mirror of
https://github.com/42wim/matterbridge.git
synced 2025-01-09 17:09:02 -08:00
53cafa9f3d
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo` The default binaries are still "pure" go and uses the old way of converting. * Move lottie_convert.py conversion code to its own file * Add optional libtgsconverter * Update vendor * Apply suggestions from code review * Update bridge/helper/libtgsconverter.go Co-authored-by: Wim <wim@42.be>
210 lines
5.2 KiB
Go
210 lines
5.2 KiB
Go
package libtgsconverter
|
|
|
|
import (
|
|
"image"
|
|
"image/color"
|
|
"sync"
|
|
)
|
|
|
|
type bucketPool struct {
|
|
sync.Pool
|
|
maxCap int
|
|
m sync.Mutex
|
|
}
|
|
|
|
func (p *bucketPool) getBucket(c int) colorBucket {
|
|
p.m.Lock()
|
|
if p.maxCap > c {
|
|
p.maxCap = p.maxCap * 99 / 100
|
|
}
|
|
if p.maxCap < c {
|
|
p.maxCap = c
|
|
}
|
|
maxCap := p.maxCap
|
|
p.m.Unlock()
|
|
val := p.Pool.Get()
|
|
if val == nil || cap(val.(colorBucket)) < c {
|
|
return make(colorBucket, maxCap)[0:c]
|
|
}
|
|
slice := val.(colorBucket)
|
|
slice = slice[0:c]
|
|
for i := range slice {
|
|
slice[i] = colorPriority{}
|
|
}
|
|
return slice
|
|
}
|
|
|
|
var bpool bucketPool
|
|
|
|
// aggregationType specifies the type of aggregation to be done
|
|
type aggregationType uint8
|
|
|
|
const (
|
|
// Mode - pick the highest priority value
|
|
mode aggregationType = iota
|
|
// Mean - weighted average all values
|
|
mean
|
|
)
|
|
|
|
// medianCutQuantizer implements the go draw.Quantizer interface using the Median Cut method
|
|
type medianCutQuantizer struct {
|
|
// The type of aggregation to be used to find final colors
|
|
aggregation aggregationType
|
|
// The weighting function to use on each pixel
|
|
weighting func(image.Image, int, int) uint32
|
|
// Whether need to add a transparent entry after conversion
|
|
reserveTransparent bool
|
|
}
|
|
|
|
//bucketize takes a bucket and performs median cut on it to obtain the target number of grouped buckets
|
|
func bucketize(colors colorBucket, num int) (buckets []colorBucket) {
|
|
if len(colors) == 0 || num == 0 {
|
|
return nil
|
|
}
|
|
bucket := colors
|
|
buckets = make([]colorBucket, 1, num*2)
|
|
buckets[0] = bucket
|
|
|
|
for len(buckets) < num && len(buckets) < len(colors) { // Limit to palette capacity or number of colors
|
|
bucket, buckets = buckets[0], buckets[1:]
|
|
if len(bucket) < 2 {
|
|
buckets = append(buckets, bucket)
|
|
continue
|
|
} else if len(bucket) == 2 {
|
|
buckets = append(buckets, bucket[:1], bucket[1:])
|
|
continue
|
|
}
|
|
|
|
left, right := bucket.partition()
|
|
buckets = append(buckets, left, right)
|
|
}
|
|
return
|
|
}
|
|
|
|
// palettize finds a single color to represent a set of color buckets
|
|
func (q* medianCutQuantizer) palettize(p color.Palette, buckets []colorBucket) color.Palette {
|
|
for _, bucket := range buckets {
|
|
switch q.aggregation {
|
|
case mean:
|
|
mean := bucket.mean()
|
|
p = append(p, mean)
|
|
case mode:
|
|
var best colorPriority
|
|
for _, c := range bucket {
|
|
if c.p > best.p {
|
|
best = c
|
|
}
|
|
}
|
|
p = append(p, best.RGBA)
|
|
}
|
|
}
|
|
return p
|
|
}
|
|
|
|
// quantizeSlice expands the provided bucket and then palettizes the result
|
|
func (q* medianCutQuantizer) quantizeSlice(p color.Palette, colors []colorPriority) color.Palette {
|
|
numColors := cap(p) - len(p)
|
|
reserveTransparent := q.reserveTransparent
|
|
if reserveTransparent {
|
|
numColors--
|
|
}
|
|
buckets := bucketize(colors, numColors)
|
|
p = q.palettize(p, buckets)
|
|
return p
|
|
}
|
|
|
|
func colorAt(m image.Image, x int, y int) color.RGBA {
|
|
switch i := m.(type) {
|
|
case *image.YCbCr:
|
|
yi := i.YOffset(x, y)
|
|
ci := i.COffset(x, y)
|
|
c := color.YCbCr{
|
|
i.Y[yi],
|
|
i.Cb[ci],
|
|
i.Cr[ci],
|
|
}
|
|
return color.RGBA{c.Y, c.Cb, c.Cr, 255}
|
|
case *image.RGBA:
|
|
ci := i.PixOffset(x, y)
|
|
return color.RGBA{i.Pix[ci+0], i.Pix[ci+1], i.Pix[ci+2], i.Pix[ci+3]}
|
|
default:
|
|
return color.RGBAModel.Convert(i.At(x, y)).(color.RGBA)
|
|
}
|
|
}
|
|
|
|
// buildBucketMultiple creates a prioritized color slice with all the colors in
|
|
// the images.
|
|
func (q* medianCutQuantizer) buildBucketMultiple(ms []image.Image) (bucket colorBucket) {
|
|
if len(ms) < 1 {
|
|
return colorBucket{}
|
|
}
|
|
|
|
bounds := ms[0].Bounds()
|
|
size := (bounds.Max.X - bounds.Min.X) * (bounds.Max.Y - bounds.Min.Y) * 2
|
|
sparseBucket := bpool.getBucket(size)
|
|
|
|
for _, m := range ms {
|
|
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
|
for x := bounds.Min.X; x < bounds.Max.X; x++ {
|
|
priority := uint32(1)
|
|
if q.weighting != nil {
|
|
priority = q.weighting(m, x, y)
|
|
}
|
|
c := colorAt(m, x, y)
|
|
if c.A == 0 {
|
|
if !q.reserveTransparent {
|
|
q.reserveTransparent = true
|
|
}
|
|
continue
|
|
}
|
|
if priority != 0 {
|
|
index := int(c.R)<<16 | int(c.G)<<8 | int(c.B)
|
|
for i := 1; ; i++ {
|
|
p := &sparseBucket[index%size]
|
|
if p.p == 0 || p.RGBA == c {
|
|
*p = colorPriority{p.p + priority, c}
|
|
break
|
|
}
|
|
index += 1 + i
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bucket = sparseBucket[:0]
|
|
switch ms[0].(type) {
|
|
case *image.YCbCr:
|
|
for _, p := range sparseBucket {
|
|
if p.p != 0 {
|
|
r, g, b := color.YCbCrToRGB(p.R, p.G, p.B)
|
|
bucket = append(bucket, colorPriority{p.p, color.RGBA{r, g, b, p.A}})
|
|
}
|
|
}
|
|
default:
|
|
for _, p := range sparseBucket {
|
|
if p.p != 0 {
|
|
bucket = append(bucket, p)
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Quantize quantizes an image to a palette and returns the palette
|
|
func (q* medianCutQuantizer) quantize(p color.Palette, m image.Image) color.Palette {
|
|
// Package quantize offers an implementation of the draw.Quantize interface using an optimized Median Cut method,
|
|
// including advanced functionality for fine-grained control of color priority
|
|
bucket := q.buildBucketMultiple([]image.Image{m})
|
|
defer bpool.Put(bucket)
|
|
return q.quantizeSlice(p, bucket)
|
|
}
|
|
|
|
// QuantizeMultiple quantizes several images at once to a palette and returns
|
|
// the palette
|
|
func (q* medianCutQuantizer) quantizeMultiple(p color.Palette, m []image.Image) color.Palette {
|
|
bucket := q.buildBucketMultiple(m)
|
|
defer bpool.Put(bucket)
|
|
return q.quantizeSlice(p, bucket)
|
|
}
|