164
vendor/github.com/andybalholm/brotli/cluster_command.go
generated
vendored
Normal file
164
vendor/github.com/andybalholm/brotli/cluster_command.go
generated
vendored
Normal file
@@ -0,0 +1,164 @@
|
||||
package brotli
|
||||
|
||||
/* Copyright 2013 Google Inc. All Rights Reserved.
|
||||
|
||||
Distributed under MIT license.
|
||||
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
||||
*/
|
||||
|
||||
/* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
|
||||
it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */
|
||||
func compareAndPushToQueueCommand(out []histogramCommand, cluster_size []uint32, idx1 uint32, idx2 uint32, max_num_pairs uint, pairs []histogramPair, num_pairs *uint) {
|
||||
var is_good_pair bool = false
|
||||
var p histogramPair
|
||||
p.idx2 = 0
|
||||
p.idx1 = p.idx2
|
||||
p.cost_combo = 0
|
||||
p.cost_diff = p.cost_combo
|
||||
if idx1 == idx2 {
|
||||
return
|
||||
}
|
||||
|
||||
if idx2 < idx1 {
|
||||
var t uint32 = idx2
|
||||
idx2 = idx1
|
||||
idx1 = t
|
||||
}
|
||||
|
||||
p.idx1 = idx1
|
||||
p.idx2 = idx2
|
||||
p.cost_diff = 0.5 * clusterCostDiff(uint(cluster_size[idx1]), uint(cluster_size[idx2]))
|
||||
p.cost_diff -= out[idx1].bit_cost_
|
||||
p.cost_diff -= out[idx2].bit_cost_
|
||||
|
||||
if out[idx1].total_count_ == 0 {
|
||||
p.cost_combo = out[idx2].bit_cost_
|
||||
is_good_pair = true
|
||||
} else if out[idx2].total_count_ == 0 {
|
||||
p.cost_combo = out[idx1].bit_cost_
|
||||
is_good_pair = true
|
||||
} else {
|
||||
var threshold float64
|
||||
if *num_pairs == 0 {
|
||||
threshold = 1e99
|
||||
} else {
|
||||
threshold = brotli_max_double(0.0, pairs[0].cost_diff)
|
||||
}
|
||||
var combo histogramCommand = out[idx1]
|
||||
var cost_combo float64
|
||||
histogramAddHistogramCommand(&combo, &out[idx2])
|
||||
cost_combo = populationCostCommand(&combo)
|
||||
if cost_combo < threshold-p.cost_diff {
|
||||
p.cost_combo = cost_combo
|
||||
is_good_pair = true
|
||||
}
|
||||
}
|
||||
|
||||
if is_good_pair {
|
||||
p.cost_diff += p.cost_combo
|
||||
if *num_pairs > 0 && histogramPairIsLess(&pairs[0], &p) {
|
||||
/* Replace the top of the queue if needed. */
|
||||
if *num_pairs < max_num_pairs {
|
||||
pairs[*num_pairs] = pairs[0]
|
||||
(*num_pairs)++
|
||||
}
|
||||
|
||||
pairs[0] = p
|
||||
} else if *num_pairs < max_num_pairs {
|
||||
pairs[*num_pairs] = p
|
||||
(*num_pairs)++
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func histogramCombineCommand(out []histogramCommand, cluster_size []uint32, symbols []uint32, clusters []uint32, pairs []histogramPair, num_clusters uint, symbols_size uint, max_clusters uint, max_num_pairs uint) uint {
|
||||
var cost_diff_threshold float64 = 0.0
|
||||
var min_cluster_size uint = 1
|
||||
var num_pairs uint = 0
|
||||
{
|
||||
/* We maintain a vector of histogram pairs, with the property that the pair
|
||||
with the maximum bit cost reduction is the first. */
|
||||
var idx1 uint
|
||||
for idx1 = 0; idx1 < num_clusters; idx1++ {
|
||||
var idx2 uint
|
||||
for idx2 = idx1 + 1; idx2 < num_clusters; idx2++ {
|
||||
compareAndPushToQueueCommand(out, cluster_size, clusters[idx1], clusters[idx2], max_num_pairs, pairs[0:], &num_pairs)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for num_clusters > min_cluster_size {
|
||||
var best_idx1 uint32
|
||||
var best_idx2 uint32
|
||||
var i uint
|
||||
if pairs[0].cost_diff >= cost_diff_threshold {
|
||||
cost_diff_threshold = 1e99
|
||||
min_cluster_size = max_clusters
|
||||
continue
|
||||
}
|
||||
|
||||
/* Take the best pair from the top of heap. */
|
||||
best_idx1 = pairs[0].idx1
|
||||
|
||||
best_idx2 = pairs[0].idx2
|
||||
histogramAddHistogramCommand(&out[best_idx1], &out[best_idx2])
|
||||
out[best_idx1].bit_cost_ = pairs[0].cost_combo
|
||||
cluster_size[best_idx1] += cluster_size[best_idx2]
|
||||
for i = 0; i < symbols_size; i++ {
|
||||
if symbols[i] == best_idx2 {
|
||||
symbols[i] = best_idx1
|
||||
}
|
||||
}
|
||||
|
||||
for i = 0; i < num_clusters; i++ {
|
||||
if clusters[i] == best_idx2 {
|
||||
copy(clusters[i:], clusters[i+1:][:num_clusters-i-1])
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
num_clusters--
|
||||
{
|
||||
/* Remove pairs intersecting the just combined best pair. */
|
||||
var copy_to_idx uint = 0
|
||||
for i = 0; i < num_pairs; i++ {
|
||||
var p *histogramPair = &pairs[i]
|
||||
if p.idx1 == best_idx1 || p.idx2 == best_idx1 || p.idx1 == best_idx2 || p.idx2 == best_idx2 {
|
||||
/* Remove invalid pair from the queue. */
|
||||
continue
|
||||
}
|
||||
|
||||
if histogramPairIsLess(&pairs[0], p) {
|
||||
/* Replace the top of the queue if needed. */
|
||||
var front histogramPair = pairs[0]
|
||||
pairs[0] = *p
|
||||
pairs[copy_to_idx] = front
|
||||
} else {
|
||||
pairs[copy_to_idx] = *p
|
||||
}
|
||||
|
||||
copy_to_idx++
|
||||
}
|
||||
|
||||
num_pairs = copy_to_idx
|
||||
}
|
||||
|
||||
/* Push new pairs formed with the combined histogram to the heap. */
|
||||
for i = 0; i < num_clusters; i++ {
|
||||
compareAndPushToQueueCommand(out, cluster_size, best_idx1, clusters[i], max_num_pairs, pairs[0:], &num_pairs)
|
||||
}
|
||||
}
|
||||
|
||||
return num_clusters
|
||||
}
|
||||
|
||||
/* What is the bit cost of moving histogram from cur_symbol to candidate. */
|
||||
func histogramBitCostDistanceCommand(histogram *histogramCommand, candidate *histogramCommand) float64 {
|
||||
if histogram.total_count_ == 0 {
|
||||
return 0.0
|
||||
} else {
|
||||
var tmp histogramCommand = *histogram
|
||||
histogramAddHistogramCommand(&tmp, candidate)
|
||||
return populationCostCommand(&tmp) - candidate.bit_cost_
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user