1_scalar blind;
secp256k1_gej initial;
} secp256k1_ecmult_gen_context;
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx);
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx);
/** Multiply with the generator: R = a*G */
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
#endif

View File

@@ -0,0 +1,210 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
#define _SECP256K1_ECMULT_GEN_IMPL_H_
#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"
#include "hash_impl.h"
#ifdef USE_ECMULT_STATIC_PRECOMPUTATION
#include "ecmult_static_context.h"
#endif
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
secp256k1_ge prec[1024];
secp256k1_gej gj;
secp256k1_gej nums_gej;
int i, j;
#endif
if (ctx->prec != NULL) {
return;
}
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
/* get the generator */
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
{
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
secp256k1_fe nums_x;
secp256k1_ge nums_ge;
int r;
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
(void)r;
VERIFY_CHECK(r);
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
(void)r;
VERIFY_CHECK(r);
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
}
/* compute prec. */
{
secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
secp256k1_gej gbase;
secp256k1_gej numsbase;
gbase = gj; /* 16^j * G */
numsbase = nums_gej; /* 2^j * nums. */
for (j = 0; j < 64; j++) {
/* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
precj[j*16] = numsbase;
for (i = 1; i < 16; i++) {
secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
}
/* Multiply gbase by 16. */
for (i = 0; i < 4; i++) {
secp256k1_gej_double_var(&gbase, &gbase, NULL);
}
/* Multiply numbase by 2. */
secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
if (j == 62) {
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
secp256k1_gej_neg(&numsbase, &numsbase);
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(prec, precj, 1024, cb);
}
for (j = 0; j < 64; j++) {
for (i = 0; i < 16; i++) {
secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
}
}
#else
(void)cb;
ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
#endif
secp256k1_ecmult_gen_blind(ctx, NULL);
}
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
return ctx->prec != NULL;
}
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
if (src->prec == NULL) {
dst->prec = NULL;
} else {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
#else
(void)cb;
dst->prec = src->prec;
#endif
dst->initial = src->initial;
dst->blind = src->blind;
}
}
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
free(ctx->prec);
#endif
secp256k1_scalar_clear(&ctx->blind);
secp256k1_gej_clear(&ctx->initial);
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
secp256k1_ge add;
secp256k1_ge_storage adds;
secp256k1_scalar gnb;
int bits;
int i, j;
memset(&adds, 0, sizeof(adds));
*r = ctx->initial;
/* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
secp256k1_scalar_add(&gnb, gn, &ctx->blind);
add.infinity = 0;
for (j = 0; j < 64; j++) {
bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
for (i = 0; i < 16; i++) {
/** This uses a conditional move to avoid any secret data in array indexes.
* _Any_ use of secret indexes has been demonstrated to result in timing
* sidechannels, even when the cache-line access patterns are uniform.
* See also:
* "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
* (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
* "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
* by Dag Arne Osvik, Adi Shamir, and Eran Tromer
* (http://www.tau.ac.il/~tromer/papers/cache.pdf)
*/
secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
}
secp256k1_ge_from_storage(&add, &adds);
secp256k1_gej_add_ge(r, r, &add);
}
bits = 0;
secp256k1_ge_clear(&add);
secp256k1_scalar_clear(&gnb);
}
/* Setup blinding values for secp256k1_ecmult_gen. */
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
secp256k1_scalar b;
secp256k1_gej gb;
secp256k1_fe s;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256_t rng;
int retry;
unsigned char keydata[64] = {0};
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
secp256k1_scalar_get_b32(nonce32, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
memcpy(keydata, nonce32, 32);
if (seed32 != NULL) {
memcpy(keydata + 32, seed32, 32);
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
memset(keydata, 0, sizeof(keydata));
/* Retry for out of range results to achieve uniformity. */
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
retry = !secp256k1_fe_set_b32(&s, nonce32);
retry |= secp256k1_fe_is_zero(&s);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
/* Randomize the projection to defend against multiplier sidechannels. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_scalar_set_b32(&b, nonce32, &retry);
/* A blinding value of 0 works, but would undermine the projection hardening. */
retry |= secp256k1_scalar_is_zero(&b);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
ctx->initial = gb;
secp256k1_scalar_clear(&b);
secp256k1_gej_clear(&gb);
}
#endif

View File

@@ -0,0 +1,406 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include <string.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to lower these values for exhaustive tests because
* the tables cannot have infinities in them (this breaks the
* affine-isomorphism stuff which tracks z-ratios) */
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_A 5
# define WINDOW_G 8
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_A 4
# define WINDOW_G 4
# else
# define WINDOW_A 2
# define WINDOW_G 2
# endif
#else
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5
/** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM
/** Two tables for window size 15: 1.375 MiB. */
#define WINDOW_G 15
#else
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif
#endif
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
* Prej's Z values are undefined, except for the last value.
*/
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
secp256k1_gej d;
secp256k1_ge a_ge, d_ge;
int i;
VERIFY_CHECK(!a->infinity);
secp256k1_gej_double_var(&d, a, NULL);
/*
* Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
* of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;
secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
prej[0].x = a_ge.x;
prej[0].y = a_ge.y;
prej[0].z = a->z;
prej[0].infinity = 0;
zr[0] = d.z;
for (i = 1; i < n; i++) {
secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
}
/*
* Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
* the final point's z coordinate is actually used though, so just update that.
*/
secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
}
/** Fill a table 'pre' with precomputed odd multiples of a.
*
* There are two versions of this function:
* - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
* resulting point set to a single constant Z denominator, stores the X and Y
* coordinates as ge_storage points in pre, and stores the global Z in rz.
* It only operates on tables sized for WINDOW_A wnaf multiples.
* - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
* resulting point set to actually affine points, and stores those in pre.
* It operates on tables of any size, but uses heap-allocated temporaries.
*
* To compute a*P + b*G, we compute a table for P using the first function,
* and for G using the second (which requires an inverse, but it only needs to
* happen once).
*/
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
/* Bring them to the same Z denominator. */
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
}
static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
int i;
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
/* Convert them in batch to affine coordinates. */
secp256k1_ge_set_table_gej_var(prea, prej, zr, n);
/* Convert them to compact storage form. */
for (i = 0; i < n; i++) {
secp256k1_ge_to_storage(&pre[i], &prea[i]);
}
free(prea);
free(prej);
free(zr);
}
/** The following two macro retrieves a particular odd multiple from a table
* of precomputed multiples. */
#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
*(r) = (pre)[((n)-1)/2]; \
} else { \
secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
} \
} while(0)
#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
} else { \
secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
secp256k1_ge_neg((r), (r)); \
} \
} while(0)
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
ctx->pre_g = NULL;
#ifdef USE_ENDOMORPHISM
ctx->pre_g_128 = NULL;
#endif
}
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
secp256k1_gej gj;
if (ctx->pre_g != NULL) {
return;
}
/* get the generator */
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
/* precompute the tables with odd multiples */
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
#ifdef USE_ENDOMORPHISM
{
secp256k1_gej g_128j;
int i;
ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
/* calculate 2^128*generator */
g_128j = gj;
for (i = 0; i < 128; i++) {
secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
}
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
}
#endif
}
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
if (src->pre_g == NULL) {
dst->pre_g = NULL;
} else {
size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
memcpy(dst->pre_g, src->pre_g, size);
}
#ifdef USE_ENDOMORPHISM
if (src->pre_g_128 == NULL) {
dst->pre_g_128 = NULL;
} else {
size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
memcpy(dst->pre_g_128, src->pre_g_128, size);
}
#endif
}
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
return ctx->pre_g != NULL;
}
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
free(ctx->pre_g);
#ifdef USE_ENDOMORPHISM
free(ctx->pre_g_128);
#endif
secp256k1_ecmult_context_init(ctx);
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
* than the number of bits in the (absolute value) of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
secp256k1_scalar s = *a;
int last_set_bit = -1;
int bit = 0;
int sign = 1;
int carry = 0;
VERIFY_CHECK(wnaf != NULL);
VERIFY_CHECK(0 <= len && len <= 256);
VERIFY_CHECK(a != NULL);
VERIFY_CHECK(2 <= w && w <= 31);
memset(wnaf, 0, len * sizeof(wnaf[0]));
if (secp256k1_scalar_get_bits(&s, 255, 1)) {
secp256k1_scalar_negate(&s, &s);
sign = -1;
}
while (bit < len) {
int now;
int word;
if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
bit++;
continue;
}
now = w;
if (now > len - bit) {
now = len - bit;
}
word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
carry = (word >> (w-1)) & 1;
word -= carry << w;
wnaf[bit] = sign * word;
last_set_bit = bit;
bit += now;
}
#ifdef VERIFY
CHECK(carry == 0);
while (bit < 256) {
CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
}
#endif
return last_set_bit + 1;
}
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_scalar na_1, na_lam;
/* Splitted G factors. */
secp256k1_scalar ng_1, ng_128;
int wnaf_na_1[130];
int wnaf_na_lam[130];
int bits_na_1;
int bits_na_lam;
int wnaf_ng_1[129];
int bits_ng_1;
int wnaf_ng_128[129];
int bits_ng_128;
#else
int wnaf_na[256];
int bits_na;
int wnaf_ng[256];
int bits_ng;
#endif
int i;
int bits;
#ifdef USE_ENDOMORPHISM
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
/* build wnaf representation for na_1 and na_lam. */
bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A);
bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
VERIFY_CHECK(bits_na_1 <= 130);
VERIFY_CHECK(bits_na_lam <= 130);
bits = bits_na_1;
if (bits_na_lam > bits) {
bits = bits_na_lam;
}
#else
/* build wnaf representation for na. */
bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A);
bits = bits_na;
#endif
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
* The exception is the precomputed G table points, which are actually
* affine. Compared to the base used for other points, they have a Z ratio
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
* isomorphism to efficiently add with a known Z inverse.
*/
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
#ifdef USE_ENDOMORPHISM
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
/* Build wnaf representation for ng_1 and ng_128 */
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) {
bits = bits_ng_1;
}
if (bits_ng_128 > bits) {
bits = bits_ng_128;
}
#else
bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
if (bits_ng > bits) {
bits = bits_ng;
}
#endif
secp256k1_gej_set_infinity(r);
for (i = bits - 1; i >= 0; i--) {
int n;
secp256k1_gej_double_var(r, r, NULL);
#ifdef USE_ENDOMORPHISM
if (i < bits_na_1 && (n = wnaf_na_1[i])) {
ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#else
if (i < bits_na && (n = wnaf_na[i])) {
ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < bits_ng && (n = wnaf_ng[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#endif
}
if (!r->infinity) {
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
}
#endif

View File

@@ -0,0 +1,132 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_
#define _SECP256K1_FIELD_
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(USE_FIELD_10X26)
#include "field_10x26.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52.h"
#else
#error "Please select field implementation"
#endif
#include "util.h"
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe *r);
/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee. */
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Sets a field element equal to zero, initializing all fields. */
static void secp256k1_fe_clear(secp256k1_fe *a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Same as secp256k1_fe_equal, but may be variable time. */
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
/** Checks whether a field element is a quadratic residue. */
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len);
/** Convert a field element to the storage type. */
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
/** Convert a field element back from the storage type. */
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
#endif

View File

@@ -0,0 +1,47 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_REPR_
#define _SECP256K1_FIELD_REPR_
#include <stdint.h>
typedef struct {
/* X = sum(i=0..9, elem[i]*2^26) mod n */
uint32_t n[10];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
(((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
(((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
(((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
(((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
(((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
(((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
(((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
(((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
(((uint32_t)d7) >> 10) \
}
#ifdef VERIFY
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
#else
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
#endif
typedef struct {
uint32_t n[8];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,47 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_REPR_
#define _SECP256K1_FIELD_REPR_
#include <stdint.h>
typedef struct {
/* X = sum(i=0..4, elem[i]*2^52) mod n */
uint64_t n[5];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \
((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \
((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \
((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \
((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
}
#ifdef VERIFY
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
#else
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
#endif
typedef struct {
uint64_t n[4];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
(d0) | (((uint64_t)(d1)) << 32), \
(d2) | (((uint64_t)(d3)) << 32), \
(d4) | (((uint64_t)(d5)) << 32), \
(d6) | (((uint64_t)(d7)) << 32) \
}}
#endif

View File

@@ -0,0 +1,502 @@
/**********************************************************************
* Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/**
* Changelog:
* - March 2013, Diederik Huys: original version
* - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm
* - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly
*/
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* r15:rcx = d
* r10-r14 = a0-a4
* rbx = b
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
/* d += a3 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rcx\n"
"movq %%rdx,%%r15\n"
/* d += a2 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d = a0 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c = a4 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* d += a4 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a0 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* t4 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a4 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* u0 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a1 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a4 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a2 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a1 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b2 (last use of %%r10 = a0) */
"movq 16(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* d += a4 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rcx only) */
"shrdq $52,%%r15,%%rcx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rcx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "b"(b), "D"(r)
: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* rcx:rbx = d
* r10-r14 = a0-a4
* r15 = M (0xfffffffffffff)
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
"movq $0xfffffffffffff,%%r15\n"
/* d = (a0*2) * a3 */
"leaq (%%r10,%%r10,1),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rbx\n"
"movq %%rdx,%%rcx\n"
/* d += (a1*2) * a2 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c = a4 * a4 */
"movq %%r14,%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* a4 *= 2 */
"addq %%r14,%%r14\n"
/* d += a0 * a4 */
"movq %%r10,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d+= (a1*2) * a3 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a2 * a2 */
"movq %%r12,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* t4 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * a0 */
"movq %%r10,%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a1 * a4 */
"movq %%r11,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += (a2*2) * a3 */
"leaq (%%r12,%%r12,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* u0 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* a0 *= 2 */
"addq %%r10,%%r10\n"
/* c += a0 * a1 */
"movq %%r10,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a2 * a4 */
"movq %%r12,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a3 * a3 */
"movq %%r13,%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a0 * a2 (last use of %%r10) */
"movq %%r10,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* c += a1 * a1 */
"movq %%r11,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a3 * a4 */
"movq %%r13,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rbx only) */
"shrdq $52,%%rcx,%%rbx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rbx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "D"(r)
: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
#endif

View File

@@ -0,0 +1,451 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#include "num.h"
#include "field.h"
#if defined(USE_ASM_X86_64)
#include "field_5x52_asm_impl.h"
#else
#include "field_5x52_int128_impl.h"
#endif
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
* output.
*/
#ifdef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) {
const uint64_t *d = a->n;
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
r &= (a->magnitude >= 0);
r &= (a->magnitude <= 2048);
if (a->normalized) {
r &= (a->magnitude <= 1);
if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
r &= (d[0] < 0xFFFFEFFFFFC2FULL);
}
}
VERIFY_CHECK(r == 1);
}
#endif
static void secp256k1_fe_normalize(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
/* Apply the final reduction (for constant-time behaviour, we do it always) */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
if (x) {
t0 += 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
}
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
uint64_t z0, z1;
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
uint64_t t0, t1, t2, t3, t4;
uint64_t z0, z1;
uint64_t x;
t0 = r->n[0];
t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
x = t4 >> 48;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
z0 = t0 & 0xFFFFFFFFFFFFFULL;
z1 = z0 ^ 0x1000003D0ULL;
/* Fast return path should catch the majority of cases */
if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
return 0;
}
t1 = r->n[1];
t2 = r->n[2];
t3 = r->n[3];
t4 &= 0x0FFFFFFFFFFFFULL;
t1 += (t0 >> 52);
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
const uint64_t *t = a->n;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
}
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
return a->n[0] & 1;
}
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
int i;
#ifdef VERIFY
a->magnitude = 0;
a->normalized = 1;
#endif
for (i=0; i<5; i++) {
a->n[i] = 0;
}
}
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
VERIFY_CHECK(b->normalized);
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
#endif
for (i = 4; i >= 0; i--) {
if (a->n[i] > b->n[i]) {
return 1;
}
if (a->n[i] < b->n[i]) {
return -1;
}
}
return 0;
}
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
int i;
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
for (i=0; i<32; i++) {
int j;
for (j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
}
}
if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
return 0;
}
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
return 1;
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
for (i=0; i<32; i++) {
int j;
int c = 0;
for (j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
}
r[31-i] = c;
}
}
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= m);
secp256k1_fe_verify(a);
#endif
r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
#ifdef VERIFY
r->magnitude = m + 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
#ifdef VERIFY
r->magnitude *= a;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
secp256k1_fe_verify(a);
#endif
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
#ifdef VERIFY
r->magnitude += a->magnitude;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
VERIFY_CHECK(b->magnitude <= 8);
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(r != b);
#endif
secp256k1_fe_mul_inner(r->n, a->n, b->n);
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_verify(a);
#endif
secp256k1_fe_sqr_inner(r->n, a->n);
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
uint64_t mask0, mask1;
mask0 = flag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
#ifdef VERIFY
if (a->magnitude > r->magnitude) {
r->magnitude = a->magnitude;
}
r->normalized &= a->normalized;
#endif
}
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
uint64_t mask0, mask1;
mask0 = flag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
}
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
#endif
r->n[0] = a->n[0] | a->n[1] << 52;
r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
}
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
r->n[4] = a->n[3] >> 16;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
#endif

View File

@@ -0,0 +1,277 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
#include <stdint.h>
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#else
#define VERIFY_BITS(x, n) do { } while(0)
#endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
uint128_t c, d;
uint64_t t3, t4, tx, u0;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
VERIFY_BITS(b[0], 56);
VERIFY_BITS(b[1], 56);
VERIFY_BITS(b[2], 56);
VERIFY_BITS(b[3], 56);
VERIFY_BITS(b[4], 52);
VERIFY_CHECK(r != b);
/* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*b[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
d = (uint128_t)a0 * b[3]
+ (uint128_t)a1 * b[2]
+ (uint128_t)a2 * b[1]
+ (uint128_t)a3 * b[0];
VERIFY_BITS(d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
c = (uint128_t)a4 * b[4];
VERIFY_BITS(c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (c & M) * R; c >>= 52;
VERIFY_BITS(d, 115);
VERIFY_BITS(c, 60);
/* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = d & M; d >>= 52;
VERIFY_BITS(t3, 52);
VERIFY_BITS(d, 63);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (uint128_t)a0 * b[4]
+ (uint128_t)a1 * b[3]
+ (uint128_t)a2 * b[2]
+ (uint128_t)a3 * b[1]
+ (uint128_t)a4 * b[0];
VERIFY_BITS(d, 115);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
d += c * R;
VERIFY_BITS(d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = d & M; d >>= 52;
VERIFY_BITS(t4, 52);
VERIFY_BITS(d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
c = (uint128_t)a0 * b[0];
VERIFY_BITS(c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
d += (uint128_t)a1 * b[4]
+ (uint128_t)a2 * b[3]
+ (uint128_t)a3 * b[2]
+ (uint128_t)a4 * b[1];
VERIFY_BITS(d, 115);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = d & M; d >>= 52;
VERIFY_BITS(u0, 52);
VERIFY_BITS(d, 63);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)u0 * (R >> 4);
VERIFY_BITS(c, 115);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = c & M; c >>= 52;
VERIFY_BITS(r[0], 52);
VERIFY_BITS(c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)a0 * b[1]
+ (uint128_t)a1 * b[0];
VERIFY_BITS(c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
d += (uint128_t)a2 * b[4]
+ (uint128_t)a3 * b[3]
+ (uint128_t)a4 * b[2];
VERIFY_BITS(d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = c & M; c >>= 52;
VERIFY_BITS(r[1], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (uint128_t)a0 * b[2]
+ (uint128_t)a1 * b[1]
+ (uint128_t)a2 * b[0];
VERIFY_BITS(c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
d += (uint128_t)a3 * b[4]
+ (uint128_t)a4 * b[3];
VERIFY_BITS(d, 114);
/* [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = c & M; c >>= 52;
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
VERIFY_BITS(r[3], 52);
VERIFY_BITS(c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += t4;
VERIFY_BITS(c, 49);
/* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = c;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
uint128_t c, d;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
int64_t t3, t4, tx, u0;
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
/** [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*a[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
d = (uint128_t)(a0*2) * a3
+ (uint128_t)(a1*2) * a2;
VERIFY_BITS(d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
c = (uint128_t)a4 * a4;
VERIFY_BITS(c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (c & M) * R; c >>= 52;
VERIFY_BITS(d, 115);
VERIFY_BITS(c, 60);
/* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = d & M; d >>= 52;
VERIFY_BITS(t3, 52);
VERIFY_BITS(d, 63);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
a4 *= 2;
d += (uint128_t)a0 * a4
+ (uint128_t)(a1*2) * a3
+ (uint128_t)a2 * a2;
VERIFY_BITS(d, 115);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
d += c * R;
VERIFY_BITS(d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = d & M; d >>= 52;
VERIFY_BITS(t4, 52);
VERIFY_BITS(d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
c = (uint128_t)a0 * a0;
VERIFY_BITS(c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
d += (uint128_t)a1 * a4
+ (uint128_t)(a2*2) * a3;
VERIFY_BITS(d, 114);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = d & M; d >>= 52;
VERIFY_BITS(u0, 52);
VERIFY_BITS(d, 62);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)u0 * (R >> 4);
VERIFY_BITS(c, 113);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = c & M; c >>= 52;
VERIFY_BITS(r[0], 52);
VERIFY_BITS(c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
a0 *= 2;
c += (uint128_t)a0 * a1;
VERIFY_BITS(c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
d += (uint128_t)a2 * a4
+ (uint128_t)a3 * a3;
VERIFY_BITS(d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = c & M; c >>= 52;
VERIFY_BITS(r[1], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (uint128_t)a0 * a2
+ (uint128_t)a1 * a1;
VERIFY_BITS(c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
d += (uint128_t)a3 * a4;
VERIFY_BITS(d, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = c & M; c >>= 52;
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
VERIFY_BITS(r[3], 52);
VERIFY_BITS(c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += t4;
VERIFY_BITS(c, 49);
/* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = c;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
#endif

View File

@@ -0,0 +1,315 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_IMPL_H_
#define _SECP256K1_FIELD_IMPL_H_
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#if defined(USE_FIELD_10X26)
#include "field_10x26_impl.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52_impl.h"
#else
#error "Please select field implementation"
#endif
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<6; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
return secp256k1_fe_equal(&t1, a);
}
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<5; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, a);
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(r, a, &t1);
}
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#if defined(USE_FIELD_INV_BUILTIN)
secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
secp256k1_num n, m;
static const secp256k1_fe negone = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
);
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
unsigned char b[32];
int res;
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
res = secp256k1_fe_set_b32(r, b);
(void)res;
VERIFY_CHECK(res);
/* Verify the result is the (unique) valid inverse using non-GMP code. */
secp256k1_fe_mul(&c, &c, r);
secp256k1_fe_add(&c, &negone);
CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
#else
#error "Please select field inverse implementation"
#endif
}
static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
secp256k1_fe u;
size_t i;
if (len < 1) {
return;
}
VERIFY_CHECK((r + len <= a) || (a + len <= r));
r[0] = a[0];
i = 0;
while (++i < len) {
secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
}
secp256k1_fe_inv_var(&u, &r[--i]);
while (i > 0) {
size_t j = i--;
secp256k1_fe_mul(&r[j], &r[i], &u);
secp256k1_fe_mul(&u, &u, &a[j]);
}
r[0] = u;
}
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
#ifndef USE_NUM_NONE
unsigned char b[32];
secp256k1_num n;
secp256k1_num m;
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
return secp256k1_num_jacobi(&n, &m) >= 0;
#else
secp256k1_fe r;
return secp256k1_fe_sqrt(&r, a);
#endif
}
#endif

Some files were not shown because too many files have changed in this diff Show More