matterbridge/vendor/github.com/av-elier/go-decimal-to-rational
Benau 53cafa9f3d
Convert .tgs with go libraries (and cgo) (telegram) (#1569)
This commit adds support for go/cgo tgs conversion when building with the -tags `cgo`
The default binaries are still "pure" go and uses the old way of converting.

* Move lottie_convert.py conversion code to its own file

* Add optional libtgsconverter

* Update vendor

* Apply suggestions from code review

* Update bridge/helper/libtgsconverter.go

Co-authored-by: Wim <wim@42.be>
2021-08-24 22:32:50 +02:00
..
.travis.yml Convert .tgs with go libraries (and cgo) (telegram) (#1569) 2021-08-24 22:32:50 +02:00
frac.go Convert .tgs with go libraries (and cgo) (telegram) (#1569) 2021-08-24 22:32:50 +02:00
LICENSE Convert .tgs with go libraries (and cgo) (telegram) (#1569) 2021-08-24 22:32:50 +02:00
README.md Convert .tgs with go libraries (and cgo) (telegram) (#1569) 2021-08-24 22:32:50 +02:00

go-decimal-to-rational

Build Status

Go library to convert decimal (float64) to rational fraction with required precision

Relies on Continued Fraction algorythm.

It's sometimes more appropriate than default big.Rat SetString, because you can get 2/3 from 0.6666 by specifiing required precision. In big.Rat SetString you can only get 3333/50000, and have no way to manipulate than (as of go 1.11).

Example

func ExampleNewRatP() {
	fmt.Println(NewRatP(0.6666, 0.01).String())
	fmt.Println(NewRatP(0.981, 0.001).String())
	fmt.Println(NewRatP(0.75, 0.01).String())
	// Output:
	// 2/3
	// 981/1000
	// 3/4
}
func ExampleNewRatI() {
	fmt.Println(NewRatI(0.6667, 3).String())
	fmt.Println(NewRatI(0.6667, 4).String())
	// Output:
	// 2/3
	// 6667/10000
}

Docs

import dectofrac "github.com/av-elier/go-decimal-to-rational"

func NewRatI

func NewRatI(val float64, iterations int64) *big.Rat

NewRatI returns rational from decimal using iterations number of iterations in Continued Fraction algorythm

func NewRatP

func NewRatP(val float64, stepPrecision float64) *big.Rat

NewRatP returns rational from decimal by going as mush iterations, until next fraction is less than stepPrecision