// Copyright 2022 The Gc Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc // modernc.org/gc/v3 import ( "go/constant" "go/token" "path/filepath" "reflect" "runtime" "sort" "strings" "modernc.org/mathutil" "modernc.org/strutil" ) // === RUN TestTypeCheck/GOROOT // === CONT TestTypeCheck // all_test.go:1123: TOTAL packages 516, files 2,301, skip 0, ok 516, fail 0 // all_test.go:1127: pkg count 516, heap 626,182,264 // --- PASS: TestTypeCheck (2.28s) // --- PASS: TestTypeCheck/GOROOT (2.12s) // all_test.go:1127: pkg count 516, heap 626,153,184 // all_test.go:1128: pkg count 516, heap 590,057,064 // all_test.go:1128: pkg count 516, heap 572,015,152 // all_test.go:1129: pkg count 516, heap 567,709,952 // all_test.go:1129: pkg count 516, heap 555,500,960 // all_test.go:1129: pkg count 516, heap 551,777,488 // all_test.go:1129: pkg count 516, heap 548,683,512 // all_test.go:1129: pkg count 516, heap 548,447,936 // all_test.go:1129: pkg count 516, heap 547,480,288 // all_test.go:1129: pkg count 516, heap 546,915,592 // all_test.go:1129: pkg count 516, heap 543,393,136 // all_test.go:1129: pkg count 516, heap 544,638,544 // all_test.go:1129: pkg count 516, heap 474,343,936 // all_test.go:1129: pkg count 516, heap 459,353,840 // all_test.go:1129: pkg count 516, heap 457,275,512 // all_test.go:1129: pkg count 516, heap 455,355,680 // all_test.go:1129: pkg count 516, heap 454,663,568 // all_test.go:1129: pkg count 516, heap 454,581,072 // all_test.go:1129: pkg count 516, heap 454,607,112 // all_test.go:1129: pkg count 516, heap 454,709,968 // all_test.go:1129: pkg count 516, heap 455,312,784 // all_test.go:1129: pkg count 516, heap 456,016,824 // all_test.go:1129: pkg count 516, heap 455,954,544 // all_test.go:1129: pkg count 516, heap 456,016,592 // all_test.go:1129: pkg count 516, heap 457,121,224 // all_test.go:1129: pkg count 516, heap 427,262,960 // all_test.go:1130: pkg count 516, heap 428,998,600 // all_test.go:1130: pkg count 551, heap 448,395,152 // all_test.go:1130: pkg count 551, heap 451,817,616 // all_test.go:1131: pkg count 551, heap 452,091,200 // all_test.go:1131: pkg count 551, heap 452,999,840 // <total> x 16,603,469 = 892,265,816 á 54 // <total> x 16,024,194 = 887,787,224 á 55 // <total> x 16,025,144 = 888,006,760 á 55 // <total> x 16,025,211 = 823,222,088 á 51 // <total> x 16,025,281 = 822,404,264 á 51 // <total> x 14,056,450 = 696,398,872 á 50 // <total> x 14,056,581 = 696,851,856 á 50 // <total> x 14,056,453 = 708,480,848 á 50 // <total> x 14,422,414 = 719,035,680 á 50 // <total> x 14,423,240 = 717,114,200 á 50 // <total> x 14,425,901 = 711,567,152 á 49 // <total> x 14,474,065 = 710,068,032 á 49 // <total> x 14,481,041 = 710,373,680 á 49 // <total> x 14,481,767 = 710,408,768 á 49 // <total> x 14,484,493 = 710,543,264 á 49 // <total> x 14,461,141 = 706,268,448 á 49 // <total> x 14,461,182 = 707,678,232 á 49 // <total> x 14,461,242 = 714,720,336 á 49 // <total> x 14,461,219 = 797,198,184 á 55 // <total> x 14,461,496 = 797,214,104 á 55 // <total> x 14,461,329 = 716,132,376 á 50 // <total> x 14,461,680 = 711,984,376 á 49 // <total> x 14,160,586 = 702,969,536 á 50 // <total> x 14,160,709 = 682,184,664 á 48 // <total> x 14,160,848 = 673,044,152 á 48 // <total> x 14,160,317 = 665,980,184 á 47 // <total> x 14,005,861 = 661,267,672 á 47 // <total> x 13,983,296 = 660,781,720 á 47 // <total> x 13,943,950 = 660,175,016 á 47 // <total> x 13,943,178 = 647,906,568 á 46 // <total> x 13,924,463 = 648,999,976 á 47 // <total> x 13,322,751 = 541,059,736 á 41 // <total> x 12,815,541 = 510,052,400 á 40 // <total> x 12,815,675 = 506,593,488 á 40 // <total> x 12,639,779 = 500,965,136 á 40 // <total> x 12,640,847 = 501,008,776 á 40 // <total> x 12,603,003 = 499,658,832 á 40 // <total> x 12,603,001 = 502,473,720 á 40 // <total> x 12,602,667 = 505,274,416 á 40 // <total> x 12,603,389 = 505,302,936 á 40 // <total> x 12,604,481 = 507,314,552 á 40 // <total> x 12,590,468 = 454,314,392 á 36 // <total> x 12,591,896 = 456,980,832 á 36 // <total> x 12,597,633 = 457,211,632 á 36 // <total> x 12,597,637 = 458,714,592 á 36 // <total> x 12,931,431 = 471,180,992 á 36 // <total> x 12,931,309 = 481,877,912 á 37 // <total> x 12,933,798 = 482,402,192 á 37 // <total> x 12,934,587 = 483,606,808 á 37 const parserBudget = 1e7 var ( noBack bool panicBack bool ) type visibiliter interface { Node Visible() int setVisible(int32) } type visible struct { visible int32 // first token index where n is visible } // Visible reports the first token index where n is visible (in scope). Applies // to local scopes only. func (n *visible) Visible() int { return int(n.visible) } func (n *visible) setVisible(i int32) { n.visible = i } type named struct { n visibiliter declTok Token } type ScopeKind int const ( scZero ScopeKind = iota UniverseScope PackageScope FileScope OtherScope ) type Scope struct { nodes map[string]named parent *Scope kind ScopeKind } func newScope(parent *Scope, kind ScopeKind) *Scope { return &Scope{parent: parent, kind: kind} } func (s *Scope) Iterate(f func(name string, n Node) (stop bool)) { for name, v := range s.nodes { if f(name, v.n) { return } } } func (s *Scope) Kind() ScopeKind { return s.kind } func (s *Scope) Parent() *Scope { return s.parent } func (s *Scope) declare(nm Token, n visibiliter, visible int32, p *parser, initOK bool) (r named) { snm := nm.Src() switch snm { case "_": return r case "init": if s.kind == PackageScope { if p != nil && !initOK && p.reportDeclarationErrors { p.err(nm.Position(), "in the package block, the identifier init may only be used for init function declarations") } return r } } if ex, ok := s.nodes[snm]; ok { return ex } if s.nodes == nil { s.nodes = map[string]named{} } // trc("%v: add %s %p", nm.Position(), snm, s) n.setVisible(visible) s.nodes[snm] = named{n, nm} return r } func (s *Scope) lookup(id Token) (in *Scope, r named) { nm := id.Src() ix := int(id.index) for s != nil { switch s.kind { case PackageScope, UniverseScope: ix = -1 } sc, ok := s.nodes[nm] if ok && (ix < 0 || ix > sc.n.Visible()) { return s, sc } s = s.parent } return nil, r } type lexicalScoper struct{ s *Scope } func newLexicalScoper(s *Scope) lexicalScoper { return lexicalScoper{s} } func (n *lexicalScoper) LexicalScope() *Scope { return n.s } // Node is an item of the CST tree. type Node interface { Position() token.Position Source(full bool) string } var hooks = strutil.PrettyPrintHooks{ reflect.TypeOf(Token{}): func(f strutil.Formatter, v interface{}, prefix, suffix string) { t := v.(Token) if !t.IsValid() { return } pos := t.Position() if pos.Filename != "" { pos.Filename = filepath.Base(pos.Filename) } f.Format(string(prefix)+"%10s %q %q\t(%v:)"+string(suffix), tokSource(t.Ch()), t.Sep(), t.Src(), pos) }, } func dump(n Node) string { return strutil.PrettyString(n, "", "", hooks) } // NodeSource returns the source text of 'n'. If 'full' is false, every non // empty separator is replaced by a single space. Nodes found in 'kill' are // skipped, transitively. func NodeSource(n Node, full bool, kill map[Node]struct{}) string { return nodeSource2(n, full, kill) } func nodeSource(n interface{}, full bool) string { return nodeSource2(n, full, nil) } func nodeSource2(n interface{}, full bool, kill map[Node]struct{}) string { var a []int32 var t Token nodeSource0(&t.source, &a, n, kill) if len(a) == 0 { return "" } var b strings.Builder sort.Slice(a, func(i, j int) bool { return a[i] < a[j] }) for _, v := range a { t.index = v t.ch = t.source.toks[t.index].ch b.WriteString(t.Source(full)) } return b.String() } func nodeSource0(ps **source, a *[]int32, n interface{}, kill map[Node]struct{}) { if x, ok := n.(Node); ok { if _, ok := kill[x]; ok { return } } switch x := n.(type) { case nil: // nop case Token: if x.IsValid() { *ps = x.source *a = append(*a, x.index) } case *BasicLitNode: if x.IsValid() { *ps = x.source *a = append(*a, x.index) } default: t := reflect.TypeOf(n) v := reflect.ValueOf(n) if v.IsZero() { break } switch t.Kind() { case reflect.Pointer: nodeSource0(ps, a, v.Elem().Interface(), kill) case reflect.Struct: for i := 0; i < t.NumField(); i++ { if token.IsExported(t.Field(i).Name) { nodeSource0(ps, a, v.Field(i).Interface(), kill) } } case reflect.Slice: for i := 0; i < v.Len(); i++ { nodeSource0(ps, a, v.Index(i).Interface(), kill) } default: panic(todo("", t.Name(), t.Kind())) } } } type AST struct { EOF Token FileScope *Scope SourceFile *SourceFileNode packageScope *Scope // For the individual file, enables parallelism, consolidated by Package.check() } func (n *AST) Source(full bool) string { return nodeSource(n, full) } func (n *AST) Position() (r token.Position) { if n == nil { return r } return n.SourceFile.Position() } type parser struct { a *analyzer fileScope *Scope maxBackOrigin string maxBackRange [2]int packageScope *Scope path string s *scanner sc *Scope backs int budget int ix int maxBack int maxIx int isClosed bool record bool reportDeclarationErrors bool } func newParser(pkgScope *Scope, path string, src []byte, record bool) *parser { return &parser{ a: newAnalyzer(), budget: parserBudget, fileScope: newScope(pkgScope, FileScope), packageScope: pkgScope, path: path, record: record, s: newScanner(path, src), sc: pkgScope, } } func (p *parser) c() token.Token { return p.peek(0) } func (p *parser) closeScope() { p.sc = p.sc.parent } func (p *parser) errPosition() (r token.Position) { return p.s.toks[p.maxIx].position(p.s.source) } func (p *parser) openScope() { p.sc = newScope(p.sc, OtherScope) } func (p *parser) pos() (r token.Position) { return p.s.toks[mathutil.MinInt32(int32(p.ix), int32(len(p.s.toks)-1))].position(p.s.source) } func (p *parser) err(pos token.Position, msg string, args ...interface{}) { p.s.errs.err(pos, msg, args...) } func (p *parser) declare(s *Scope, nm Token, n visibiliter, visible int32, initOK bool) { if ex := s.declare(nm, n, visible, p, initOK); ex.declTok.IsValid() && p.reportDeclarationErrors { p.err(nm.Position(), "%s redeclared, previous declaration at %v:", nm.Src(), ex.declTok.Position()) } } func (p *parser) consume() (r Token) { r = Token{p.s.source, p.s.toks[p.ix].ch, int32(p.ix)} p.ix++ p.budget-- return r } func (p *parser) accept(t token.Token) (r Token, _ bool) { if p.c() == t { return p.consume(), true } return r, false } func (p *parser) expect(t token.Token) (r Token) { var ok bool if r, ok = p.accept(t); !ok { p.isClosed = true } return r } func (p *parser) peek(n int) token.Token { for p.ix+n >= len(p.s.toks) { if p.budget <= 0 || p.isClosed { return EOF } p.s.scan() if p.s.isClosed { p.isClosed = true } } p.maxIx = mathutil.Max(p.maxIx, p.ix) return token.Token(p.s.toks[p.ix+n].ch) } func (p *parser) recordBacktrack(ix int, record bool) { delta := p.ix - ix p.backs += delta if delta > p.maxBack { p.maxBack = delta p.maxBackRange = [2]int{ix, p.ix} p.maxBackOrigin = origin(3) } p.ix = ix if p.record && record { if _, _, line, ok := runtime.Caller(2); ok { p.a.record(line, delta) } } } func (p *parser) back(ix int) { p.recordBacktrack(ix, true) if p.isClosed { return } if noBack { p.isClosed = true } if panicBack { panic(todo("%v: (%v:)", p.errPosition(), origin(2))) } } func (p *parser) parse() (ast *AST, err error) { if p.c() != PACKAGE { p.s.errs.err(p.errPosition(), "syntax error") return nil, p.s.errs } sourceFile := p.sourceFile() if p.budget <= 0 { return nil, errorf("%s: resources exhausted", p.path) } if eof, ok := p.accept(EOF); ok && p.ix == len(p.s.toks) { return &AST{packageScope: p.packageScope, FileScope: p.fileScope, SourceFile: sourceFile, EOF: eof}, p.s.errs.Err() } p.s.errs.err(p.errPosition(), "syntax error") return nil, p.s.errs } type BinaryExpressionNode struct { LHS Expression Op Token RHS Expression typeCache valueCache } // Position implements Node. func (n *BinaryExpressionNode) Position() (r token.Position) { if n == nil { return r } return n.LHS.Position() } // Source implements Node. func (n *BinaryExpressionNode) Source(full bool) string { return nodeSource(n, full) } func (p *parser) additiveExpression(preBlock bool) (r Expression) { var multiplicativeExpression Expression // ebnf.Sequence MultiplicativeExpression { ( "+" | "-" | "|" | "^" ) MultiplicativeExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name MultiplicativeExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if multiplicativeExpression = p.multiplicativeExpression(preBlock); multiplicativeExpression == nil { p.back(ix) return nil } // *ebnf.Repetition { ( "+" | "-" | "|" | "^" ) MultiplicativeExpression } ctx [] r = multiplicativeExpression _0: { var op Token var multiplicativeExpression Expression switch p.c() { case ADD, OR, SUB, XOR: // ebnf.Sequence ( "+" | "-" | "|" | "^" ) MultiplicativeExpression ctx [ADD, OR, SUB, XOR] // *ebnf.Group ( "+" | "-" | "|" | "^" ) ctx [ADD, OR, SUB, XOR] // ebnf.Alternative "+" | "-" | "|" | "^" ctx [ADD, OR, SUB, XOR] op = p.consume() // *ebnf.Name MultiplicativeExpression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if multiplicativeExpression = p.multiplicativeExpression(preBlock); multiplicativeExpression == nil { p.back(ix) goto _1 } default: p.back(ix) goto _1 } r = &BinaryExpressionNode{LHS: r, Op: op, RHS: multiplicativeExpression} goto _0 } _1: } } return r } // AliasDeclNode represents the production // // AliasDecl = identifier "=" Type . type AliasDeclNode struct { IDENT Token ASSIGN Token TypeNode Type visible } // Source implements Node. func (n *AliasDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *AliasDeclNode) Position() (r token.Position) { if n == nil { return r } return n.IDENT.Position() } func (p *parser) aliasDecl() (r *AliasDeclNode) { var ( identTok Token assignTok Token typeNode Type ) // ebnf.Sequence identifier "=" Type ctx [IDENT] { if p.peek(1) != ASSIGN { return nil } ix := p.ix // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) // *ebnf.Token "=" ctx [ASSIGN] assignTok = p.expect(ASSIGN) // *ebnf.Name Type ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if typeNode = p.type1(); typeNode == nil { p.back(ix) return nil } default: p.back(ix) return nil } } r = &AliasDeclNode{ IDENT: identTok, ASSIGN: assignTok, TypeNode: typeNode, } p.declare(p.sc, identTok, r, int32(p.ix), false) return r } // ArgumentsNode represents the production // // Arguments = "(" [ Expression ] ")" . type ArgumentsNode struct { LPAREN Token Expression Expression RPAREN Token } // Source implements Node. func (n *ArgumentsNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ArgumentsNode) Position() (r token.Position) { if n == nil { return r } return n.LPAREN.Position() } // Arguments1Node represents the production // // Arguments = "(" [ ( Expression | Type [ "," Expression ] ) [ "..." ] [ "," ] ] ")" . type Arguments1Node struct { LPAREN Token Expression Expression TypeNode Type COMMA Token ELLIPSIS Token COMMA2 Token RPAREN Token } // Source implements Node. func (n *Arguments1Node) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *Arguments1Node) Position() (r token.Position) { if n == nil { return r } return n.LPAREN.Position() } // Arguments2Node represents the production // // Arguments = "(" ExpressionList ")" . type Arguments2Node struct { LPAREN Token ExpressionList *ExpressionListNode RPAREN Token } // Source implements Node. func (n *Arguments2Node) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *Arguments2Node) Position() (r token.Position) { if n == nil { return r } return n.LPAREN.Position() } // Arguments3Node represents the production // // Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" . type Arguments3Node struct { LPAREN Token ExpressionList *ExpressionListNode TypeNode Type COMMA Token ELLIPSIS Token COMMA2 Token RPAREN Token } // Source implements Node. func (n *Arguments3Node) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *Arguments3Node) Position() (r token.Position) { if n == nil { return r } return n.LPAREN.Position() } func (p *parser) arguments() Node { var ( ok bool lparenTok Token expressionList *ExpressionListNode typeNode Type commaTok Token ellipsisTok Token comma2Tok Token rparenTok Token ) // ebnf.Sequence "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" ctx [LPAREN] { ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Option [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // ebnf.Sequence ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Group ( ExpressionList | Type [ "," ExpressionList ] ) ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] // ebnf.Alternative ExpressionList | Type [ "," ExpressionList ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] switch p.c() { case ADD, AND, CHAR, FLOAT, IMAG, INT, NOT, STRING, SUB, XOR: // 0 // *ebnf.Name ExpressionList ctx [ADD, AND, CHAR, FLOAT, IMAG, INT, NOT, STRING, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { goto _2 } break _2: expressionList = nil p.back(ix) goto _0 case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 0 1 // *ebnf.Name ExpressionList ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if expressionList = p.expressionList(false); expressionList == nil { goto _4 } break _4: expressionList = nil // ebnf.Sequence Type [ "," ExpressionList ] ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] { ix := p.ix // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _5 } // *ebnf.Option [ "," ExpressionList ] ctx [] switch p.c() { case COMMA: // ebnf.Sequence "," ExpressionList ctx [COMMA] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _6 } ix := p.ix // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _6 } } } goto _7 _6: commaTok = Token{} expressionList = nil _7: } break _5: commaTok = Token{} expressionList = nil typeNode = nil p.back(ix) goto _0 default: p.back(ix) goto _0 } // *ebnf.Option [ "..." ] ctx [] switch p.c() { case ELLIPSIS: // *ebnf.Token "..." ctx [ELLIPSIS] ellipsisTok = p.expect(ELLIPSIS) } // *ebnf.Option [ "," ] ctx [] switch p.c() { case COMMA: // *ebnf.Token "," ctx [COMMA] comma2Tok = p.expect(COMMA) } } } goto _1 _0: comma2Tok = Token{} ellipsisTok = Token{} expressionList = nil _1: // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) return nil } } switch expressionList.Len() { case 0, 1: if typeNode == nil && !commaTok.IsValid() && !ellipsisTok.IsValid() && !comma2Tok.IsValid() { return &ArgumentsNode{ LPAREN: lparenTok, Expression: expressionList.first(), RPAREN: rparenTok, } } return &Arguments1Node{ LPAREN: lparenTok, Expression: expressionList.first(), TypeNode: typeNode, COMMA: commaTok, ELLIPSIS: ellipsisTok, COMMA2: comma2Tok, RPAREN: rparenTok, } default: if typeNode == nil && !commaTok.IsValid() && !ellipsisTok.IsValid() && !comma2Tok.IsValid() { return &Arguments2Node{ LPAREN: lparenTok, ExpressionList: expressionList, RPAREN: rparenTok, } } return &Arguments3Node{ LPAREN: lparenTok, ExpressionList: expressionList, TypeNode: typeNode, COMMA: commaTok, ELLIPSIS: ellipsisTok, COMMA2: comma2Tok, RPAREN: rparenTok, } } } func (p *parser) arrayLength() Expression { // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] return p.expression(false) } // ArrayTypeNode represents the production // // ArrayType = "[" ArrayLength "]" ElementType . type ArrayTypeNode struct { LBRACK Token ArrayLength Expression RBRACK Token ElementType Type } // Source implements Node. func (n *ArrayTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ArrayTypeNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACK.Position() } func (p *parser) arrayType() *ArrayTypeNode { var ( ok bool lbrackTok Token arrayLength Expression rbrackTok Token elementType Type ) // ebnf.Sequence "[" ArrayLength "]" ElementType ctx [LBRACK] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: return nil } ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Name ArrayLength ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if arrayLength = p.arrayLength(); arrayLength == nil { p.back(ix) return nil } // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) return nil } // *ebnf.Name ElementType ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if elementType = p.type1(); elementType == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &ArrayTypeNode{ LBRACK: lbrackTok, ArrayLength: arrayLength, RBRACK: rbrackTok, ElementType: elementType, } } // AssignmentNode represents the production // // Assignment = ExpressionList ( "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ) ExpressionList . type AssignmentNode struct { ExpressionList *ExpressionListNode Op Token ExpressionList2 *ExpressionListNode } // Source implements Node. func (n *AssignmentNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *AssignmentNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) assignment(expressionList *ExpressionListNode, preBlock bool) *AssignmentNode { var ( op Token expressionList2 *ExpressionListNode ) // ebnf.Sequence ( "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ) ExpressionList ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN] { ix := p.ix // *ebnf.Group ( "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ) ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN] // ebnf.Alternative "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN] op = p.consume() // *ebnf.Name ExpressionList ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expressionList2 = p.expressionList(preBlock); expressionList2 == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &AssignmentNode{ ExpressionList: expressionList, Op: op, ExpressionList2: expressionList2, } } // BasicLitNode represents the production // // BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit . type BasicLitNode struct { Token ctx *ctx } //TODO- // Source implements Node. //TODO- func (n *BasicLitNode) Source(full bool) string { return nodeSource(n, full) } //TODO- //TODO- // Position implements Node. //TODO- func (n *BasicLitNode) Position() (r token.Position) { //TODO- if !n.IsValid() { //TODO- return r //TODO- } //TODO- //TODO- return Token(*n).Position() //TODO- } //TODO- //TODO- func (n *BasicLitNode) Ch() token.Token { return Token(*n).Ch() } //TODO- func (n *BasicLitNode) IsValid() bool { return Token(*n).IsValid() } func (p *parser) basicLit() Expression { // ebnf.Alternative int_lit | float_lit | imaginary_lit | rune_lit | string_lit ctx [CHAR, FLOAT, IMAG, INT, STRING] t := p.consume() v := constant.MakeFromLiteral(t.Src(), token.Token(t.ch), 0) if v.Kind() == constant.Unknown { p.err(t.Position(), "invalid literal: %s", t.Src()) } return &BasicLitNode{Token: t} } // BlockNode represents the production // // Block = "{" StatementList "}" . type BlockNode struct { LBRACE Token StatementList *StatementListNode RBRACE Token } // Source implements Node. func (n *BlockNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *BlockNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACE.Position() } func (p *parser) block(rx *ParametersNode, s *SignatureNode) *BlockNode { var ( ok bool lbraceTok Token statementList *StatementListNode rbraceTok Token ) // ebnf.Sequence "{" StatementList "}" ctx [LBRACE] { p.openScope() defer p.closeScope() ix := p.ix // *ebnf.Token "{" ctx [LBRACE] lbraceTok = p.expect(LBRACE) if rx != nil { rx.declare(p, p.sc) } if s != nil { s.Parameters.declare(p, p.sc) if s.Result != nil { s.Result.Parameters.declare(p, p.sc) } } // *ebnf.Name StatementList ctx [] switch p.c() { case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ : if statementList = p.statementList(); statementList == nil { p.back(ix) return nil } } // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) return nil } } return &BlockNode{ LBRACE: lbraceTok, StatementList: statementList, RBRACE: rbraceTok, } } // BreakStmtNode represents the production // // BreakStmt = "break" [ Label ] . type BreakStmtNode struct { BREAK Token Label *LabelNode } // Source implements Node. func (n *BreakStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *BreakStmtNode) Position() (r token.Position) { if n == nil { return r } return n.BREAK.Position() } func (p *parser) breakStmt() *BreakStmtNode { var ( breakTok Token label *LabelNode ) // ebnf.Sequence "break" [ Label ] ctx [BREAK] { // *ebnf.Token "break" ctx [BREAK] breakTok = p.expect(BREAK) // *ebnf.Option [ Label ] ctx [] switch p.c() { case IDENT: // *ebnf.Name Label ctx [IDENT] if label = p.label(); label == nil { goto _0 } } goto _1 _0: label = nil _1: } return &BreakStmtNode{ BREAK: breakTok, Label: label, } } func (p *parser) channel() Expression { // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] return p.expression(false) } // ChannelTypeNode represents the production // // ChannelType = ( "chan" "<-" | "chan" | "<-" "chan" ) ElementType . type ChannelTypeNode struct { CHAN Token ARROW Token ElementType Type } // Source implements Node. func (n *ChannelTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ChannelTypeNode) Position() (r token.Position) { if n == nil { return r } if n.ARROW.IsValid() && n.ARROW.index < n.CHAN.index { return n.ARROW.Position() } return n.CHAN.Position() } func (p *parser) channelType() *ChannelTypeNode { var ( chanTok Token arrowTok Token elementType Type ) // ebnf.Sequence ( "chan" "<-" | "chan" | "<-" "chan" ) ElementType ctx [ARROW, CHAN] { ix := p.ix // *ebnf.Group ( "chan" "<-" | "chan" | "<-" "chan" ) ctx [ARROW, CHAN] // ebnf.Alternative "chan" "<-" | "chan" | "<-" "chan" ctx [ARROW, CHAN] switch p.c() { case CHAN: // 0 1 // ebnf.Sequence "chan" "<-" ctx [CHAN] { if p.peek(1) != ARROW { goto _0 } // *ebnf.Token "chan" ctx [CHAN] chanTok = p.expect(CHAN) // *ebnf.Token "<-" ctx [ARROW] arrowTok = p.expect(ARROW) } break _0: arrowTok = Token{} chanTok = Token{} // *ebnf.Token "chan" ctx [CHAN] chanTok = p.expect(CHAN) break p.back(ix) return nil case ARROW: // 2 // ebnf.Sequence "<-" "chan" ctx [ARROW] { if p.peek(1) != CHAN { goto _2 } // *ebnf.Token "<-" ctx [ARROW] arrowTok = p.expect(ARROW) // *ebnf.Token "chan" ctx [CHAN] chanTok = p.expect(CHAN) } break _2: p.back(ix) return nil default: p.back(ix) return nil } // *ebnf.Name ElementType ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if elementType = p.type1(); elementType == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &ChannelTypeNode{ CHAN: chanTok, ARROW: arrowTok, ElementType: elementType, } } // CommCaseNode represents the production // // CommCase = "case" ( SendStmt | RecvStmt ) | "default" . type CommCaseNode struct { CASE Token SendStmt *SendStmtNode RecvStmt *RecvStmtNode DEFAULT Token } // Source implements Node. func (n *CommCaseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *CommCaseNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) commCase() *CommCaseNode { var ( caseTok Token sendStmt *SendStmtNode recvStmt *RecvStmtNode defaultTok Token ) // ebnf.Alternative "case" ( SendStmt | RecvStmt ) | "default" ctx [CASE, DEFAULT] switch p.c() { case CASE: // 0 // ebnf.Sequence "case" ( SendStmt | RecvStmt ) ctx [CASE] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _0 } ix := p.ix // *ebnf.Token "case" ctx [CASE] caseTok = p.expect(CASE) // *ebnf.Group ( SendStmt | RecvStmt ) ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] // ebnf.Alternative SendStmt | RecvStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0 1 // *ebnf.Name SendStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if sendStmt = p.sendStmt(); sendStmt == nil { goto _2 } break _2: sendStmt = nil // *ebnf.Name RecvStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if recvStmt = p.recvStmt(); recvStmt == nil { goto _3 } break _3: recvStmt = nil p.back(ix) goto _0 default: p.back(ix) goto _0 } } break _0: caseTok = Token{} return nil case DEFAULT: // 1 // *ebnf.Token "default" ctx [DEFAULT] defaultTok = p.expect(DEFAULT) default: return nil } return &CommCaseNode{ CASE: caseTok, SendStmt: sendStmt, RecvStmt: recvStmt, DEFAULT: defaultTok, } } // CommClauseNode represents the production // // CommClause = CommCase ":" StatementList . type CommClauseNode struct { CommCase *CommCaseNode COLON Token StatementList *StatementListNode } // Source implements Node. func (n *CommClauseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *CommClauseNode) Position() (r token.Position) { if n == nil { return r } return n.CommCase.Position() } func (p *parser) commClause() *CommClauseNode { var ( ok bool commCase *CommCaseNode colonTok Token statementList *StatementListNode ) // ebnf.Sequence CommCase ":" StatementList ctx [CASE, DEFAULT] { p.openScope() defer p.closeScope() ix := p.ix // *ebnf.Name CommCase ctx [CASE, DEFAULT] if commCase = p.commCase(); commCase == nil { p.back(ix) return nil } // *ebnf.Token ":" ctx [] if colonTok, ok = p.accept(COLON); !ok { p.back(ix) return nil } // *ebnf.Name StatementList ctx [] switch p.c() { case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ : if statementList = p.statementList(); statementList == nil { p.back(ix) return nil } } } return &CommClauseNode{ CommCase: commCase, COLON: colonTok, StatementList: statementList, } } // CompositeLitNode represents the production // // CompositeLit = LiteralType LiteralValue . type CompositeLitNode struct { LiteralType Node LiteralValue *LiteralValueNode typeCache } // Source implements Node. func (n *CompositeLitNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *CompositeLitNode) Position() (r token.Position) { if n == nil { return r } return n.LiteralType.Position() } func (p *parser) compositeLit() *CompositeLitNode { var ( literalType Node literalValue *LiteralValueNode ) // ebnf.Sequence LiteralType LiteralValue ctx [LBRACK, MAP, STRUCT] { ix := p.ix // *ebnf.Name LiteralType ctx [LBRACK, MAP, STRUCT] if literalType = p.literalType(); literalType == nil { p.back(ix) return nil } // *ebnf.Name LiteralValue ctx [] switch p.c() { case LBRACE: if literalValue = p.literalValue(); literalValue == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &CompositeLitNode{ LiteralType: literalType, LiteralValue: literalValue, } } func (p *parser) condition(preBlock bool) Expression { // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] return p.expression(preBlock) } // ConstSpecListNode represents the production // // ConstSpecListNode = { ConstSpec ";" } . type ConstSpecListNode struct { ConstSpec Node SEMICOLON Token List *ConstSpecListNode } // Source implements Node. func (n *ConstSpecListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ConstSpecListNode) Position() (r token.Position) { if n == nil { return r } return n.ConstSpec.Position() } // ConstDeclNode represents the production // // ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . type ConstDeclNode struct { CONST Token LPAREN Token ConstSpec Node RPAREN Token } // Source implements Node. func (n *ConstDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ConstDeclNode) Position() (r token.Position) { if n == nil { return r } return n.CONST.Position() } func (p *parser) constDecl() *ConstDeclNode { var ( ok bool constTok Token constSpec Node lparenTok Token list *ConstSpecListNode rparenTok Token iota int64 ) // ebnf.Sequence "const" ( ConstSpec | "(" { ConstSpec ";" } [ ConstSpec ] ")" ) ctx [CONST] { switch p.peek(1) { case IDENT, LPAREN: default: return nil } ix := p.ix // *ebnf.Token "const" ctx [CONST] constTok = p.expect(CONST) // *ebnf.Group ( ConstSpec | "(" { ConstSpec ";" } [ ConstSpec ] ")" ) ctx [IDENT, LPAREN] // ebnf.Alternative ConstSpec | "(" { ConstSpec ";" } [ ConstSpec ] ")" ctx [IDENT, LPAREN] switch p.c() { case IDENT: // 0 // *ebnf.Name ConstSpec ctx [IDENT] if constSpec = p.constSpec(iota); constSpec == nil { goto _0 } list = &ConstSpecListNode{ ConstSpec: constSpec, } break _0: constSpec = nil p.back(ix) return nil case LPAREN: // 1 // ebnf.Sequence "(" { ConstSpec ";" } [ ConstSpec ] ")" ctx [LPAREN] { ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Repetition { ConstSpec ";" } ctx [] var item *ConstSpecListNode _4: { var constSpec Node var semicolonTok Token switch p.c() { case IDENT: // ebnf.Sequence ConstSpec ";" ctx [IDENT] ix := p.ix // *ebnf.Name ConstSpec ctx [IDENT] if constSpec = p.constSpec(iota); constSpec == nil { p.back(ix) goto _5 } if p.c() == RPAREN { next := &ConstSpecListNode{ ConstSpec: constSpec, } if item != nil { item.List = next } item = next if list == nil { list = item } break } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _5 } next := &ConstSpecListNode{ ConstSpec: constSpec, SEMICOLON: semicolonTok, } iota++ if item != nil { item.List = next } item = next if list == nil { list = item } goto _4 } _5: } if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) goto _2 } } break _2: lparenTok = Token{} rparenTok = Token{} p.back(ix) return nil default: p.back(ix) return nil } } if list != nil && list.List == nil && !list.SEMICOLON.IsValid() { return &ConstDeclNode{ CONST: constTok, LPAREN: lparenTok, ConstSpec: list.ConstSpec, RPAREN: rparenTok, } } return &ConstDeclNode{ CONST: constTok, LPAREN: lparenTok, ConstSpec: list, RPAREN: rparenTok, } } // ConstSpecNode represents the production // // ConstSpec = Identifier [ [ Type ] "=" Expression ] . type ConstSpecNode struct { IDENT Token TypeNode Type ASSIGN Token Expression Expression iota int64 visible guard } // Source implements Node. func (n *ConstSpecNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ConstSpecNode) Position() (r token.Position) { if n == nil { return r } return n.IDENT.Position() } // ConstSpec2Node represents the production // // ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . type ConstSpec2Node struct { IdentifierList *IdentifierListNode TypeNode Type ASSIGN Token ExpressionList *ExpressionListNode iota int64 visible } // Source implements Node. func (n *ConstSpec2Node) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ConstSpec2Node) Position() (r token.Position) { if n == nil { return r } return n.IdentifierList.Position() } func (p *parser) constSpec(iota int64) Node { var ( ok bool identifierList *IdentifierListNode typeNode Type assignTok Token expressionList *ExpressionListNode ) // ebnf.Sequence IdentifierList [ [ Type ] "=" ExpressionList ] ctx [IDENT] { ix := p.ix // *ebnf.Name IdentifierList ctx [IDENT] if identifierList = p.identifierList(); identifierList == nil { p.back(ix) return nil } // *ebnf.Option [ [ Type ] "=" ExpressionList ] ctx [] switch p.c() { case ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // ebnf.Sequence [ Type ] "=" ExpressionList ctx [ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] { ix := p.ix // *ebnf.Option [ Type ] ctx [ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { goto _2 } } goto _3 _2: typeNode = nil _3: // *ebnf.Token "=" ctx [] if assignTok, ok = p.accept(ASSIGN); !ok { p.back(ix) goto _0 } // *ebnf.Name ExpressionList ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _0 } default: p.back(ix) goto _0 } } } goto _1 _0: assignTok = Token{} expressionList = nil typeNode = nil _1: } sc := p.sc visible := int32(p.ix) if expressionList.Len() < 2 && identifierList.Len() < 2 { r := &ConstSpecNode{ IDENT: identifierList.first(), TypeNode: typeNode, ASSIGN: assignTok, Expression: expressionList.first(), iota: iota, } ids := identifierList.Len() exprs := expressionList.Len() if exprs != 0 && ids != exprs { p.err(r.ASSIGN.Position(), "different number of identifiers and expressions: %v %v", ids, exprs) } for l := identifierList; l != nil; l = l.List { p.declare(sc, l.IDENT, r, visible, false) } return r } r := &ConstSpec2Node{ IdentifierList: identifierList, TypeNode: typeNode, ASSIGN: assignTok, ExpressionList: expressionList, iota: iota, } ids := r.IdentifierList.Len() exprs := r.ExpressionList.Len() if exprs != 0 && ids != exprs { p.err(r.ASSIGN.Position(), "different number of identifiers and expressions: %v %v", ids, exprs) } for l := r.IdentifierList; l != nil; l = l.List { p.declare(sc, l.IDENT, r, visible, false) } return r } // ContinueStmtNode represents the production // // ContinueStmt = "continue" [ Label ] . type ContinueStmtNode struct { CONTINUE Token Label *LabelNode } // Source implements Node. func (n *ContinueStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ContinueStmtNode) Position() (r token.Position) { if n == nil { return r } return n.CONTINUE.Position() } func (p *parser) continueStmt() *ContinueStmtNode { var ( continueTok Token label *LabelNode ) // ebnf.Sequence "continue" [ Label ] ctx [CONTINUE] { // *ebnf.Token "continue" ctx [CONTINUE] continueTok = p.expect(CONTINUE) // *ebnf.Option [ Label ] ctx [] switch p.c() { case IDENT: // *ebnf.Name Label ctx [IDENT] if label = p.label(); label == nil { goto _0 } } goto _1 _0: label = nil _1: } return &ContinueStmtNode{ CONTINUE: continueTok, Label: label, } } // ConversionNode represents the production // // Conversion = Type "(" Expression [ "," ] ")" . type ConversionNode struct { TypeNode Type LPAREN Token Expression Expression COMMA Token RPAREN Token valueCache } // Source implements Node. func (n *ConversionNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ConversionNode) Position() (r token.Position) { if n == nil { return r } return n.TypeNode.Position() } func (p *parser) conversion() *ConversionNode { var ( ok bool typeNode Type lparenTok Token expression Expression commaTok Token rparenTok Token ) // ebnf.Sequence Type "(" Expression [ "," ] ")" ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] { ix := p.ix // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) return nil } // *ebnf.Token "(" ctx [] if lparenTok, ok = p.accept(LPAREN); !ok { p.back(ix) return nil } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression = p.expression(false); expression == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Option [ "," ] ctx [] switch p.c() { case COMMA: // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) return nil } } return &ConversionNode{ TypeNode: typeNode, LPAREN: lparenTok, Expression: expression, COMMA: commaTok, RPAREN: rparenTok, } } func (p *parser) declaration() Node { // ebnf.Alternative ConstDecl | TypeDecl | VarDecl ctx [CONST, TYPE, VAR] switch p.c() { case CONST: // 0 // *ebnf.Name ConstDecl ctx [CONST] return p.constDecl() case TYPE: // 1 // *ebnf.Name TypeDecl ctx [TYPE] return p.typeDecl() case VAR: // 2 // *ebnf.Name VarDecl ctx [VAR] return p.varDecl() default: return nil } } // DeferStmtNode represents the production // // DeferStmt = "defer" Expression . type DeferStmtNode struct { DEFER Token Expression Expression } // Source implements Node. func (n *DeferStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *DeferStmtNode) Position() (r token.Position) { if n == nil { return r } return n.DEFER.Position() } func (p *parser) deferStmt() *DeferStmtNode { var ( deferTok Token expression Expression ) // ebnf.Sequence "defer" Expression ctx [DEFER] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: return nil } ix := p.ix // *ebnf.Token "defer" ctx [DEFER] deferTok = p.expect(DEFER) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(false); expression == nil { p.back(ix) return nil } } return &DeferStmtNode{ DEFER: deferTok, Expression: expression, } } func (p *parser) element() Expression { var ( expression Expression literalValue *LiteralValueNode ) // ebnf.Alternative Expression | LiteralValue ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0 // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(false); expression != nil { return expression } case LBRACE: // 1 // *ebnf.Name LiteralValue ctx [LBRACE] if literalValue = p.literalValue(); literalValue != nil { return literalValue } } return nil } // EmbeddedFieldNode represents the production // // EmbeddedField = [ "*" ] TypeName [ TypeArgs ] . type EmbeddedFieldNode struct { MUL Token TypeName *TypeNameNode TypeArgs *TypeArgsNode } // Source implements Node. func (n *EmbeddedFieldNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *EmbeddedFieldNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) embeddedField() *EmbeddedFieldNode { var ( mulTok Token typeName *TypeNameNode typeArgs *TypeArgsNode ) // ebnf.Sequence [ "*" ] TypeName [ TypeArgs ] ctx [IDENT, MUL] { ix := p.ix // *ebnf.Option [ "*" ] ctx [IDENT, MUL] switch p.c() { case MUL: // *ebnf.Token "*" ctx [MUL] mulTok = p.expect(MUL) } // *ebnf.Name TypeName ctx [] switch p.c() { case IDENT: if typeName = p.typeName(); typeName == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Option [ TypeArgs ] ctx [] switch p.c() { case LBRACK: // *ebnf.Name TypeArgs ctx [LBRACK] if typeArgs = p.typeArgs(); typeArgs == nil { goto _2 } } goto _3 _2: typeArgs = nil _3: } return &EmbeddedFieldNode{ MUL: mulTok, TypeName: typeName, TypeArgs: typeArgs, } } // EmptyStmtNode represents the production // // EmptyStmt = . type EmptyStmtNode struct { } // Source implements Node. func (n *EmptyStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *EmptyStmtNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) emptyStmt() *EmptyStmtNode { return &EmptyStmtNode{} } // ExprCaseClauseListNode represents the production // // ExprCaseClause = ExprSwitchCase ":" StatementList . type ExprCaseClauseListNode struct { ExprSwitchCase Node COLON Token StatementList *StatementListNode List *ExprCaseClauseListNode } // Source implements Node. func (n *ExprCaseClauseListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ExprCaseClauseListNode) Position() (r token.Position) { if n == nil { return r } return n.ExprSwitchCase.Position() } func (p *parser) exprCaseClause() *ExprCaseClauseListNode { var ( ok bool exprSwitchCase Node colonTok Token statementList *StatementListNode ) // ebnf.Sequence ExprSwitchCase ":" StatementList ctx [CASE, DEFAULT] { p.openScope() defer p.closeScope() ix := p.ix // *ebnf.Name ExprSwitchCase ctx [CASE, DEFAULT] if exprSwitchCase = p.exprSwitchCase(); exprSwitchCase == nil { p.back(ix) return nil } // *ebnf.Token ":" ctx [] if colonTok, ok = p.accept(COLON); !ok { p.back(ix) return nil } // *ebnf.Name StatementList ctx [] switch p.c() { case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ : if statementList = p.statementList(); statementList == nil { p.back(ix) return nil } } } return &ExprCaseClauseListNode{ ExprSwitchCase: exprSwitchCase, COLON: colonTok, StatementList: statementList, } } // ExprSwitchCaseNode represents the production // // ExprSwitchCase = "case" ExpressionList | "default" . type ExprSwitchCaseNode struct { CASE Token Expression Expression DEFAULT Token } // Source implements Node. func (n *ExprSwitchCaseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ExprSwitchCaseNode) Position() (r token.Position) { if n == nil { return r } return n.CASE.Position() } // ExprSwitchCase2Node represents the production // // ExprSwitchCase = "case" ExpressionList | "default" . type ExprSwitchCase2Node struct { CASE Token ExpressionList *ExpressionListNode DEFAULT Token } // Source implements Node. func (n *ExprSwitchCase2Node) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ExprSwitchCase2Node) Position() (r token.Position) { if n == nil { return r } return n.CASE.Position() } func (p *parser) exprSwitchCase() Node { var ( caseTok Token expressionList *ExpressionListNode defaultTok Token ) // ebnf.Alternative "case" ExpressionList | "default" ctx [CASE, DEFAULT] switch p.c() { case CASE: // 0 // ebnf.Sequence "case" ExpressionList ctx [CASE] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _0 } ix := p.ix // *ebnf.Token "case" ctx [CASE] caseTok = p.expect(CASE) // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _0 } } break _0: caseTok = Token{} expressionList = nil return nil case DEFAULT: // 1 // *ebnf.Token "default" ctx [DEFAULT] defaultTok = p.expect(DEFAULT) default: return nil } if expressionList.Len() == 1 { return &ExprSwitchCaseNode{ CASE: caseTok, Expression: expressionList.first(), DEFAULT: defaultTok, } } return &ExprSwitchCase2Node{ CASE: caseTok, ExpressionList: expressionList, DEFAULT: defaultTok, } } // ExprSwitchStmtNode represents the production // // ExprSwitchStmt = "switch" [ Expression ] "{" { ExprCaseClause } "}" | "switch" SimpleStmt ";" [ Expression ] "{" { ExprCaseClause } "}" . type ExprSwitchStmtNode struct { SWITCH Token Expression Expression LBRACE Token ExprCaseClauseList *ExprCaseClauseListNode RBRACE Token SimpleStmt Node SEMICOLON Token } // Source implements Node. func (n *ExprSwitchStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ExprSwitchStmtNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) exprSwitchStmt() *ExprSwitchStmtNode { var ( ok bool switchTok Token expression Expression lbraceTok Token list *ExprCaseClauseListNode rbraceTok Token simpleStmt Node semicolonTok Token ) // ebnf.Alternative "switch" [ Expression ] "{" { ExprCaseClause } "}" | "switch" SimpleStmt ";" [ Expression ] "{" { ExprCaseClause } "}" ctx [SWITCH] switch p.c() { case SWITCH: // 0 1 // ebnf.Sequence "switch" [ Expression ] "{" { ExprCaseClause } "}" ctx [SWITCH] { ix := p.ix // *ebnf.Token "switch" ctx [SWITCH] switchTok = p.expect(SWITCH) // *ebnf.Option [ Expression ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(true); expression == nil { goto _1 } } goto _2 _1: expression = nil _2: // *ebnf.Token "{" ctx [] if lbraceTok, ok = p.accept(LBRACE); !ok { p.back(ix) goto _0 } // *ebnf.Repetition { ExprCaseClause } ctx [] var item *ExprCaseClauseListNode _3: { var exprCaseClause *ExprCaseClauseListNode switch p.c() { case CASE, DEFAULT: // *ebnf.Name ExprCaseClause ctx [CASE, DEFAULT] if exprCaseClause = p.exprCaseClause(); exprCaseClause == nil { goto _4 } if item != nil { item.List = exprCaseClause } item = exprCaseClause if list == nil { list = item } goto _3 } _4: } // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) goto _0 } } break _0: expression = nil lbraceTok = Token{} rbraceTok = Token{} switchTok = Token{} // ebnf.Sequence "switch" SimpleStmt ";" [ Expression ] "{" { ExprCaseClause } "}" ctx [SWITCH] { ix := p.ix // *ebnf.Token "switch" ctx [SWITCH] switchTok = p.expect(SWITCH) // *ebnf.Name SimpleStmt ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ : if simpleStmt = p.simpleStmt(false); simpleStmt == nil { p.back(ix) goto _5 } } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _5 } // *ebnf.Option [ Expression ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(true); expression == nil { goto _6 } } goto _7 _6: expression = nil _7: // *ebnf.Token "{" ctx [] if lbraceTok, ok = p.accept(LBRACE); !ok { p.back(ix) goto _5 } // *ebnf.Repetition { ExprCaseClause } ctx [] var item *ExprCaseClauseListNode _8: { var exprCaseClause *ExprCaseClauseListNode switch p.c() { case CASE, DEFAULT: // *ebnf.Name ExprCaseClause ctx [CASE, DEFAULT] if exprCaseClause = p.exprCaseClause(); exprCaseClause == nil { goto _9 } if item != nil { item.List = exprCaseClause } item = exprCaseClause if list == nil { list = item } goto _8 } _9: } // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) goto _5 } } break _5: expression = nil lbraceTok = Token{} rbraceTok = Token{} semicolonTok = Token{} simpleStmt = nil switchTok = Token{} return nil default: return nil } return &ExprSwitchStmtNode{ SWITCH: switchTok, Expression: expression, LBRACE: lbraceTok, ExprCaseClauseList: list, RBRACE: rbraceTok, SimpleStmt: simpleStmt, SEMICOLON: semicolonTok, } } func (p *parser) expression(preBlock bool) (r Expression) { var logicalAndExpression Expression // ebnf.Sequence LogicalAndExpression { "||" LogicalAndExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name LogicalAndExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if logicalAndExpression = p.logicalAndExpression(preBlock); logicalAndExpression == nil { p.back(ix) return nil } r = logicalAndExpression // *ebnf.Repetition { "||" LogicalAndExpression } ctx [] _0: { var lorTok Token var logicalAndExpression Expression switch p.c() { case LOR: // ebnf.Sequence "||" LogicalAndExpression ctx [LOR] switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _1 } ix := p.ix // *ebnf.Token "||" ctx [LOR] lorTok = p.expect(LOR) // *ebnf.Name LogicalAndExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if logicalAndExpression = p.logicalAndExpression(preBlock); logicalAndExpression == nil { p.back(ix) goto _1 } r = &BinaryExpressionNode{LHS: r, Op: lorTok, RHS: logicalAndExpression} goto _0 } _1: } } return r } // ExpressionListNode represents the production // // ExpressionList = Expression { "," Expression } . type ExpressionListNode struct { COMMA Token Expression Expression List *ExpressionListNode } func (n *ExpressionListNode) first() Expression { if n == nil { return nil } return n.Expression } // Len reports the number of items in n. func (n *ExpressionListNode) Len() (r int) { for ; n != nil; n = n.List { r++ } return r } // Source implements Node. func (n *ExpressionListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ExpressionListNode) Position() (r token.Position) { if n == nil { return r } if n.COMMA.IsValid() { return n.COMMA.Position() } return n.Expression.Position() } func (p *parser) expressionList(preBlock bool) *ExpressionListNode { var ( expression Expression expressionList, last *ExpressionListNode ) // ebnf.Sequence Expression { "," Expression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(preBlock); expression == nil { p.back(ix) return nil } expressionList = &ExpressionListNode{ Expression: expression, } last = expressionList // *ebnf.Repetition { "," Expression } ctx [] _0: { var commaTok Token switch p.c() { case COMMA: // ebnf.Sequence "," Expression ctx [COMMA] switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _1 } ix := p.ix // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(preBlock); expression == nil { p.back(ix) goto _1 } next := &ExpressionListNode{ COMMA: commaTok, Expression: expression, } last.List = next last = next goto _0 } _1: } } return expressionList } // FallthroughStmtNode represents the production // // FallthroughStmt = "fallthrough" . type FallthroughStmtNode struct { FALLTHROUGH Token } // Source implements Node. func (n *FallthroughStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FallthroughStmtNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) fallthroughStmt() *FallthroughStmtNode { var ( fallthroughTok Token ) // *ebnf.Token "fallthrough" ctx [FALLTHROUGH] fallthroughTok = p.expect(FALLTHROUGH) return &FallthroughStmtNode{ FALLTHROUGH: fallthroughTok, } } // FieldDeclNode represents the production // // FieldDecl = ( IdentifierList Type | EmbeddedField ) [ Tag ] . type FieldDeclNode struct { IdentifierList *IdentifierListNode TypeNode Type EmbeddedField *EmbeddedFieldNode Tag *TagNode } // Source implements Node. func (n *FieldDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FieldDeclNode) Position() (r token.Position) { if n == nil { return r } if n.IdentifierList != nil { return n.IdentifierList.Position() } return n.EmbeddedField.Position() } func (p *parser) fieldDecl() *FieldDeclNode { var ( identifierList *IdentifierListNode typeNode Type embeddedField *EmbeddedFieldNode tag *TagNode ) // ebnf.Sequence ( IdentifierList Type | EmbeddedField ) [ Tag ] ctx [IDENT, MUL] { ix := p.ix // *ebnf.Group ( IdentifierList Type | EmbeddedField ) ctx [IDENT, MUL] // ebnf.Alternative IdentifierList Type | EmbeddedField ctx [IDENT, MUL] switch p.c() { case IDENT: // 0 1 // ebnf.Sequence IdentifierList Type ctx [IDENT] { ix := p.ix // *ebnf.Name IdentifierList ctx [IDENT] if identifierList = p.identifierList(); identifierList == nil { p.back(ix) goto _0 } // *ebnf.Name Type ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _0 } default: p.back(ix) goto _0 } } break _0: identifierList = nil typeNode = nil // *ebnf.Name EmbeddedField ctx [IDENT] if embeddedField = p.embeddedField(); embeddedField == nil { goto _1 } break _1: embeddedField = nil p.back(ix) return nil case MUL: // 1 // *ebnf.Name EmbeddedField ctx [MUL] if embeddedField = p.embeddedField(); embeddedField == nil { goto _2 } break _2: embeddedField = nil p.back(ix) return nil default: p.back(ix) return nil } // *ebnf.Option [ Tag ] ctx [] switch p.c() { case STRING: // *ebnf.Name Tag ctx [STRING] if tag = p.tag(); tag == nil { goto _4 } } goto _5 _4: tag = nil _5: } return &FieldDeclNode{ IdentifierList: identifierList, TypeNode: typeNode, EmbeddedField: embeddedField, Tag: tag, } } // ForClauseNode represents the production // // ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . type ForClauseNode struct { InitStmt Node SEMICOLON Token Condition Expression SEMICOLON2 Token PostStmt Node } // Source implements Node. func (n *ForClauseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ForClauseNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) forClause() *ForClauseNode { var ( ok bool initStmt Node semicolonTok Token condition Expression semicolon2Tok Token postStmt Node ) // ebnf.Sequence [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Option [ InitStmt ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name InitStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if initStmt = p.initStmt(); initStmt == nil { goto _0 } } goto _1 _0: initStmt = nil _1: // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) return nil } // *ebnf.Option [ Condition ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name Condition ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if condition = p.condition(false); condition == nil { goto _2 } } goto _3 _2: condition = nil _3: // *ebnf.Token ";" ctx [] if semicolon2Tok, ok = p.accept(SEMICOLON); !ok { p.back(ix) return nil } // *ebnf.Option [ PostStmt ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ : // *ebnf.Name PostStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */] if postStmt = p.postStmt(); postStmt == nil { goto _4 } } goto _5 _4: postStmt = nil _5: } return &ForClauseNode{ InitStmt: initStmt, SEMICOLON: semicolonTok, Condition: condition, SEMICOLON2: semicolon2Tok, PostStmt: postStmt, } } // ForStmtNode represents the production // // ForStmt = "for" [ ForClause | RangeClause | Condition ] Block . type ForStmtNode struct { FOR Token ForClause *ForClauseNode RangeClause *RangeClauseNode Condition Expression Block *BlockNode } // Source implements Node. func (n *ForStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ForStmtNode) Position() (r token.Position) { if n == nil { return r } return n.FOR.Position() } func (p *parser) forStmt() *ForStmtNode { var ( forTok Token forClause *ForClauseNode rangeClause *RangeClauseNode condition Expression block *BlockNode ) // ebnf.Sequence "for" [ ForClause | RangeClause | Condition ] Block ctx [FOR] { p.openScope() defer p.closeScope() ix := p.ix // *ebnf.Token "for" ctx [FOR] forTok = p.expect(FOR) // *ebnf.Option [ ForClause | RangeClause | Condition ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, RANGE, SEMICOLON, STRING, STRUCT, SUB, XOR: // ebnf.Alternative ForClause | RangeClause | Condition ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, RANGE, SEMICOLON, STRING, STRUCT, SUB, XOR] switch p.c() { case SEMICOLON: // 0 // *ebnf.Name ForClause ctx [SEMICOLON] if forClause = p.forClause(); forClause == nil { goto _2 } break _2: forClause = nil goto _0 case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0 1 2 // *ebnf.Name ForClause ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if forClause = p.forClause(); forClause == nil { goto _4 } break _4: forClause = nil // *ebnf.Name RangeClause ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if rangeClause = p.rangeClause(); rangeClause == nil { goto _5 } break _5: rangeClause = nil // *ebnf.Name Condition ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if condition = p.condition(true); condition == nil { goto _6 } break _6: condition = nil goto _0 case RANGE: // 1 // *ebnf.Name RangeClause ctx [RANGE] if rangeClause = p.rangeClause(); rangeClause == nil { goto _7 } break _7: rangeClause = nil goto _0 default: goto _0 } } goto _1 _0: forClause = nil rangeClause = nil _1: // *ebnf.Name Block ctx [] switch p.c() { case LBRACE: if block = p.block(nil, nil); block == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &ForStmtNode{ FOR: forTok, ForClause: forClause, RangeClause: rangeClause, Condition: condition, Block: block, } } // FunctionBodyNode represents the production // // FunctionBody = Block . type FunctionBodyNode struct { Block *BlockNode } // Source implements Node. func (n *FunctionBodyNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FunctionBodyNode) Position() (r token.Position) { if n == nil { return r } return n.Block.Position() } func (p *parser) functionBody(rx *ParametersNode, s *SignatureNode) *FunctionBodyNode { var ( block *BlockNode ) // *ebnf.Name Block ctx [LBRACE] if block = p.block(rx, s); block == nil { return nil } return &FunctionBodyNode{ Block: block, } } // FunctionDeclNode represents the production // // FunctionDecl = "func" FunctionName [ TypeParameters ] Signature [ FunctionBody ] . type FunctionDeclNode struct { FUNC Token FunctionName *FunctionNameNode TypeParameters *TypeParametersNode Signature *SignatureNode FunctionBody *FunctionBodyNode visible } // Source implements Node. func (n *FunctionDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FunctionDeclNode) Position() (r token.Position) { if n == nil { return r } return n.FUNC.Position() } func (p *parser) functionDecl() (r *FunctionDeclNode) { var ( funcTok Token functionName *FunctionNameNode typeParameters *TypeParametersNode signature *SignatureNode functionBody *FunctionBodyNode ) // ebnf.Sequence "func" FunctionName [ TypeParameters ] Signature [ FunctionBody ] ctx [FUNC] { if p.peek(1) != IDENT { return nil } ix := p.ix // *ebnf.Token "func" ctx [FUNC] funcTok = p.expect(FUNC) // *ebnf.Name FunctionName ctx [IDENT] if functionName = p.functionName(); functionName == nil { p.back(ix) return nil } // *ebnf.Option [ TypeParameters ] ctx [] switch p.c() { case LBRACK: // *ebnf.Name TypeParameters ctx [LBRACK] if typeParameters = p.typeParameters(); typeParameters == nil { goto _0 } } goto _1 _0: typeParameters = nil _1: // *ebnf.Name Signature ctx [] switch p.c() { case LPAREN: if signature = p.signature(); signature == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Option [ FunctionBody ] ctx [] switch p.c() { case LBRACE: // *ebnf.Name FunctionBody ctx [LBRACE] if functionBody = p.functionBody(nil, signature); functionBody == nil { goto _2 } } goto _3 _2: functionBody = nil _3: } sc := p.sc r = &FunctionDeclNode{ FUNC: funcTok, FunctionName: functionName, TypeParameters: typeParameters, Signature: signature, FunctionBody: functionBody, } p.declare(sc, functionName.IDENT, r, 0, true) return r } // FunctionLitNode represents the production // // FunctionLit = "func" Signature FunctionBody . type FunctionLitNode struct { FUNC Token Signature *SignatureNode FunctionBody *FunctionBodyNode } // Source implements Node. func (n *FunctionLitNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FunctionLitNode) Position() (r token.Position) { if n == nil { return r } return n.FUNC.Position() } func (p *parser) functionLit() *FunctionLitNode { var ( funcTok Token signature *SignatureNode functionBody *FunctionBodyNode ) // ebnf.Sequence "func" Signature FunctionBody ctx [FUNC] { switch p.peek(1) { case LPAREN: default: return nil } ix := p.ix // *ebnf.Token "func" ctx [FUNC] funcTok = p.expect(FUNC) // *ebnf.Name Signature ctx [LPAREN] if signature = p.signature(); signature == nil { p.back(ix) return nil } // *ebnf.Name FunctionBody ctx [] switch p.c() { case LBRACE: if functionBody = p.functionBody(nil, signature); functionBody == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &FunctionLitNode{ FUNC: funcTok, Signature: signature, FunctionBody: functionBody, } } // FunctionNameNode represents the production // // FunctionName = identifier . type FunctionNameNode struct { IDENT Token } // Source implements Node. func (n *FunctionNameNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FunctionNameNode) Position() (r token.Position) { if n == nil { return r } return n.IDENT.Position() } func (p *parser) functionName() *FunctionNameNode { var ( identTok Token ) // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) return &FunctionNameNode{ IDENT: identTok, } } // FunctionTypeNode represents the production // // FunctionType = "func" Signature . type FunctionTypeNode struct { FUNC Token Signature *SignatureNode guard } // Source implements Node. func (n *FunctionTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FunctionTypeNode) Position() (r token.Position) { if n == nil { return r } return n.FUNC.Position() } func (p *parser) functionType() *FunctionTypeNode { var ( funcTok Token signature *SignatureNode ) // ebnf.Sequence "func" Signature ctx [FUNC] { switch p.peek(1) { case LPAREN: default: return nil } ix := p.ix // *ebnf.Token "func" ctx [FUNC] funcTok = p.expect(FUNC) // *ebnf.Name Signature ctx [LPAREN] if signature = p.signature(); signature == nil { p.back(ix) return nil } } return &FunctionTypeNode{ FUNC: funcTok, Signature: signature, } } // GoStmtNode represents the production // // GoStmt = "go" Expression . type GoStmtNode struct { GO Token Expression Expression } // Source implements Node. func (n *GoStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *GoStmtNode) Position() (r token.Position) { if n == nil { return r } return n.GO.Position() } func (p *parser) goStmt() *GoStmtNode { var ( goTok Token expression Expression ) // ebnf.Sequence "go" Expression ctx [GO] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: return nil } ix := p.ix // *ebnf.Token "go" ctx [GO] goTok = p.expect(GO) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(false); expression == nil { p.back(ix) return nil } } return &GoStmtNode{ GO: goTok, Expression: expression, } } // GotoStmtNode represents the production // // GotoStmt = "goto" Label . type GotoStmtNode struct { GOTO Token Label *LabelNode } // Source implements Node. func (n *GotoStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *GotoStmtNode) Position() (r token.Position) { if n == nil { return r } return n.GOTO.Position() } func (p *parser) gotoStmt() *GotoStmtNode { var ( gotoTok Token label *LabelNode ) // ebnf.Sequence "goto" Label ctx [GOTO] { if p.peek(1) != IDENT { return nil } ix := p.ix // *ebnf.Token "goto" ctx [GOTO] gotoTok = p.expect(GOTO) // *ebnf.Name Label ctx [IDENT] if label = p.label(); label == nil { p.back(ix) return nil } } return &GotoStmtNode{ GOTO: gotoTok, Label: label, } } // IdentifierListNode represents the production // // IdentifierList = identifier { "," identifier } . type IdentifierListNode struct { COMMA Token IDENT Token List *IdentifierListNode } // Len reports the number of items in n. func (n *IdentifierListNode) Len() (r int) { for ; n != nil; n = n.List { r++ } return r } func (n *IdentifierListNode) first() (r Token) { if n != nil { r = n.IDENT } return r } // Source implements Node. func (n *IdentifierListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *IdentifierListNode) Position() (r token.Position) { if n == nil { return r } if n.COMMA.IsValid() { return n.COMMA.Position() } return n.IDENT.Position() } func (p *parser) identifierList() *IdentifierListNode { var ( identTok Token list, last *IdentifierListNode ) // ebnf.Sequence identifier { "," identifier } ctx [IDENT] { // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) // *ebnf.Repetition { "," identifier } ctx [] list = &IdentifierListNode{ IDENT: identTok, } last = list _0: { var commaTok Token var identTok Token switch p.c() { case COMMA: // ebnf.Sequence "," identifier ctx [COMMA] if p.peek(1) != IDENT { goto _1 } // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) next := &IdentifierListNode{ COMMA: commaTok, IDENT: identTok, } last.List = next last = next goto _0 } _1: } } return list } // IfElseStmtNode represents the production // // IfStmt = "if" Expression Block [ "else" ( IfStmt | Block ) ] | "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] . type IfElseStmtNode struct { IF Token Expression Expression Block *BlockNode ELSE Token ElseClause Node SimpleStmt Node SEMICOLON Token } // Source implements Node. func (n *IfElseStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *IfElseStmtNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } // IfStmtNode represents the production // // IfStmt = "if" Expression Block [ "else" ( IfStmt | Block ) ] | "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] . type IfStmtNode struct { IF Token Expression Expression Block *BlockNode SimpleStmt Node SEMICOLON Token } // Source implements Node. func (n *IfStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *IfStmtNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) ifStmt() Node { var ( ok bool ifTok Token expression Expression block *BlockNode elseTok Token ifStmt Node block2 *BlockNode simpleStmt Node semicolonTok Token ) // ebnf.Alternative "if" Expression Block [ "else" ( IfStmt | Block ) ] | "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] ctx [IF] switch p.c() { case IF: // 0 1 p.openScope() defer p.closeScope() // ebnf.Sequence "if" Expression Block [ "else" ( IfStmt | Block ) ] ctx [IF] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _0 } ix := p.ix // *ebnf.Token "if" ctx [IF] ifTok = p.expect(IF) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(true); expression == nil { p.back(ix) goto _0 } // *ebnf.Name Block ctx [] switch p.c() { case LBRACE: if block = p.block(nil, nil); block == nil { p.back(ix) goto _0 } default: p.back(ix) goto _0 } // *ebnf.Option [ "else" ( IfStmt | Block ) ] ctx [] switch p.c() { case ELSE: // ebnf.Sequence "else" ( IfStmt | Block ) ctx [ELSE] { switch p.peek(1) { case IF, LBRACE: default: goto _1 } ix := p.ix // *ebnf.Token "else" ctx [ELSE] elseTok = p.expect(ELSE) // *ebnf.Group ( IfStmt | Block ) ctx [IF, LBRACE] // ebnf.Alternative IfStmt | Block ctx [IF, LBRACE] switch p.c() { case IF: // 0 // *ebnf.Name IfStmt ctx [IF] if ifStmt = p.ifStmt(); ifStmt == nil { goto _3 } break _3: ifStmt = nil p.back(ix) goto _1 case LBRACE: // 1 // *ebnf.Name Block ctx [LBRACE] if block2 = p.block(nil, nil); block2 == nil { goto _5 } break _5: block2 = nil p.back(ix) goto _1 default: p.back(ix) goto _1 } } default: return &IfStmtNode{ IF: ifTok, Expression: expression, Block: block, SimpleStmt: simpleStmt, SEMICOLON: semicolonTok, } } goto _2 _1: block2 = nil elseTok = Token{} ifStmt = nil _2: } break _0: block = nil block2 = nil elseTok = Token{} expression = nil ifStmt = nil ifTok = Token{} // ebnf.Sequence "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] ctx [IF] { ix := p.ix // *ebnf.Token "if" ctx [IF] ifTok = p.expect(IF) // *ebnf.Name SimpleStmt ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ : if simpleStmt = p.simpleStmt(false); simpleStmt == nil { p.back(ix) goto _7 } } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _7 } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression = p.expression(true); expression == nil { p.back(ix) goto _7 } default: p.back(ix) goto _7 } // *ebnf.Name Block ctx [] switch p.c() { case LBRACE: if block = p.block(nil, nil); block == nil { p.back(ix) goto _7 } default: p.back(ix) goto _7 } // *ebnf.Option [ "else" ( IfStmt | Block ) ] ctx [] switch p.c() { case ELSE: // ebnf.Sequence "else" ( IfStmt | Block ) ctx [ELSE] { switch p.peek(1) { case IF, LBRACE: default: goto _8 } ix := p.ix // *ebnf.Token "else" ctx [ELSE] elseTok = p.expect(ELSE) // *ebnf.Group ( IfStmt | Block ) ctx [IF, LBRACE] // ebnf.Alternative IfStmt | Block ctx [IF, LBRACE] switch p.c() { case IF: // 0 // *ebnf.Name IfStmt ctx [IF] if ifStmt = p.ifStmt(); ifStmt == nil { goto _10 } break _10: ifStmt = nil p.back(ix) goto _8 case LBRACE: // 1 // *ebnf.Name Block ctx [LBRACE] if block2 = p.block(nil, nil); block2 == nil { goto _12 } break _12: block2 = nil p.back(ix) goto _8 default: p.back(ix) goto _8 } } } goto _9 _8: block2 = nil elseTok = Token{} ifStmt = nil _9: } break _7: block = nil block2 = nil elseTok = Token{} expression = nil ifStmt = nil ifTok = Token{} semicolonTok = Token{} simpleStmt = nil return nil default: return nil } var elseClause Node switch { case ifStmt != nil: elseClause = ifStmt case block2 != nil: elseClause = block2 } return &IfElseStmtNode{ IF: ifTok, Expression: expression, Block: block, ELSE: elseTok, ElseClause: elseClause, SimpleStmt: simpleStmt, SEMICOLON: semicolonTok, } } // ImportSpecListNode represents the production // // ImportSpecListNode = { ImportSpec ";" } . type ImportSpecListNode struct { ImportSpec *ImportSpecNode SEMICOLON Token List *ImportSpecListNode } // Source implements Node. func (n *ImportSpecListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ImportSpecListNode) Position() (r token.Position) { if n == nil { return r } return n.ImportSpec.Position() } // ImportDeclNode represents the production // // ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . type ImportDeclNode struct { IMPORT Token LPAREN Token ImportSpecList *ImportSpecListNode RPAREN Token } // Source implements Node. func (n *ImportDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ImportDeclNode) Position() (r token.Position) { if n == nil { return r } return n.IMPORT.Position() } func (p *parser) importDecl() *ImportDeclNode { var ( ok bool importTok Token importSpec *ImportSpecNode lparenTok Token list, last *ImportSpecListNode rparenTok Token ) // ebnf.Sequence "import" ( ImportSpec | "(" { ImportSpec ";" } [ ImportSpec ] ")" ) ctx [IMPORT] { switch p.peek(1) { case IDENT, LPAREN, PERIOD, STRING: default: return nil } ix := p.ix // *ebnf.Token "import" ctx [IMPORT] importTok = p.expect(IMPORT) // *ebnf.Group ( ImportSpec | "(" { ImportSpec ";" } [ ImportSpec ] ")" ) ctx [IDENT, LPAREN, PERIOD, STRING] // ebnf.Alternative ImportSpec | "(" { ImportSpec ";" } [ ImportSpec ] ")" ctx [IDENT, LPAREN, PERIOD, STRING] switch p.c() { case IDENT, PERIOD, STRING: // 0 // *ebnf.Name ImportSpec ctx [IDENT, PERIOD, STRING] if importSpec = p.importSpec(); importSpec == nil { goto _0 } list = &ImportSpecListNode{ ImportSpec: importSpec, } break _0: importSpec = nil p.back(ix) return nil case LPAREN: // 1 // ebnf.Sequence "(" { ImportSpec ";" } [ ImportSpec ] ")" ctx [LPAREN] { ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Repetition { ImportSpec ";" } ctx [] _4: { var importSpec *ImportSpecNode var semicolonTok Token switch p.c() { case IDENT, PERIOD, STRING: // ebnf.Sequence ImportSpec ";" ctx [IDENT, PERIOD, STRING] ix := p.ix // *ebnf.Name ImportSpec ctx [IDENT, PERIOD, STRING] if importSpec = p.importSpec(); importSpec == nil { p.back(ix) goto _5 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { next := &ImportSpecListNode{ ImportSpec: importSpec, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _5 } next := &ImportSpecListNode{ ImportSpec: importSpec, SEMICOLON: semicolonTok, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _4 } _5: } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) goto _2 } } break _2: lparenTok = Token{} rparenTok = Token{} p.back(ix) return nil default: p.back(ix) return nil } } return &ImportDeclNode{ IMPORT: importTok, LPAREN: lparenTok, ImportSpecList: list, RPAREN: rparenTok, } } // ImportSpecNode represents the production // // ImportSpec = [ "." | PackageName ] ImportPath . type ImportSpecNode struct { PERIOD Token PackageName Token ImportPath *BasicLitNode pkg *Package visible } // Source implements Node. func (n *ImportSpecNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ImportSpecNode) Position() (r token.Position) { if n == nil { return r } if n.PERIOD.IsValid() { return n.PERIOD.Position() } if n.PackageName.IsValid() { return n.PackageName.Position() } return n.ImportPath.Position() } func (p *parser) importSpec() *ImportSpecNode { var ( periodTok Token packageName Token importPath *BasicLitNode ) // ebnf.Sequence [ "." | PackageName ] ImportPath ctx [IDENT, PERIOD, STRING] { ix := p.ix // *ebnf.Option [ "." | PackageName ] ctx [IDENT, PERIOD, STRING] switch p.c() { case IDENT, PERIOD: // ebnf.Alternative "." | PackageName ctx [IDENT, PERIOD] switch p.c() { case PERIOD: // 0 // *ebnf.Token "." ctx [PERIOD] periodTok = p.expect(PERIOD) case IDENT: // 1 // *ebnf.Name PackageName ctx [IDENT] if packageName = p.packageName(); !packageName.IsValid() { goto _4 } break _4: packageName = Token{} goto _0 default: goto _0 } } goto _1 _0: packageName = Token{} periodTok = Token{} _1: // *ebnf.Name ImportPath ctx [] switch p.c() { case STRING: if importPath = p.basicLit().(*BasicLitNode); importPath == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &ImportSpecNode{ PERIOD: periodTok, PackageName: packageName, ImportPath: importPath, } } // IndexNode represents the production // // Index = "[" Expression "]" . type IndexNode struct { LBRACK Token Expression Expression RBRACK Token } // Source implements Node. func (n *IndexNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *IndexNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACK.Position() } func (p *parser) index() *IndexNode { var ( ok bool lbrackTok Token expression Expression rbrackTok Token ) // ebnf.Sequence "[" Expression "]" ctx [LBRACK] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: return nil } ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(false); expression == nil { p.back(ix) return nil } // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) return nil } } return &IndexNode{ LBRACK: lbrackTok, Expression: expression, RBRACK: rbrackTok, } } func (p *parser) initStmt() Node { // *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */] return p.simpleStmt(true) } // InterfaceElemNode represents the production // // InterfaceElem = MethodElem | TypeElem . type InterfaceElemNode struct { MethodElem *MethodElemNode TypeElem *TypeElemListNode } // Source implements Node. func (n *InterfaceElemNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *InterfaceElemNode) Position() (r token.Position) { if n == nil { return r } if n.MethodElem != nil { return n.MethodElem.Position() } return n.TypeElem.Position() } func (p *parser) interfaceElem() *InterfaceElemNode { var ( methodElem *MethodElemNode typeElem *TypeElemListNode ) // ebnf.Alternative MethodElem | TypeElem ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] switch p.c() { case IDENT: // 0 1 // *ebnf.Name MethodElem ctx [IDENT] if methodElem = p.methodElem(); methodElem == nil { goto _0 } break _0: methodElem = nil // *ebnf.Name TypeElem ctx [IDENT] if typeElem = p.typeElem(); typeElem == nil { goto _1 } break _1: typeElem = nil return nil case ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE: // 1 // *ebnf.Name TypeElem ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] if typeElem = p.typeElem(); typeElem == nil { goto _2 } break _2: typeElem = nil return nil default: return nil } return &InterfaceElemNode{ MethodElem: methodElem, TypeElem: typeElem, } } // InterfaceElemListNode represents the production // // InterfaceElemListNode = { InterfaceElem ";" } . type InterfaceElemListNode struct { InterfaceElem *InterfaceElemNode SEMICOLON Token List *InterfaceElemListNode } // Source implements Node. func (n *InterfaceElemListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *InterfaceElemListNode) Position() (r token.Position) { if n == nil { return r } return n.InterfaceElem.Position() } // InterfaceTypeNode represents the production // // InterfaceType = "interface" "{" { InterfaceElem ";" } "}" . type InterfaceTypeNode struct { INTERFACE Token LBRACE Token InterfaceElemList *InterfaceElemListNode RBRACE Token guard methods map[string]*MethodElemNode } // Source implements Node. func (n *InterfaceTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *InterfaceTypeNode) Position() (r token.Position) { if n == nil { return r } return n.INTERFACE.Position() } func (p *parser) interfaceType() *InterfaceTypeNode { var ( ok bool interfaceTok Token lbraceTok Token list, last *InterfaceElemListNode rbraceTok Token ) // ebnf.Sequence "interface" "{" { InterfaceElem ";" } [ InterfaceElem ] "}" ctx [INTERFACE] { if p.peek(1) != LBRACE { return nil } ix := p.ix // *ebnf.Token "interface" ctx [INTERFACE] interfaceTok = p.expect(INTERFACE) // *ebnf.Token "{" ctx [LBRACE] lbraceTok = p.expect(LBRACE) // *ebnf.Repetition { InterfaceElem ";" } ctx [] _0: { var interfaceElem *InterfaceElemNode var semicolonTok Token switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE: // ebnf.Sequence InterfaceElem ";" ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] ix := p.ix // *ebnf.Name InterfaceElem ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] if interfaceElem = p.interfaceElem(); interfaceElem == nil { p.back(ix) goto _1 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { next := &InterfaceElemListNode{ InterfaceElem: interfaceElem, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _1 } next := &InterfaceElemListNode{ InterfaceElem: interfaceElem, SEMICOLON: semicolonTok, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _0 } _1: } // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) return nil } } return &InterfaceTypeNode{ INTERFACE: interfaceTok, LBRACE: lbraceTok, InterfaceElemList: list, RBRACE: rbraceTok, } } // KeyedElementNode represents the production // // KeyedElement = Element [ ":" Element ] . type KeyedElementNode struct { Element Expression COLON Token Element2 Expression } // Source implements Node. func (n *KeyedElementNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *KeyedElementNode) Position() (r token.Position) { if n == nil { return r } return n.Element.Position() } func (p *parser) keyedElement() Expression { var ( element Expression colonTok Token element2 Expression ) // ebnf.Sequence Element [ ":" Element ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name Element ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if element = p.element(); element == nil { p.back(ix) return nil } // *ebnf.Option [ ":" Element ] ctx [] switch p.c() { case COLON: // ebnf.Sequence ":" Element ctx [COLON] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _0 } ix := p.ix // *ebnf.Token ":" ctx [COLON] colonTok = p.expect(COLON) // *ebnf.Name Element ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if element2 = p.element(); element2 == nil { p.back(ix) goto _0 } } } goto _1 _0: colonTok = Token{} element2 = nil _1: } if !colonTok.IsValid() { return element } return &KeyedElementNode{ Element: element, COLON: colonTok, Element2: element2, } } // LabelNode represents the production // // Label = identifier . type LabelNode struct { IDENT Token } // Source implements Node. func (n *LabelNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *LabelNode) Position() (r token.Position) { if n == nil { return r } return n.IDENT.Position() } func (p *parser) label() *LabelNode { var ( identTok Token ) // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) return &LabelNode{ IDENT: identTok, } } // LabeledStmtNode represents the production // // LabeledStmt = Label ":" Statement . type LabeledStmtNode struct { Label *LabelNode COLON Token Statement Node } // Source implements Node. func (n *LabeledStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *LabeledStmtNode) Position() (r token.Position) { if n == nil { return r } return n.Label.Position() } func (p *parser) labeledStmt() *LabeledStmtNode { var ( label *LabelNode colonTok Token statement Node ) // ebnf.Sequence Label ":" Statement ctx [IDENT] { if p.peek(1) != COLON { return nil } ix := p.ix // *ebnf.Name Label ctx [IDENT] if label = p.label(); label == nil { p.back(ix) return nil } // *ebnf.Token ":" ctx [COLON] colonTok = p.expect(COLON) // *ebnf.Name Statement ctx [] switch p.c() { case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ : if statement = p.statement(); statement == nil { p.back(ix) return nil } } } return &LabeledStmtNode{ Label: label, COLON: colonTok, Statement: statement, } } func (p *parser) literal() Expression { var ( basicLit Expression compositeLit *CompositeLitNode functionLit *FunctionLitNode ) // ebnf.Alternative BasicLit | CompositeLit | FunctionLit ctx [CHAR, FLOAT, FUNC, IMAG, INT, LBRACK, MAP, STRING, STRUCT] switch p.c() { case CHAR, FLOAT, IMAG, INT, STRING: // 0 // *ebnf.Name BasicLit ctx [CHAR, FLOAT, IMAG, INT, STRING] if basicLit = p.basicLit(); basicLit == nil { return nil } return basicLit case LBRACK, MAP, STRUCT: // 1 // *ebnf.Name CompositeLit ctx [LBRACK, MAP, STRUCT] if compositeLit = p.compositeLit(); compositeLit == nil { return nil } return compositeLit case FUNC: // 2 // *ebnf.Name FunctionLit ctx [FUNC] if functionLit = p.functionLit(); functionLit == nil { return nil } return functionLit default: return nil } } // ArrayLiteralTypeNode represents the production // // ArrayLiteralType = StructType | ArrayType | "[" "..." "]" ElementType | SliceType | MapType . type ArrayLiteralTypeNode struct { LBRACK Token ELLIPSIS Token RBRACK Token ElementType Node } // Source implements Node. func (n *ArrayLiteralTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ArrayLiteralTypeNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACK.Position() } func (p *parser) literalType() Node { var ( ok bool structType *StructTypeNode arrayType *ArrayTypeNode lbrackTok Token ellipsisTok Token rbrackTok Token elementType Node sliceType *SliceTypeNode mapType *MapTypeNode ) // ebnf.Alternative StructType | ArrayType | "[" "..." "]" ElementType | SliceType | MapType ctx [LBRACK, MAP, STRUCT] switch p.c() { case STRUCT: // 0 // *ebnf.Name StructType ctx [STRUCT] if structType = p.structType(); structType != nil { return structType } case LBRACK: // 1 2 3 // *ebnf.Name ArrayType ctx [LBRACK] if arrayType = p.arrayType(); arrayType != nil { return arrayType } // ebnf.Sequence "[" "..." "]" ElementType ctx [LBRACK] { if p.peek(1) != ELLIPSIS { goto _3 } ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Token "..." ctx [ELLIPSIS] ellipsisTok = p.expect(ELLIPSIS) // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) goto _3 } // *ebnf.Name ElementType ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if elementType = p.type1(); elementType == nil { p.back(ix) goto _3 } default: p.back(ix) goto _3 } } return &ArrayLiteralTypeNode{ LBRACK: lbrackTok, ELLIPSIS: ellipsisTok, RBRACK: rbrackTok, ElementType: elementType, } _3: elementType = nil ellipsisTok = Token{} lbrackTok = Token{} rbrackTok = Token{} // *ebnf.Name SliceType ctx [LBRACK] if sliceType = p.sliceType(); sliceType != nil { return sliceType } return nil case MAP: // 4 // *ebnf.Name MapType ctx [MAP] if mapType = p.mapType(); mapType != nil { return mapType } } return nil } // KeyedElementListNode represents the production // // KeyedElementListNode = { KeyedElement "," } . type KeyedElementListNode struct { KeyedElement Expression COMMA Token List *KeyedElementListNode } // Source implements Node. func (n *KeyedElementListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *KeyedElementListNode) Position() (r token.Position) { if n == nil { return r } return n.KeyedElement.Position() } // LiteralValueNode represents the production // // LiteralValue = "{" { KeyedElement "," } "}" . type LiteralValueNode struct { LBRACE Token KeyedElementList *KeyedElementListNode RBRACE Token } // Source implements Node. func (n *LiteralValueNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *LiteralValueNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACE.Position() } func (p *parser) literalValue() *LiteralValueNode { var ( ok bool lbraceTok Token list, last *KeyedElementListNode keyedElement Expression rbraceTok Token ) // ebnf.Sequence "{" [ ElementList [ "," ] ] "}" ctx [LBRACE] ix := p.ix // *ebnf.Token "{" ctx [LBRACE] lbraceTok = p.expect(LBRACE) for { // *ebnf.Option [ ElementList [ "," ] ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: { ix := p.ix if keyedElement = p.keyedElement(); keyedElement == nil { p.back(ix) goto _1 } switch p.c() { case COMMA: // *ebnf.Token "," ctx [COMMA] next := &KeyedElementListNode{ KeyedElement: keyedElement, COMMA: p.consume(), } if last != nil { last.List = next } if list == nil { list = next } last = next continue case RBRACE: next := &KeyedElementListNode{ KeyedElement: keyedElement, } if last != nil { last.List = next } if list == nil { list = next } last = next } } } goto _1 } _1: // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) return nil } return &LiteralValueNode{ LBRACE: lbraceTok, KeyedElementList: list, RBRACE: rbraceTok, } } func (p *parser) logicalAndExpression(preBlock bool) (r Expression) { var relationalExpression Expression // ebnf.Sequence RelationalExpression { "&&" RelationalExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name RelationalExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if relationalExpression = p.relationalExpression(preBlock); relationalExpression == nil { p.back(ix) return nil } r = relationalExpression // *ebnf.Repetition { "&&" RelationalExpression } ctx [] _0: { var landTok Token var relationalExpression Expression switch p.c() { case LAND: // ebnf.Sequence "&&" RelationalExpression ctx [LAND] switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _1 } ix := p.ix // *ebnf.Token "&&" ctx [LAND] landTok = p.expect(LAND) // *ebnf.Name RelationalExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if relationalExpression = p.relationalExpression(preBlock); relationalExpression == nil { p.back(ix) goto _1 } r = &BinaryExpressionNode{LHS: r, Op: landTok, RHS: relationalExpression} goto _0 } _1: } } return r } // MapTypeNode represents the production // // MapType = "map" "[" KeyType "]" ElementType . type MapTypeNode struct { MAP Token LBRACK Token KeyType Node RBRACK Token ElementType Node } // Source implements Node. func (n *MapTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *MapTypeNode) Position() (r token.Position) { if n == nil { return r } return n.MAP.Position() } func (p *parser) mapType() *MapTypeNode { var ( ok bool mapTok Token lbrackTok Token keyType Node rbrackTok Token elementType Node ) // ebnf.Sequence "map" "[" KeyType "]" ElementType ctx [MAP] { if p.peek(1) != LBRACK { return nil } ix := p.ix // *ebnf.Token "map" ctx [MAP] mapTok = p.expect(MAP) // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Name KeyType ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if keyType = p.type1(); keyType == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) return nil } // *ebnf.Name ElementType ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if elementType = p.type1(); elementType == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &MapTypeNode{ MAP: mapTok, LBRACK: lbrackTok, KeyType: keyType, RBRACK: rbrackTok, ElementType: elementType, } } // MethodDeclNode represents the production // // MethodDecl = "func" Receiver MethodName Signature [ FunctionBody ] . type MethodDeclNode struct { FUNC Token Receiver *ParametersNode MethodName Token Signature *SignatureNode FunctionBody *FunctionBodyNode } // Source implements Node. func (n *MethodDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *MethodDeclNode) Position() (r token.Position) { if n == nil { return r } return n.FUNC.Position() } func (p *parser) methodDecl() *MethodDeclNode { var ( funcTok Token receiver *ParametersNode methodName Token signature *SignatureNode functionBody *FunctionBodyNode ) // ebnf.Sequence "func" Receiver MethodName Signature [ FunctionBody ] ctx [FUNC] { switch p.peek(1) { case LPAREN: default: return nil } ix := p.ix // *ebnf.Token "func" ctx [FUNC] funcTok = p.expect(FUNC) // *ebnf.Name Receiver ctx [LPAREN] if receiver = p.receiver(); receiver == nil { p.back(ix) return nil } // *ebnf.Name MethodName ctx [] switch p.c() { case IDENT: if methodName = p.methodName(); !methodName.IsValid() { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Name Signature ctx [] switch p.c() { case LPAREN: if signature = p.signature(); signature == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Option [ FunctionBody ] ctx [] switch p.c() { case LBRACE: // *ebnf.Name FunctionBody ctx [LBRACE] if functionBody = p.functionBody(receiver, signature); functionBody == nil { goto _0 } } goto _1 _0: functionBody = nil _1: } return &MethodDeclNode{ FUNC: funcTok, Receiver: receiver, MethodName: methodName, Signature: signature, FunctionBody: functionBody, } } // MethodElemNode represents the production // // MethodElem = MethodName Signature . type MethodElemNode struct { MethodName Token Signature *SignatureNode typ Type } // Source implements Node. func (n *MethodElemNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *MethodElemNode) Position() (r token.Position) { if n == nil { return r } return n.MethodName.Position() } func (p *parser) methodElem() *MethodElemNode { var ( methodName Token signature *SignatureNode ) // ebnf.Sequence MethodName Signature ctx [IDENT] { switch p.peek(1) { case LPAREN: default: return nil } ix := p.ix // *ebnf.Name MethodName ctx [IDENT] if methodName = p.methodName(); !methodName.IsValid() { p.back(ix) return nil } // *ebnf.Name Signature ctx [LPAREN] if signature = p.signature(); signature == nil { p.back(ix) return nil } } return &MethodElemNode{ MethodName: methodName, Signature: signature, } } // MethodExprNode represents the production // // MethodExpr = ReceiverType "." MethodName . type MethodExprNode struct { ReceiverType Node PERIOD Token MethodName Token } // Source implements Node. func (n *MethodExprNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *MethodExprNode) Position() (r token.Position) { if n == nil { return r } return n.ReceiverType.Position() } func (p *parser) methodExpr() *MethodExprNode { var ( ok bool receiverType Node periodTok Token methodName Token ) // ebnf.Sequence ReceiverType "." MethodName ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] { ix := p.ix // *ebnf.Name ReceiverType ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if receiverType = p.type1(); receiverType == nil { p.back(ix) return nil } // *ebnf.Token "." ctx [] if periodTok, ok = p.accept(PERIOD); !ok { p.back(ix) return nil } // *ebnf.Name MethodName ctx [] switch p.c() { case IDENT: if methodName = p.methodName(); !methodName.IsValid() { p.back(ix) return nil } default: p.back(ix) return nil } } return &MethodExprNode{ ReceiverType: receiverType, PERIOD: periodTok, MethodName: methodName, } } func (p *parser) methodName() Token { // *ebnf.Name identifier ctx [IDENT] return p.expect(IDENT) } func (p *parser) multiplicativeExpression(preBlock bool) (r Expression) { var unaryExpr Expression // ebnf.Sequence UnaryExpr { ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) UnaryExpr } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name UnaryExpr ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil { p.back(ix) return nil } r = unaryExpr // *ebnf.Repetition { ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) UnaryExpr } ctx [] _0: { var op Token var unaryExpr Expression switch p.c() { case AND, AND_NOT, MUL, QUO, REM, SHL, SHR: // ebnf.Sequence ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) UnaryExpr ctx [AND, AND_NOT, MUL, QUO, REM, SHL, SHR] // *ebnf.Group ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) ctx [AND, AND_NOT, MUL, QUO, REM, SHL, SHR] // ebnf.Alternative "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ctx [AND, AND_NOT, MUL, QUO, REM, SHL, SHR] op = p.consume() // *ebnf.Name UnaryExpr ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil { p.back(ix) goto _1 } default: p.back(ix) goto _1 } r = &BinaryExpressionNode{LHS: r, Op: op, RHS: unaryExpr} goto _0 } _1: } } return r } // OperandNode represents the production // // Operand = Literal | OperandName [ TypeArgs ] [ LiteralValue ] . type OperandNode struct { OperandName Expression TypeArgs *TypeArgsNode LiteralValue *LiteralValueNode } // Source implements Node. func (n *OperandNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *OperandNode) Position() (r token.Position) { if n == nil { return r } return n.OperandName.Position() } type ParenthesizedExpressionNode struct { LPAREN Token Expression Expression RPAREN Token } // Source implements Node. func (n *ParenthesizedExpressionNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ParenthesizedExpressionNode) Position() (r token.Position) { if n == nil { return r } return n.LPAREN.Position() } func (p *parser) operand(preBlock bool) Expression { var ( ok bool literal Expression operandName Expression typeArgs *TypeArgsNode literalValue *LiteralValueNode lparenTok Token expression Expression rparenTok Token ) // ebnf.Alternative Literal | OperandName [ TypeArgs ] [ LiteralValue ] | "(" Expression ")" ctx [CHAR, FLOAT, FUNC, IDENT, IMAG, INT, LBRACK, LPAREN, MAP, STRING, STRUCT] switch p.c() { case CHAR, FLOAT, FUNC, IMAG, INT, LBRACK, MAP, STRING, STRUCT: // 0 // *ebnf.Name Literal ctx [CHAR, FLOAT, FUNC, IMAG, INT, LBRACK, MAP, STRING, STRUCT] if literal = p.literal(); literal == nil { return nil } return literal case IDENT: // 1 // ebnf.Sequence OperandName [ TypeArgs ] [ LiteralValue ] ctx [IDENT] { ix := p.ix // *ebnf.Name OperandName ctx [IDENT] if operandName = p.operandName(); operandName == nil { p.back(ix) goto _2 } // *ebnf.Option [ TypeArgs ] ctx [] switch p.c() { case LBRACK: // *ebnf.Name TypeArgs ctx [LBRACK] if typeArgs = p.typeArgs(); typeArgs == nil { goto _4 } } goto _5 _4: typeArgs = nil _5: if !preBlock { // *ebnf.Option [ LiteralValue ] ctx [] switch p.c() { case LBRACE: // *ebnf.Name LiteralValue ctx [LBRACE] if literalValue = p.literalValue(); literalValue == nil { goto _6 } } goto _7 _6: literalValue = nil _7: } } break _2: literalValue = nil operandName = nil typeArgs = nil return nil case LPAREN: // 2 // ebnf.Sequence "(" Expression ")" ctx [LPAREN] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _8 } ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(false); expression == nil { p.back(ix) goto _8 } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) goto _8 } } return &ParenthesizedExpressionNode{LPAREN: lparenTok, Expression: expression, RPAREN: rparenTok} _8: expression = nil lparenTok = Token{} rparenTok = Token{} return nil default: return nil } if operandName != nil && typeArgs == nil && literalValue == nil { return operandName } return &OperandNode{ OperandName: operandName, TypeArgs: typeArgs, LiteralValue: literalValue, } } // IotaNode represents the production // // IotaNode = identifier . type IotaNode struct { Iota Token lexicalScoper } // Source implements Node. func (n *IotaNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *IotaNode) Position() (r token.Position) { if n == nil || !n.Iota.IsValid() { return r } return n.Iota.Position() } // OperandNameNode represents the production // // OperandName = identifier . type OperandNameNode struct { Name Token lexicalScoper } // Source implements Node. func (n *OperandNameNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *OperandNameNode) Position() (r token.Position) { if n == nil || !n.Name.IsValid() { return r } return n.Name.Position() } // OperandQualifiedNameNode represents the production // // OperandQualifiedName = QualifiedIdent . type OperandQualifiedNameNode struct { Name *QualifiedIdentNode lexicalScoper } // Source implements Node. func (n *OperandQualifiedNameNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *OperandQualifiedNameNode) Position() (r token.Position) { if n == nil || n.Name == nil { return r } return n.Name.Position() } func (p *parser) operandName() Expression { var ( qualifiedIdent *QualifiedIdentNode ) // ebnf.Alternative QualifiedIdent | identifier ctx [IDENT] switch p.c() { case IDENT: // 0 1 // *ebnf.Name QualifiedIdent ctx [IDENT] if qualifiedIdent = p.qualifiedIdent(); qualifiedIdent != nil { return &OperandQualifiedNameNode{ Name: qualifiedIdent, lexicalScoper: newLexicalScoper(p.sc), } } // *ebnf.Name identifier ctx [IDENT] return &OperandNameNode{ Name: p.expect(IDENT), lexicalScoper: newLexicalScoper(p.sc), } default: return nil } } // PackageClauseNode represents the production // // PackageClause = "package" PackageName . type PackageClauseNode struct { PACKAGE Token PackageName Token } // Source implements Node. func (n *PackageClauseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *PackageClauseNode) Position() (r token.Position) { if n == nil { return r } return n.PACKAGE.Position() } func (p *parser) packageClause() *PackageClauseNode { var ( packageTok Token packageName Token ) // ebnf.Sequence "package" PackageName ctx [PACKAGE] { if p.peek(1) != IDENT { return nil } ix := p.ix // *ebnf.Token "package" ctx [PACKAGE] packageTok = p.expect(PACKAGE) // *ebnf.Name PackageName ctx [IDENT] if packageName = p.packageName(); !packageName.IsValid() { p.back(ix) return nil } } return &PackageClauseNode{ PACKAGE: packageTok, PackageName: packageName, } } func (p *parser) packageName() Token { // *ebnf.Name identifier ctx [IDENT] return p.expect(IDENT) } // ParameterDeclNode represents the production // // ParameterDecl = [ IdentifierList ] [ "..." ] Type . type ParameterDeclNode struct { IdentifierList *IdentifierListNode ELLIPSIS Token TypeNode Type visible } // Source implements Node. func (n *ParameterDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ParameterDeclNode) Position() (r token.Position) { if n == nil { return r } if n.IdentifierList != nil { return n.IdentifierList.Position() } if n.ELLIPSIS.IsValid() { return n.ELLIPSIS.Position() } return n.TypeNode.Position() } func (p *parser) parameterDecl() *ParameterDeclNode { var ( identTok Token ellipsisTok Token typeNode Type ) // ebnf.Alternative identifier "..." Type | identifier Type | "..." Type | Type ctx [ARROW, CHAN, ELLIPSIS, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] switch p.c() { case IDENT: // 0 1 3 // ebnf.Sequence identifier "..." Type ctx [IDENT] { if p.peek(1) != ELLIPSIS { goto _0 } ix := p.ix // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) // *ebnf.Token "..." ctx [ELLIPSIS] ellipsisTok = p.expect(ELLIPSIS) // *ebnf.Name Type ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _0 } default: p.back(ix) goto _0 } } break _0: ellipsisTok = Token{} identTok = Token{} typeNode = nil // ebnf.Sequence identifier Type ctx [IDENT] { switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: goto _1 } ix := p.ix // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _1 } } break _1: identTok = Token{} typeNode = nil // *ebnf.Name Type ctx [IDENT] if typeNode = p.type1(); typeNode == nil { goto _2 } break _2: typeNode = nil return nil case ELLIPSIS: // 2 // ebnf.Sequence "..." Type ctx [ELLIPSIS] { switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: goto _3 } ix := p.ix // *ebnf.Token "..." ctx [ELLIPSIS] ellipsisTok = p.expect(ELLIPSIS) // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _3 } } break _3: ellipsisTok = Token{} typeNode = nil return nil case ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 3 // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { goto _5 } break _5: typeNode = nil return nil default: return nil } var idl *IdentifierListNode if identTok.IsValid() { idl = &IdentifierListNode{IDENT: identTok} } return &ParameterDeclNode{ IdentifierList: idl, ELLIPSIS: ellipsisTok, TypeNode: typeNode, } } // ParameterDeclListNode represents the production // // ParameterDeclListNode = { ParameterDecl "," } . type ParameterDeclListNode struct { ParameterDecl *ParameterDeclNode COMMA Token List *ParameterDeclListNode } // Source implements Node. func (n *ParameterDeclListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ParameterDeclListNode) Position() (r token.Position) { if n == nil { return r } return n.ParameterDecl.Position() } // ParametersNode represents the production // // Parameters = "(" { ParameterDecl "," } ")" . type ParametersNode struct { LPAREN Token ParameterDeclList *ParameterDeclListNode RPAREN Token } // Source implements Node. func (n *ParametersNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ParametersNode) Position() (r token.Position) { if n == nil { return r } return n.LPAREN.Position() } func (p *parser) parameters() (r *ParametersNode) { var ( ok bool lparenTok Token parameterDecl *ParameterDeclNode list0 []*ParameterDeclListNode list, last *ParameterDeclListNode rparenTok Token ) ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) for { // *ebnf.Option [ ParameterList [ "," ] ] ctx [] switch p.c() { case ARROW, CHAN, ELLIPSIS, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // ebnf.Sequence ParameterList [ "," ] ctx [ARROW, CHAN, ELLIPSIS, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] { ix := p.ix if parameterDecl = p.parameterDecl(); parameterDecl == nil { p.back(ix) goto _1 } // *ebnf.Option [ "," ] ctx [] switch p.c() { case COMMA: // *ebnf.Token "," ctx [COMMA] next := &ParameterDeclListNode{ ParameterDecl: parameterDecl, COMMA: p.consume(), } list0 = append(list0, next) if last != nil { last.List = next } if list == nil { list = next } last = next continue case RPAREN: next := &ParameterDeclListNode{ ParameterDecl: parameterDecl, } list0 = append(list0, next) if last != nil { last.List = next } if list == nil { list = next } last = next } } } goto _1 } _1: // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) return nil } var ids []int for i, v := range list0 { if v.ParameterDecl.IdentifierList != nil { ids = append(ids, i) } } r = &ParametersNode{ LPAREN: lparenTok, ParameterDeclList: list, RPAREN: rparenTok, } if len(ids) != 0 && len(ids) != len(list0) { // len(ids) // | ids // | | len(list0) // TODO gc.go:74:20 (rel, importPath, version string) 1 [2] 3 last = nil for _, v := range list0 { x := *v x.List = nil } for firstX := 0; len(ids) != 0; { lastX := ids[0] ids = ids[1:] grp := list0[lastX] grp.List = nil idl := grp.ParameterDecl.IdentifierList for i := lastX - 1; i >= firstX; i-- { item := list0[i] decl := item.ParameterDecl typ := decl.TypeNode switch x := typ.(type) { case *TypeNode: if x.TypeArgs != nil { panic(todo("%v: %s", decl.Position(), decl.Source(false))) } if x.TypeName == nil { p.err(x.Position(), "syntax error: mixed named and unnamed parameters") continue } switch y := x.TypeName.Name.(type) { case Token: // { param , } vs { , ident } idl.COMMA = item.COMMA li := &IdentifierListNode{IDENT: y} li.List = idl idl = li default: p.err(y.Position(), "syntax error: mixed named and unnamed parameters") } case *TypeNameNode: switch y := x.Name.(type) { case Token: // { param , } vs { , ident } idl.COMMA = item.COMMA li := &IdentifierListNode{IDENT: y} li.List = idl idl = li default: p.err(y.Position(), "syntax error: mixed named and unnamed parameters") } default: p.err(x.Position(), "syntax error: mixed named and unnamed parameters") } } grp.ParameterDecl.IdentifierList = idl firstX = lastX + 1 if last == nil { r.ParameterDeclList = grp last = grp continue } last.List = grp last = grp } } return r } func (n *ParametersNode) declare(p *parser, s *Scope) { if n == nil { return } for l := n.ParameterDeclList; l != nil; l = l.List { pd := l.ParameterDecl for l := pd.IdentifierList; l != nil; l = l.List { p.declare(s, l.IDENT, pd, 0, true) } } } // PointerTypeNode represents the production // // PointerType = "*" BaseType . type PointerTypeNode struct { MUL Token BaseType Type guard } // Source implements Node. func (n *PointerTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *PointerTypeNode) Position() (r token.Position) { if n == nil { return r } return n.MUL.Position() } func (p *parser) pointerType() *PointerTypeNode { var ( mulTok Token baseType Type ) // ebnf.Sequence "*" BaseType ctx [MUL] { switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: return nil } ix := p.ix // *ebnf.Token "*" ctx [MUL] mulTok = p.expect(MUL) // *ebnf.Name BaseType ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if baseType = p.type1(); baseType == nil { p.back(ix) return nil } } return &PointerTypeNode{ MUL: mulTok, BaseType: baseType, } } func (p *parser) postStmt() Node { // *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */] return p.simpleStmt(true) } // PrimaryExprNode represents the production // // PrimaryExpr = Operand | Conversion | MethodExpr { Selector | Index | Slice | TypeAssertion | Arguments } . type PrimaryExprNode struct { PrimaryExpr Expression Postfix Node } // Source implements Node. func (n *PrimaryExprNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *PrimaryExprNode) Position() (r token.Position) { if n == nil { return r } return n.PrimaryExpr.Position() } func (p *parser) primaryExpr(preBlock bool) (r Expression) { var ( item0 Expression operand Expression conversion *ConversionNode methodExpr *MethodExprNode list []Node ) // ebnf.Sequence ( Operand | Conversion | MethodExpr ) { Selector | Index | Slice | TypeAssertion | Arguments } ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT] { ix := p.ix // *ebnf.Group ( Operand | Conversion | MethodExpr ) ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT] // ebnf.Alternative Operand | Conversion | MethodExpr ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT] switch p.c() { case CHAR, FLOAT, IMAG, INT, STRING: // 0 // *ebnf.Name Operand ctx [CHAR, FLOAT, IMAG, INT, STRING] if operand = p.operand(preBlock); operand == nil { goto _0 } item0 = operand break _0: operand = nil p.back(ix) return nil case FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT: // 0 1 2 // *ebnf.Name Operand ctx [FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT] if operand = p.operand(preBlock); operand == nil { goto _2 } item0 = operand break _2: operand = nil // *ebnf.Name Conversion ctx [FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT] if conversion = p.conversion(); conversion == nil { goto _3 } item0 = conversion break _3: conversion = nil // *ebnf.Name MethodExpr ctx [FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT] if methodExpr = p.methodExpr(); methodExpr == nil { goto _4 } item0 = methodExpr break _4: methodExpr = nil p.back(ix) return nil case ARROW, CHAN, INTERFACE, MUL: // 1 2 // *ebnf.Name Conversion ctx [ARROW, CHAN, INTERFACE, MUL] if conversion = p.conversion(); conversion == nil { goto _5 } item0 = conversion break _5: conversion = nil // *ebnf.Name MethodExpr ctx [ARROW, CHAN, INTERFACE, MUL] if methodExpr = p.methodExpr(); methodExpr == nil { goto _6 } item0 = methodExpr break _6: methodExpr = nil p.back(ix) return nil default: p.back(ix) return nil } r = item0 // *ebnf.Repetition { Selector | Index | Slice | TypeAssertion | Arguments } ctx [] _7: { var item Node var selector *SelectorNode var index *IndexNode var slice *SliceNode var typeAssertion *TypeAssertionNode var arguments Node switch p.c() { case LBRACK, LPAREN, PERIOD: // ebnf.Alternative Selector | Index | Slice | TypeAssertion | Arguments ctx [LBRACK, LPAREN, PERIOD] switch p.c() { case PERIOD: // 0 3 // *ebnf.Name Selector ctx [PERIOD] if selector = p.selector(); selector == nil { goto _9 } item = selector break _9: // *ebnf.Name TypeAssertion ctx [PERIOD] if typeAssertion = p.typeAssertion(); typeAssertion == nil { goto _10 } item = typeAssertion break _10: goto _8 case LBRACK: // 1 2 // *ebnf.Name Index ctx [LBRACK] if index = p.index(); index == nil { goto _11 } item = index break _11: // *ebnf.Name Slice ctx [LBRACK] if slice = p.slice(); slice == nil { goto _12 } item = slice break _12: goto _8 case LPAREN: // 4 // *ebnf.Name Arguments ctx [LPAREN] if arguments = p.arguments(); arguments == nil { goto _13 } item = arguments break _13: goto _8 default: goto _8 } list = append(list, item) r = &PrimaryExprNode{PrimaryExpr: r, Postfix: item} goto _7 } _8: } } return r } // QualifiedIdentNode represents the production // // QualifiedIdent = PackageName "." identifier . type QualifiedIdentNode struct { PackageName Token PERIOD Token IDENT Token } // Source implements Node. func (n *QualifiedIdentNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *QualifiedIdentNode) Position() (r token.Position) { if n == nil { return r } return n.PackageName.Position() } func (p *parser) qualifiedIdent() *QualifiedIdentNode { var ( ok bool packageName Token periodTok Token identTok Token ) // ebnf.Sequence PackageName "." identifier ctx [IDENT] { if p.peek(1) != PERIOD { return nil } ix := p.ix // *ebnf.Name PackageName ctx [IDENT] if packageName = p.packageName(); !packageName.IsValid() { p.back(ix) return nil } // *ebnf.Token "." ctx [PERIOD] periodTok = p.expect(PERIOD) // *ebnf.Name identifier ctx [] if identTok, ok = p.accept(IDENT); !ok { p.back(ix) return nil } } return &QualifiedIdentNode{ PackageName: packageName, PERIOD: periodTok, IDENT: identTok, } } // RangeClauseNode represents the production // // RangeClause = "range" Expression | ExpressionList "=" "range" Expression | IdentifierList ":=" "range" Expression . type RangeClauseNode struct { RANGE Token Expression Expression ExpressionList *ExpressionListNode ASSIGN Token IdentifierList *IdentifierListNode DEFINE Token } // Source implements Node. func (n *RangeClauseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *RangeClauseNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) rangeClause() *RangeClauseNode { var ( ok bool rangeTok Token expression Expression expressionList *ExpressionListNode assignTok Token identifierList *IdentifierListNode defineTok Token ) // ebnf.Alternative "range" Expression | ExpressionList "=" "range" Expression | IdentifierList ":=" "range" Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, RANGE, STRING, STRUCT, SUB, XOR] switch p.c() { case RANGE: // 0 // ebnf.Sequence "range" Expression ctx [RANGE] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _0 } ix := p.ix // *ebnf.Token "range" ctx [RANGE] rangeTok = p.expect(RANGE) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(true); expression == nil { p.back(ix) goto _0 } } break _0: expression = nil rangeTok = Token{} return nil case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 1 // ebnf.Sequence ExpressionList "=" "range" Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _2 } // *ebnf.Token "=" ctx [] if assignTok, ok = p.accept(ASSIGN); !ok { p.back(ix) goto _2 } // *ebnf.Token "range" ctx [] if rangeTok, ok = p.accept(RANGE); !ok { p.back(ix) goto _2 } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression = p.expression(true); expression == nil { p.back(ix) goto _2 } default: p.back(ix) goto _2 } } break _2: assignTok = Token{} expressionList = nil expression = nil rangeTok = Token{} return nil case IDENT: // 1 2 // ebnf.Sequence ExpressionList "=" "range" Expression ctx [IDENT] { ix := p.ix // *ebnf.Name ExpressionList ctx [IDENT] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _4 } // *ebnf.Token "=" ctx [] if assignTok, ok = p.accept(ASSIGN); !ok { p.back(ix) goto _4 } // *ebnf.Token "range" ctx [] if rangeTok, ok = p.accept(RANGE); !ok { p.back(ix) goto _4 } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression = p.expression(true); expression == nil { p.back(ix) goto _4 } default: p.back(ix) goto _4 } } break _4: assignTok = Token{} expressionList = nil expression = nil rangeTok = Token{} // ebnf.Sequence IdentifierList ":=" "range" Expression ctx [IDENT] { ix := p.ix // *ebnf.Name IdentifierList ctx [IDENT] if identifierList = p.identifierList(); identifierList == nil { p.back(ix) goto _5 } // *ebnf.Token ":=" ctx [] if defineTok, ok = p.accept(DEFINE); !ok { p.back(ix) goto _5 } // *ebnf.Token "range" ctx [] if rangeTok, ok = p.accept(RANGE); !ok { p.back(ix) goto _5 } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression = p.expression(true); expression == nil { p.back(ix) goto _5 } default: p.back(ix) goto _5 } } break _5: defineTok = Token{} expression = nil identifierList = nil rangeTok = Token{} return nil default: return nil } return &RangeClauseNode{ RANGE: rangeTok, Expression: expression, ExpressionList: expressionList, ASSIGN: assignTok, IdentifierList: identifierList, DEFINE: defineTok, } } func (p *parser) receiver() *ParametersNode { // *ebnf.Name Parameters ctx [LPAREN] return p.parameters() } func (p *parser) recvExpr() Expression { // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] return p.expression(false) } // RecvStmtNode represents the production // // RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr . type RecvStmtNode struct { ExpressionList *ExpressionListNode Token Token IdentifierList *IdentifierListNode RecvExpr Expression } // Source implements Node. func (n *RecvStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *RecvStmtNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) recvStmt() *RecvStmtNode { var ( ok bool expressionList *ExpressionListNode tok Token identifierList *IdentifierListNode recvExpr Expression ) // ebnf.Sequence [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Option [ ExpressionList "=" | IdentifierList ":=" ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] // ebnf.Alternative ExpressionList "=" | IdentifierList ":=" ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0 // ebnf.Sequence ExpressionList "=" ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _2 } // *ebnf.Token "=" ctx [] if tok, ok = p.accept(ASSIGN); !ok { p.back(ix) goto _2 } } break _2: tok = Token{} expressionList = nil goto _0 case IDENT: // 0 1 // ebnf.Sequence ExpressionList "=" ctx [IDENT] { ix := p.ix // *ebnf.Name ExpressionList ctx [IDENT] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _4 } // *ebnf.Token "=" ctx [] if tok, ok = p.accept(ASSIGN); !ok { p.back(ix) goto _4 } } break _4: tok = Token{} expressionList = nil // ebnf.Sequence IdentifierList ":=" ctx [IDENT] { ix := p.ix // *ebnf.Name IdentifierList ctx [IDENT] if identifierList = p.identifierList(); identifierList == nil { p.back(ix) goto _5 } // *ebnf.Token ":=" ctx [] if tok, ok = p.accept(DEFINE); !ok { p.back(ix) goto _5 } } break _5: tok = Token{} identifierList = nil goto _0 default: goto _0 } goto _1 _0: tok = Token{} expressionList = nil _1: // *ebnf.Name RecvExpr ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if recvExpr = p.recvExpr(); recvExpr == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &RecvStmtNode{ ExpressionList: expressionList, Token: tok, IdentifierList: identifierList, RecvExpr: recvExpr, } } func (p *parser) relationalExpression(preBlock bool) (r Expression) { var additiveExpression Expression // ebnf.Sequence AdditiveExpression { ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) AdditiveExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name AdditiveExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if additiveExpression = p.additiveExpression(preBlock); additiveExpression == nil { p.back(ix) return nil } r = additiveExpression // *ebnf.Repetition { ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) AdditiveExpression } ctx [] _0: { var op Token var additiveExpression Expression switch p.c() { case EQL, GEQ, GTR, LEQ, LSS, NEQ: // ebnf.Sequence ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) AdditiveExpression ctx [EQL, GEQ, GTR, LEQ, LSS, NEQ] // *ebnf.Group ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) ctx [EQL, GEQ, GTR, LEQ, LSS, NEQ] // ebnf.Alternative "==" | "!=" | "<" | "<=" | ">" | ">=" ctx [EQL, GEQ, GTR, LEQ, LSS, NEQ] op = p.consume() // *ebnf.Name AdditiveExpression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if additiveExpression = p.additiveExpression(preBlock); additiveExpression == nil { p.back(ix) goto _1 } default: p.back(ix) goto _1 } r = &BinaryExpressionNode{LHS: r, Op: op, RHS: additiveExpression} goto _0 } _1: } } return r } // ResultNode represents the production // // Result = Parameters | Type . type ResultNode struct { Parameters *ParametersNode TypeNode Type } // Source implements Node. func (n *ResultNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ResultNode) Position() (r token.Position) { if n == nil { return r } if n.Parameters != nil { return n.Parameters.Position() } return n.TypeNode.Position() } func (p *parser) result() *ResultNode { var ( parameters *ParametersNode typeNode Type ) // ebnf.Alternative Parameters | Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] switch p.c() { case LPAREN: // 0 1 // *ebnf.Name Parameters ctx [LPAREN] if parameters = p.parameters(); parameters == nil { goto _0 } break _0: parameters = nil // *ebnf.Name Type ctx [LPAREN] if typeNode = p.type1(); typeNode == nil { goto _1 } break _1: typeNode = nil return nil case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, MAP, MUL, STRUCT: // 1 // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { goto _2 } break _2: typeNode = nil return nil default: return nil } return &ResultNode{ Parameters: parameters, TypeNode: typeNode, } } // ReturnStmtNode represents the production // // ReturnStmt = "return" [ ExpressionList ] . type ReturnStmtNode struct { RETURN Token ExpressionList *ExpressionListNode } // Source implements Node. func (n *ReturnStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ReturnStmtNode) Position() (r token.Position) { if n == nil { return r } return n.RETURN.Position() } func (p *parser) returnStmt() *ReturnStmtNode { var ( returnTok Token expressionList *ExpressionListNode ) // ebnf.Sequence "return" [ ExpressionList ] ctx [RETURN] { // *ebnf.Token "return" ctx [RETURN] returnTok = p.expect(RETURN) // *ebnf.Option [ ExpressionList ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { goto _0 } } goto _1 _0: expressionList = nil _1: } return &ReturnStmtNode{ RETURN: returnTok, ExpressionList: expressionList, } } // CommClauseListNode represents the production // // CommClauseListNode = { CommClause } . type CommClauseListNode struct { CommClause *CommClauseNode List *CommClauseListNode } // Source implements Node. func (n *CommClauseListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *CommClauseListNode) Position() (r token.Position) { if n == nil { return r } return n.CommClause.Position() } // SelectStmtNode represents the production // // SelectStmt = "select" "{" { CommClause } "}" . type SelectStmtNode struct { SELECT Token LBRACE Token CommClauseList *CommClauseListNode RBRACE Token } // Source implements Node. func (n *SelectStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SelectStmtNode) Position() (r token.Position) { if n == nil { return r } return n.SELECT.Position() } func (p *parser) selectStmt() *SelectStmtNode { var ( ok bool selectTok Token lbraceTok Token list, last *CommClauseListNode rbraceTok Token ) // ebnf.Sequence "select" "{" { CommClause } "}" ctx [SELECT] { if p.peek(1) != LBRACE { return nil } ix := p.ix // *ebnf.Token "select" ctx [SELECT] selectTok = p.expect(SELECT) // *ebnf.Token "{" ctx [LBRACE] lbraceTok = p.expect(LBRACE) // *ebnf.Repetition { CommClause } ctx [] _0: { var commClause *CommClauseNode switch p.c() { case CASE, DEFAULT: // *ebnf.Name CommClause ctx [CASE, DEFAULT] if commClause = p.commClause(); commClause == nil { goto _1 } next := &CommClauseListNode{ CommClause: commClause, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _0 } _1: } // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) return nil } } return &SelectStmtNode{ SELECT: selectTok, LBRACE: lbraceTok, CommClauseList: list, RBRACE: rbraceTok, } } // SelectorNode represents the production // // Selector = "." identifier . type SelectorNode struct { PERIOD Token IDENT Token } // Source implements Node. func (n *SelectorNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SelectorNode) Position() (r token.Position) { if n == nil { return r } return n.PERIOD.Position() } func (p *parser) selector() *SelectorNode { var ( periodTok Token identTok Token ) // ebnf.Sequence "." identifier ctx [PERIOD] { if p.peek(1) != IDENT { return nil } // *ebnf.Token "." ctx [PERIOD] periodTok = p.expect(PERIOD) // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) } return &SelectorNode{ PERIOD: periodTok, IDENT: identTok, } } // SendStmtNode represents the production // // SendStmt = Channel "<-" Expression . type SendStmtNode struct { Channel Expression ARROW Token Expression Expression } // Source implements Node. func (n *SendStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SendStmtNode) Position() (r token.Position) { if n == nil { return r } return n.Channel.Position() } func (p *parser) sendStmt() *SendStmtNode { var ( ok bool channel Expression arrowTok Token expression Expression ) // ebnf.Sequence Channel "<-" Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name Channel ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if channel = p.channel(); channel == nil { p.back(ix) return nil } // *ebnf.Token "<-" ctx [] if arrowTok, ok = p.accept(ARROW); !ok { p.back(ix) return nil } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression = p.expression(false); expression == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &SendStmtNode{ Channel: channel, ARROW: arrowTok, Expression: expression, } } // ShortVarDeclNode represents the production // // ShortVarDecl = IdentifierList ":=" ExpressionList . type ShortVarDeclNode struct { IdentifierList *IdentifierListNode DEFINE Token ExpressionList *ExpressionListNode visible } // Source implements Node. func (n *ShortVarDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ShortVarDeclNode) Position() (r token.Position) { if n == nil { return r } return n.IdentifierList.Position() } func (p *parser) shortVarDecl(lhs *ExpressionListNode, preBlock bool) (r *ShortVarDeclNode) { var ( defineTok Token expressionList *ExpressionListNode ) // ebnf.Sequence ":=" ExpressionList ctx [DEFINE] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: return nil } ix := p.ix // *ebnf.Token ":=" ctx [DEFINE] defineTok = p.expect(DEFINE) // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(preBlock); expressionList == nil { p.back(ix) return nil } } list := p.exprList2identList(lhs) sc := p.sc r = &ShortVarDeclNode{ IdentifierList: list, DEFINE: defineTok, ExpressionList: expressionList, } visible := int32(p.ix) hasNew := false for n := r.IdentifierList; n != nil; n = n.List { id := n.IDENT ex := sc.declare(id, r, visible, p, false) if !ex.declTok.IsValid() { hasNew = true } } if !hasNew { for n := r.IdentifierList; n != nil; n = n.List { id := n.IDENT nm := id.Src() ex := sc.nodes[nm] if ex.declTok.IsValid() { p.err(id.Position(), "%s redeclared, previous declaration at %v: (%p)", nm, ex.declTok.Position(), sc) } } } return r } func (p *parser) exprList2identList(list *ExpressionListNode) (r *IdentifierListNode) { var last *IdentifierListNode for n := list; n != nil; n = n.List { next := &IdentifierListNode{ COMMA: n.COMMA, IDENT: p.expr2ident(n.Expression), } if !next.IDENT.IsValid() { continue } if r == nil { r = next } if last != nil { last.List = next } last = next } return r } func (p *parser) expr2ident(e Expression) (r Token) { switch x := e.(type) { case *OperandNode: if (x.TypeArgs != nil || x.LiteralValue != nil) && p.reportDeclarationErrors { p.err(x.Position(), "expected identifier") break } return p.expr2ident(x.OperandName) case *OperandNameNode: return x.Name p.err(x.Position(), "expected identifier") default: if p.reportDeclarationErrors { p.err(x.Position(), "expected identifier") } } return r } // SignatureNode represents the production // // Signature = Parameters [ Result ] . type SignatureNode struct { Parameters *ParametersNode Result *ResultNode typeCache } // Source implements Node. func (n *SignatureNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SignatureNode) Position() (r token.Position) { if n == nil { return r } return n.Parameters.Position() } func (p *parser) signature() *SignatureNode { var ( parameters *ParametersNode result *ResultNode ) // ebnf.Sequence Parameters [ Result ] ctx [LPAREN] { ix := p.ix // *ebnf.Name Parameters ctx [LPAREN] if parameters = p.parameters(); parameters == nil { p.back(ix) return nil } // *ebnf.Option [ Result ] ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // *ebnf.Name Result ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if result = p.result(); result == nil { goto _0 } } goto _1 _0: result = nil _1: } return &SignatureNode{ Parameters: parameters, Result: result, } } // IncDecStmtNode represents the production // // IncDecStmt = Expression ( "++" | "--" ) . type IncDecStmtNode struct { Expression Expression Token Token } // Source implements Node. func (n *IncDecStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *IncDecStmtNode) Position() (r token.Position) { if n == nil { return r } return n.Expression.Position() } func (p *parser) simpleStmt(preBlock bool) Node { var ( expressionList *ExpressionListNode assignment *AssignmentNode shortVarDecl *ShortVarDeclNode arrowTok Token expression Expression emptyStmt *EmptyStmtNode ) // ebnf.Alternative ExpressionList [ Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ] | EmptyStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0 // ebnf.Sequence ExpressionList [ Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(preBlock); expressionList == nil { p.back(ix) goto _0 } // *ebnf.Option [ Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ] ctx [] switch p.c() { case ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ARROW, ASSIGN, DEC, DEFINE, INC, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN: // ebnf.Alternative Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ARROW, ASSIGN, DEC, DEFINE, INC, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN] switch p.c() { case ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN: // 0 // *ebnf.Name Assignment ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN] if assignment = p.assignment(expressionList, preBlock); assignment == nil { goto _4 } return assignment _4: assignment = nil goto _2 case DEFINE: // 1 // *ebnf.Name ShortVarDecl ctx [DEFINE] if shortVarDecl = p.shortVarDecl(expressionList, preBlock); shortVarDecl == nil { goto _6 } return shortVarDecl _6: shortVarDecl = nil goto _2 case ARROW: // 2 // ebnf.Sequence "<-" Expression ctx [ARROW] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _8 } ix := p.ix // *ebnf.Token "<-" ctx [ARROW] arrowTok = p.expect(ARROW) // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(preBlock); expression == nil { p.back(ix) goto _8 } } if expressionList.Len() > 1 { p.err(expressionList.Position(), "expected one expression: %s", expressionList.Source(false)) } return &SendStmtNode{ Channel: expressionList.first(), ARROW: arrowTok, Expression: expression, } _8: arrowTok = Token{} expression = nil goto _2 case INC: // 3 // *ebnf.Token "++" ctx [INC] if expressionList.Len() > 1 { p.err(expressionList.Position(), "expected one expression: %s", expressionList.Source(false)) } return &IncDecStmtNode{ Expression: expressionList.first(), Token: p.expect(INC), } case DEC: // 4 // *ebnf.Token "--" ctx [DEC] if expressionList.Len() > 1 { p.err(expressionList.Position(), "expected one expression: %s", expressionList.Source(false)) } return &IncDecStmtNode{ Expression: expressionList.first(), Token: p.expect(DEC), } default: goto _2 } } goto _3 _2: arrowTok = Token{} assignment = nil expression = nil shortVarDecl = nil _3: } break _0: arrowTok = Token{} assignment = nil expression = nil expressionList = nil shortVarDecl = nil return nil default: // /* ε */ 1 // *ebnf.Name EmptyStmt ctx [ /* ε */] if emptyStmt = p.emptyStmt(); emptyStmt == nil { goto _14 } return emptyStmt _14: emptyStmt = nil return nil } if expressionList == nil || expressionList.Len() > 1 { return nil } return expressionList.first() } // SliceNode represents the production // // Slice = "[" [ Expression ] ":" [ Expression ] "]" | "[" [ Expression ] ":" Expression ":" Expression "]" . type SliceNode struct { LBRACK Token Expression Expression COLON Token Expression2 Expression RBRACK Token COLON2 Token Expression3 Expression } // Source implements Node. func (n *SliceNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SliceNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) slice() *SliceNode { var ( ok bool lbrackTok Token expression Expression colonTok Token expression2 Expression rbrackTok Token colon2Tok Token expression3 Expression ) // ebnf.Alternative "[" [ Expression ] ":" [ Expression ] "]" | "[" [ Expression ] ":" Expression ":" Expression "]" ctx [LBRACK] switch p.c() { case LBRACK: // 0 1 // ebnf.Sequence "[" [ Expression ] ":" [ Expression ] "]" ctx [LBRACK] { ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Option [ Expression ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(false); expression == nil { goto _1 } } goto _2 _1: expression = nil _2: // *ebnf.Token ":" ctx [] if colonTok, ok = p.accept(COLON); !ok { p.back(ix) goto _0 } // *ebnf.Option [ Expression ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression2 = p.expression(false); expression2 == nil { goto _3 } } goto _4 _3: expression2 = nil _4: // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) goto _0 } } break _0: colonTok = Token{} expression = nil expression2 = nil lbrackTok = Token{} rbrackTok = Token{} // ebnf.Sequence "[" [ Expression ] ":" Expression ":" Expression "]" ctx [LBRACK] { ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Option [ Expression ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expression = p.expression(false); expression == nil { goto _6 } } goto _7 _6: expression = nil _7: // *ebnf.Token ":" ctx [] if colonTok, ok = p.accept(COLON); !ok { p.back(ix) goto _5 } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression2 = p.expression(false); expression2 == nil { p.back(ix) goto _5 } default: p.back(ix) goto _5 } // *ebnf.Token ":" ctx [] if colon2Tok, ok = p.accept(COLON); !ok { p.back(ix) goto _5 } // *ebnf.Name Expression ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if expression3 = p.expression(false); expression3 == nil { p.back(ix) goto _5 } default: p.back(ix) goto _5 } // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) goto _5 } } break _5: colon2Tok = Token{} colonTok = Token{} expression = nil expression2 = nil expression3 = nil lbrackTok = Token{} rbrackTok = Token{} return nil default: return nil } return &SliceNode{ LBRACK: lbrackTok, Expression: expression, COLON: colonTok, Expression2: expression2, RBRACK: rbrackTok, COLON2: colon2Tok, Expression3: expression3, } } // SliceTypeNode represents the production // // SliceType = "[" "]" ElementType . type SliceTypeNode struct { LBRACK Token RBRACK Token ElementType Node guard } // Source implements Node. func (n *SliceTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SliceTypeNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACK.Position() } func (p *parser) sliceType() *SliceTypeNode { var ( lbrackTok Token rbrackTok Token elementType Node ) // ebnf.Sequence "[" "]" ElementType ctx [LBRACK] { if p.peek(1) != RBRACK { return nil } ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Token "]" ctx [RBRACK] rbrackTok = p.expect(RBRACK) // *ebnf.Name ElementType ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if elementType = p.type1(); elementType == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &SliceTypeNode{ LBRACK: lbrackTok, RBRACK: rbrackTok, ElementType: elementType, } } // ImportDeclListNode represents the production // // ImportDeclListNode = { ImportDecl ";" } . type ImportDeclListNode struct { ImportDecl *ImportDeclNode SEMICOLON Token List *ImportDeclListNode } // Source implements Node. func (n *ImportDeclListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ImportDeclListNode) Position() (r token.Position) { if n == nil { return r } return n.ImportDecl.Position() } // TopLevelDeclListNode represents the production // // TopLevelDeclListNode = { TopLevelDecl ";" . type TopLevelDeclListNode struct { TopLevelDecl Node SEMICOLON Token List *TopLevelDeclListNode } // Source implements Node. func (n *TopLevelDeclListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TopLevelDeclListNode) Position() (r token.Position) { if n == nil { return r } return n.TopLevelDecl.Position() } // SourceFileNode represents the production // // SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . type SourceFileNode struct { PackageClause *PackageClauseNode SEMICOLON Token ImportDeclList *ImportDeclListNode TopLevelDeclList *TopLevelDeclListNode } // Source implements Node. func (n *SourceFileNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SourceFileNode) Position() (r token.Position) { if n == nil { return r } return n.PackageClause.Position() } func (p *parser) sourceFile() *SourceFileNode { var ( ok bool packageClause *PackageClauseNode semicolonTok Token list, last *ImportDeclListNode list2, last2 *TopLevelDeclListNode ) // ebnf.Sequence PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } ctx [PACKAGE] { ix := p.ix // *ebnf.Name PackageClause ctx [PACKAGE] if packageClause = p.packageClause(); packageClause == nil { p.back(ix) return nil } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) return nil } // *ebnf.Repetition { ImportDecl ";" } ctx [] _0: { var importDecl *ImportDeclNode var semicolonTok Token switch p.c() { case IMPORT: // ebnf.Sequence ImportDecl ";" ctx [IMPORT] ix := p.ix // *ebnf.Name ImportDecl ctx [IMPORT] if importDecl = p.importDecl(); importDecl == nil { p.back(ix) goto _1 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _1 } next := &ImportDeclListNode{ ImportDecl: importDecl, SEMICOLON: semicolonTok, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _0 } _1: } // *ebnf.Repetition { TopLevelDecl ";" } ctx [] _2: { var topLevelDecl Node var semicolonTok Token switch p.c() { case CONST, FUNC, TYPE, VAR: // ebnf.Sequence TopLevelDecl ";" ctx [CONST, FUNC, TYPE, VAR] ix := p.ix // *ebnf.Name TopLevelDecl ctx [CONST, FUNC, TYPE, VAR] if topLevelDecl = p.topLevelDecl(); topLevelDecl == nil { p.back(ix) goto _3 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _3 } next := &TopLevelDeclListNode{ TopLevelDecl: topLevelDecl, SEMICOLON: semicolonTok, } if last2 != nil { last2.List = next } if list2 == nil { list2 = next } last2 = next goto _2 } _3: } } return &SourceFileNode{ PackageClause: packageClause, SEMICOLON: semicolonTok, ImportDeclList: list, TopLevelDeclList: list2, } } func (p *parser) statement() Node { var ( declaration Node labeledStmt *LabeledStmtNode goStmt *GoStmtNode returnStmt *ReturnStmtNode breakStmt *BreakStmtNode continueStmt *ContinueStmtNode gotoStmt *GotoStmtNode fallthroughStmt *FallthroughStmtNode block *BlockNode ifStmt Node switchStmt *SwitchStmtNode selectStmt *SelectStmtNode forStmt *ForStmtNode deferStmt *DeferStmtNode simpleStmt Node ) // ebnf.Alternative Declaration | LabeledStmt | GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | DeferStmt | SimpleStmt ctx [ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */] switch p.c() { case CONST, TYPE, VAR: // 0 // *ebnf.Name Declaration ctx [CONST, TYPE, VAR] if declaration = p.declaration(); declaration == nil { return nil } return declaration case IDENT: // 1 14 // *ebnf.Name LabeledStmt ctx [IDENT] if labeledStmt = p.labeledStmt(); labeledStmt == nil { goto _2 } return labeledStmt _2: labeledStmt = nil // *ebnf.Name SimpleStmt ctx [IDENT] if simpleStmt = p.simpleStmt(false); simpleStmt == nil { return nil } return simpleStmt case GO: // 2 // *ebnf.Name GoStmt ctx [GO] if goStmt = p.goStmt(); goStmt == nil { return nil } return goStmt case RETURN: // 3 // *ebnf.Name ReturnStmt ctx [RETURN] if returnStmt = p.returnStmt(); returnStmt == nil { return nil } return returnStmt case BREAK: // 4 // *ebnf.Name BreakStmt ctx [BREAK] if breakStmt = p.breakStmt(); breakStmt == nil { return nil } return breakStmt case CONTINUE: // 5 // *ebnf.Name ContinueStmt ctx [CONTINUE] if continueStmt = p.continueStmt(); continueStmt == nil { return nil } return continueStmt case GOTO: // 6 // *ebnf.Name GotoStmt ctx [GOTO] if gotoStmt = p.gotoStmt(); gotoStmt == nil { return nil } return gotoStmt case FALLTHROUGH: // 7 // *ebnf.Name FallthroughStmt ctx [FALLTHROUGH] if fallthroughStmt = p.fallthroughStmt(); fallthroughStmt == nil { return nil } return fallthroughStmt case LBRACE: // 8 // *ebnf.Name Block ctx [LBRACE] if block = p.block(nil, nil); block == nil { return nil } return block return nil case IF: // 9 // *ebnf.Name IfStmt ctx [IF] if ifStmt = p.ifStmt(); ifStmt == nil { return nil } return ifStmt case SWITCH: // 10 // *ebnf.Name SwitchStmt ctx [SWITCH] if switchStmt = p.switchStmt(); switchStmt == nil { return nil } return switchStmt case SELECT: // 11 // *ebnf.Name SelectStmt ctx [SELECT] if selectStmt = p.selectStmt(); selectStmt == nil { return nil } return selectStmt case FOR: // 12 // *ebnf.Name ForStmt ctx [FOR] if forStmt = p.forStmt(); forStmt == nil { return nil } return forStmt case DEFER: // 13 // *ebnf.Name DeferStmt ctx [DEFER] if deferStmt = p.deferStmt(); deferStmt == nil { return nil } return deferStmt case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ : // 14 // *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */] if simpleStmt = p.simpleStmt(false); simpleStmt == nil { return nil } return simpleStmt } return nil } // StatementListNode represents the production // // StatementList = { Statement ";" } . type StatementListNode struct { Statement Node SEMICOLON Token List *StatementListNode } // Source implements Node. func (n *StatementListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *StatementListNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) statementList() *StatementListNode { var ( statement Node list, last *StatementListNode ) for { ix := p.ix switch p.c() { case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ : if statement = p.statement(); statement == nil { p.back(ix) goto _1 } case SEMICOLON: next := &StatementListNode{ SEMICOLON: p.consume(), } if last != nil { last.List = next } if list == nil { list = next } last = next continue default: goto _1 } if p.c() != SEMICOLON { next := &StatementListNode{ Statement: statement, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _1 } next := &StatementListNode{ Statement: statement, SEMICOLON: p.consume(), } if last != nil { last.List = next } if list == nil { list = next } last = next } _1: return list } // FieldDeclListNode represents the production // // FieldDeclListNode = { FieldDecl ";" } . type FieldDeclListNode struct { FieldDecl *FieldDeclNode SEMICOLON Token List *FieldDeclListNode } // Source implements Node. func (n *FieldDeclListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *FieldDeclListNode) Position() (r token.Position) { if n == nil { return r } return n.FieldDecl.Position() } // StructTypeNode represents the production // // StructType = "struct" "{" { FieldDecl ";" } "}" . type StructTypeNode struct { STRUCT Token LBRACE Token FieldDeclList *FieldDeclListNode RBRACE Token fields []Field guard } // Source implements Node. func (n *StructTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *StructTypeNode) Position() (r token.Position) { if n == nil { return r } return n.STRUCT.Position() } func (p *parser) structType() *StructTypeNode { var ( ok bool structTok Token lbraceTok Token list, last *FieldDeclListNode rbraceTok Token ) // ebnf.Sequence "struct" "{" { FieldDecl ";" } [ FieldDecl ] "}" ctx [STRUCT] { if p.peek(1) != LBRACE { return nil } ix := p.ix // *ebnf.Token "struct" ctx [STRUCT] structTok = p.expect(STRUCT) // *ebnf.Token "{" ctx [LBRACE] lbraceTok = p.expect(LBRACE) // *ebnf.Repetition { FieldDecl ";" } ctx [] _0: { var fieldDecl *FieldDeclNode var semicolonTok Token switch p.c() { case IDENT, MUL: // ebnf.Sequence FieldDecl ";" ctx [IDENT, MUL] ix := p.ix // *ebnf.Name FieldDecl ctx [IDENT, MUL] if fieldDecl = p.fieldDecl(); fieldDecl == nil { p.back(ix) goto _1 } if p.c() == RBRACE { next := &FieldDeclListNode{ FieldDecl: fieldDecl, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _1 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _1 } next := &FieldDeclListNode{ FieldDecl: fieldDecl, SEMICOLON: semicolonTok, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _0 } _1: } // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) return nil } } return &StructTypeNode{ STRUCT: structTok, LBRACE: lbraceTok, FieldDeclList: list, RBRACE: rbraceTok, } } // SwitchStmtNode represents the production // // SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . type SwitchStmtNode struct { ExprSwitchStmt *ExprSwitchStmtNode TypeSwitchStmt *TypeSwitchStmtNode } // Source implements Node. func (n *SwitchStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *SwitchStmtNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) switchStmt() *SwitchStmtNode { var ( exprSwitchStmt *ExprSwitchStmtNode typeSwitchStmt *TypeSwitchStmtNode ) p.openScope() defer p.closeScope() // ebnf.Alternative ExprSwitchStmt | TypeSwitchStmt ctx [SWITCH] switch p.c() { case SWITCH: // 0 1 // *ebnf.Name ExprSwitchStmt ctx [SWITCH] if exprSwitchStmt = p.exprSwitchStmt(); exprSwitchStmt == nil { goto _0 } break _0: exprSwitchStmt = nil p.closeScope() p.openScope() // *ebnf.Name TypeSwitchStmt ctx [SWITCH] if typeSwitchStmt = p.typeSwitchStmt(); typeSwitchStmt == nil { goto _1 } break _1: typeSwitchStmt = nil return nil default: return nil } return &SwitchStmtNode{ ExprSwitchStmt: exprSwitchStmt, TypeSwitchStmt: typeSwitchStmt, } } // TagNode represents the production // // Tag = string_lit . type TagNode struct { STRING Token } // Source implements Node. func (n *TagNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TagNode) Position() (r token.Position) { if n == nil { return r } return n.STRING.Position() } func (p *parser) tag() *TagNode { var ( stringTok Token ) // *ebnf.Name string_lit ctx [STRING] stringTok = p.expect(STRING) return &TagNode{ STRING: stringTok, } } func (p *parser) topLevelDecl() (r Node) { // ebnf.Alternative Declaration | FunctionDecl | MethodDecl ctx [CONST, FUNC, TYPE, VAR] switch p.c() { case CONST, TYPE, VAR: // 0 // *ebnf.Name Declaration ctx [CONST, TYPE, VAR] return p.declaration() case FUNC: // 1 2 // *ebnf.Name FunctionDecl ctx [FUNC] if functionDecl := p.functionDecl(); functionDecl != nil { return functionDecl } // *ebnf.Name MethodDecl ctx [FUNC] return p.methodDecl() } return nil } // TypeNode represents the production // // Type = TypeName TypeArgs . type TypeNode struct { TypeName *TypeNameNode TypeArgs *TypeArgsNode } // Source implements Node. func (n *TypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeNode) Position() (r token.Position) { if n == nil { return r } if n.TypeName != nil { return n.TypeName.Position() } return r } // ParenthesizedTypeNode represents the production // // ParenthesizedType = "(" Type ")" . type ParenthesizedTypeNode struct { LPAREN Token TypeNode Type RPAREN Token } // Source implements Node. func (n *ParenthesizedTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *ParenthesizedTypeNode) Position() (r token.Position) { if n == nil { return r } if n.LPAREN.IsValid() { return n.LPAREN.Position() } return r } func (p *parser) type1() Type { var ( ok bool typeName *TypeNameNode typeArgs *TypeArgsNode typeLit Type lparenTok Token typeNode Type rparenTok Token ) // ebnf.Alternative TypeName [ TypeArgs ] | TypeLit | "(" Type ")" ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] switch p.c() { case IDENT: // 0 // ebnf.Sequence TypeName [ TypeArgs ] ctx [IDENT] { ix := p.ix // *ebnf.Name TypeName ctx [IDENT] if typeName = p.typeName(); typeName == nil { p.back(ix) goto _0 } // *ebnf.Option [ TypeArgs ] ctx [] switch p.c() { case LBRACK: // *ebnf.Name TypeArgs ctx [LBRACK] if typeArgs = p.typeArgs(); typeArgs == nil { goto _2 } } goto _3 _2: typeArgs = nil _3: } if typeArgs == nil { return typeName } break _0: typeArgs = nil typeName = nil return nil case ARROW, CHAN, FUNC, INTERFACE, LBRACK, MAP, MUL, STRUCT: // 1 // *ebnf.Name TypeLit ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, MAP, MUL, STRUCT] if typeLit = p.typeLit(); typeLit == nil { goto _4 } return typeLit _4: typeLit = nil return nil case LPAREN: // 2 // ebnf.Sequence "(" Type ")" ctx [LPAREN] { switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: goto _6 } ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _6 } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) goto _6 } } return &ParenthesizedTypeNode{LPAREN: lparenTok, TypeNode: typeNode, RPAREN: rparenTok} _6: lparenTok = Token{} rparenTok = Token{} typeNode = nil return nil default: return nil } return &TypeNode{ TypeName: typeName, TypeArgs: typeArgs, } } // TypeArgsNode represents the production // // TypeArgs = "[" TypeList [ "," ] "]" . type TypeArgsNode struct { LBRACK Token TypeList *TypeListNode COMMA Token RBRACK Token } // Source implements Node. func (n *TypeArgsNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeArgsNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACK.Position() } func (p *parser) typeArgs() *TypeArgsNode { var ( ok bool lbrackTok Token typeList *TypeListNode commaTok Token rbrackTok Token ) // ebnf.Sequence "[" TypeList [ "," ] "]" ctx [LBRACK] { switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: return nil } ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Name TypeList ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeList = p.typeList(); typeList == nil { p.back(ix) return nil } // *ebnf.Option [ "," ] ctx [] switch p.c() { case COMMA: // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) } // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) return nil } } return &TypeArgsNode{ LBRACK: lbrackTok, TypeList: typeList, COMMA: commaTok, RBRACK: rbrackTok, } } // TypeAssertionNode represents the production // // TypeAssertion = "." "(" Type ")" . type TypeAssertionNode struct { PERIOD Token LPAREN Token TypeNode Type RPAREN Token } // Source implements Node. func (n *TypeAssertionNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeAssertionNode) Position() (r token.Position) { if n == nil { return r } return n.PERIOD.Position() } func (p *parser) typeAssertion() *TypeAssertionNode { var ( ok bool periodTok Token lparenTok Token typeNode Type rparenTok Token ) // ebnf.Sequence "." "(" Type ")" ctx [PERIOD] { if p.peek(1) != LPAREN { return nil } ix := p.ix // *ebnf.Token "." ctx [PERIOD] periodTok = p.expect(PERIOD) // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Name Type ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if typeNode = p.type1(); typeNode == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) return nil } } return &TypeAssertionNode{ PERIOD: periodTok, LPAREN: lparenTok, TypeNode: typeNode, RPAREN: rparenTok, } } // TypeCaseClauseNode represents the production // // TypeCaseClause = TypeSwitchCase ":" StatementList . type TypeCaseClauseNode struct { TypeSwitchCase *TypeSwitchCaseNode COLON Token StatementList *StatementListNode } // Source implements Node. func (n *TypeCaseClauseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeCaseClauseNode) Position() (r token.Position) { if n == nil { return r } return n.TypeSwitchCase.Position() } func (p *parser) typeCaseClause() *TypeCaseClauseNode { var ( ok bool typeSwitchCase *TypeSwitchCaseNode colonTok Token statementList *StatementListNode ) // ebnf.Sequence TypeSwitchCase ":" StatementList ctx [CASE, DEFAULT] { p.openScope() defer p.closeScope() ix := p.ix // *ebnf.Name TypeSwitchCase ctx [CASE, DEFAULT] if typeSwitchCase = p.typeSwitchCase(); typeSwitchCase == nil { p.back(ix) return nil } // *ebnf.Token ":" ctx [] if colonTok, ok = p.accept(COLON); !ok { p.back(ix) return nil } // *ebnf.Name StatementList ctx [] switch p.c() { case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ : if statementList = p.statementList(); statementList == nil { p.back(ix) return nil } } } return &TypeCaseClauseNode{ TypeSwitchCase: typeSwitchCase, COLON: colonTok, StatementList: statementList, } } // TypeConstraintNode represents the production // // TypeConstraint = TypeElem . type TypeConstraintNode struct { TypeElem *TypeElemListNode } // Source implements Node. func (n *TypeConstraintNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeConstraintNode) Position() (r token.Position) { if n == nil { return r } return n.TypeElem.Position() } func (p *parser) typeConstraint() *TypeConstraintNode { var ( typeElem *TypeElemListNode ) // *ebnf.Name TypeElem ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] if typeElem = p.typeElem(); typeElem == nil { return nil } return &TypeConstraintNode{ TypeElem: typeElem, } } // TypeSpecListNode represents the production // // TypeSpecListNode = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . type TypeSpecListNode struct { TypeSpec Node SEMICOLON Token List *TypeSpecListNode } // Source implements Node. func (n *TypeSpecListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeSpecListNode) Position() (r token.Position) { if n == nil { return r } return n.TypeSpec.Position() } // TypeDeclNode represents the production // // TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . type TypeDeclNode struct { TYPE Token LPAREN Token TypeSpecList *TypeSpecListNode RPAREN Token } // Source implements Node. func (n *TypeDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeDeclNode) Position() (r token.Position) { if n == nil { return r } return n.TYPE.Position() } func (p *parser) typeDecl() *TypeDeclNode { var ( ok bool typeTok Token typeSpec Node lparenTok Token list, last *TypeSpecListNode rparenTok Token ) // ebnf.Sequence "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) ctx [TYPE] { switch p.peek(1) { case IDENT, LPAREN: default: return nil } ix := p.ix // *ebnf.Token "type" ctx [TYPE] typeTok = p.expect(TYPE) // *ebnf.Group ( TypeSpec | "(" { TypeSpec ";" } ")" ) ctx [IDENT, LPAREN] // ebnf.Alternative TypeSpec | "(" { TypeSpec ";" } ")" ctx [IDENT, LPAREN] switch p.c() { case IDENT: // 0 // *ebnf.Name TypeSpec ctx [IDENT] if typeSpec = p.typeSpec(); typeSpec == nil { goto _0 } list = &TypeSpecListNode{ TypeSpec: typeSpec, } break _0: typeSpec = nil p.back(ix) return nil case LPAREN: // 1 // ebnf.Sequence "(" { TypeSpec ";" } ")" ctx [LPAREN] { ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Repetition { TypeSpec ";" } ctx [] _4: { var typeSpec Node var semicolonTok Token switch p.c() { case IDENT: // ebnf.Sequence TypeSpec ";" ctx [IDENT] ix := p.ix // *ebnf.Name TypeSpec ctx [IDENT] if typeSpec = p.typeSpec(); typeSpec == nil { p.back(ix) goto _5 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _5 } next := &TypeSpecListNode{ TypeSpec: typeSpec, SEMICOLON: semicolonTok, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _4 } _5: } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) goto _2 } } break _2: lparenTok = Token{} rparenTok = Token{} p.back(ix) return nil default: p.back(ix) return nil } } return &TypeDeclNode{ TYPE: typeTok, LPAREN: lparenTok, TypeSpecList: list, RPAREN: rparenTok, } } // TypeDefNode represents the production // // TypeDef = identifier [ TypeParameters ] Type . type TypeDefNode struct { IDENT Token TypeParameters *TypeParametersNode TypeNode Type pkg *Package visible } // Source implements Node. func (n *TypeDefNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeDefNode) Position() (r token.Position) { if n == nil { return r } return n.IDENT.Position() } func (p *parser) typeDef() (r *TypeDefNode) { var ( identTok Token typeParameters *TypeParametersNode typeNode Type ) // ebnf.Sequence identifier [ TypeParameters ] Type ctx [IDENT] { ix := p.ix // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) // *ebnf.Option [ TypeParameters ] ctx [] switch p.c() { case LBRACK: // *ebnf.Name TypeParameters ctx [LBRACK] if typeParameters = p.typeParameters(); typeParameters == nil { goto _0 } } goto _1 _0: typeParameters = nil _1: // *ebnf.Name Type ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: if typeNode = p.type1(); typeNode == nil { p.back(ix) return nil } default: p.back(ix) return nil } } r = &TypeDefNode{ IDENT: identTok, TypeParameters: typeParameters, TypeNode: typeNode, } p.declare(p.sc, identTok, r, int32(p.ix), false) return r } // TypeElemListNode represents the production // // TypeElem = TypeTerm { "|" TypeTerm } . type TypeElemListNode struct { OR Token TypeTerm *TypeTermNode List *TypeElemListNode } // Source implements Node. func (n *TypeElemListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeElemListNode) Position() (r token.Position) { if n == nil { return r } if n.OR.IsValid() { return n.OR.Position() } return n.TypeTerm.Position() } func (p *parser) typeElem() *TypeElemListNode { var ( typeTerm *TypeTermNode list, last *TypeElemListNode ) // ebnf.Sequence TypeTerm { "|" TypeTerm } ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] { ix := p.ix // *ebnf.Name TypeTerm ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] if typeTerm = p.typeTerm(); typeTerm == nil { p.back(ix) return nil } list = &TypeElemListNode{ TypeTerm: typeTerm, } last = list // *ebnf.Repetition { "|" TypeTerm } ctx [] _0: { var orTok Token var typeTerm *TypeTermNode switch p.c() { case OR: // ebnf.Sequence "|" TypeTerm ctx [OR] switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE: default: goto _1 } ix := p.ix // *ebnf.Token "|" ctx [OR] orTok = p.expect(OR) // *ebnf.Name TypeTerm ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] if typeTerm = p.typeTerm(); typeTerm == nil { p.back(ix) goto _1 } next := &TypeElemListNode{ OR: orTok, TypeTerm: typeTerm, } last.List = next last = next goto _0 } _1: } } return list } // TypeListNode represents the production // // TypeList = Type { "," Type } . type TypeListNode struct { COMMA Token TypeNode Type List *TypeListNode } // Source implements Node. func (n *TypeListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeListNode) Position() (r token.Position) { if n == nil { return r } if n.COMMA.IsValid() { return n.COMMA.Position() } return n.TypeNode.Position() } func (p *parser) typeList() *TypeListNode { var ( typeNode Type list, last *TypeListNode ) // ebnf.Sequence Type { "," Type } ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] { ix := p.ix // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) return nil } list = &TypeListNode{ TypeNode: typeNode, } last = list // *ebnf.Repetition { "," Type } ctx [] _0: { var commaTok Token var typeNode Type switch p.c() { case COMMA: // ebnf.Sequence "," Type ctx [COMMA] switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: goto _1 } ix := p.ix // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _1 } next := &TypeListNode{ COMMA: commaTok, TypeNode: typeNode, } last.List = next last = next goto _0 } _1: } } return list } func (p *parser) typeLit() Type { var ( arrayType *ArrayTypeNode structType *StructTypeNode pointerType *PointerTypeNode functionType *FunctionTypeNode interfaceType *InterfaceTypeNode mapType *MapTypeNode channelType *ChannelTypeNode ) // ebnf.Alternative ArrayType | StructType | PointerType | FunctionType | InterfaceType | SliceType | MapType | ChannelType ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, MAP, MUL, STRUCT] switch p.c() { case LBRACK: // 0 5 if p.peek(1) == RBRACK { return p.sliceType() } // *ebnf.Name ArrayType ctx [LBRACK] if arrayType = p.arrayType(); arrayType != nil { return arrayType } case STRUCT: // 1 // *ebnf.Name StructType ctx [STRUCT] if structType = p.structType(); structType != nil { return structType } case MUL: // 2 // *ebnf.Name PointerType ctx [MUL] if pointerType = p.pointerType(); pointerType != nil { return pointerType } case FUNC: // 3 // *ebnf.Name FunctionType ctx [FUNC] if functionType = p.functionType(); functionType != nil { return functionType } case INTERFACE: // 4 // *ebnf.Name InterfaceType ctx [INTERFACE] if interfaceType = p.interfaceType(); interfaceType != nil { return interfaceType } case MAP: // 6 // *ebnf.Name MapType ctx [MAP] if mapType = p.mapType(); mapType != nil { return mapType } case ARROW, CHAN: // 7 // *ebnf.Name ChannelType ctx [ARROW, CHAN] if channelType = p.channelType(); channelType != nil { return channelType } } return nil } // TypeNameNode represents the production // // TypeName = QualifiedIdent | identifier . type TypeNameNode struct { Name Node lexicalScoper } // Source implements Node. func (n *TypeNameNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeNameNode) Position() (r token.Position) { if n == nil || n.Name == nil { return r } return n.Name.Position() } func (p *parser) typeName() *TypeNameNode { var ( qualifiedIdent *QualifiedIdentNode ) // ebnf.Alternative QualifiedIdent | identifier ctx [IDENT] switch p.c() { case IDENT: // 0 1 // *ebnf.Name QualifiedIdent ctx [IDENT] if qualifiedIdent = p.qualifiedIdent(); qualifiedIdent != nil { return &TypeNameNode{ Name: qualifiedIdent, lexicalScoper: newLexicalScoper(p.sc), } } // *ebnf.Name identifier ctx [IDENT] return &TypeNameNode{ Name: p.expect(IDENT), lexicalScoper: newLexicalScoper(p.sc), } default: return nil } } // TypeParamDeclNode represents the production // // TypeParamDecl = IdentifierList TypeConstraint . type TypeParamDeclNode struct { IdentifierList *IdentifierListNode TypeConstraint *TypeConstraintNode } // Source implements Node. func (n *TypeParamDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeParamDeclNode) Position() (r token.Position) { if n == nil { return r } return n.IdentifierList.Position() } func (p *parser) typeParamDecl() *TypeParamDeclNode { var ( identifierList *IdentifierListNode typeConstraint *TypeConstraintNode ) // ebnf.Sequence IdentifierList TypeConstraint ctx [IDENT] { ix := p.ix // *ebnf.Name IdentifierList ctx [IDENT] if identifierList = p.identifierList(); identifierList == nil { p.back(ix) return nil } // *ebnf.Name TypeConstraint ctx [] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE: if typeConstraint = p.typeConstraint(); typeConstraint == nil { p.back(ix) return nil } default: p.back(ix) return nil } } return &TypeParamDeclNode{ IdentifierList: identifierList, TypeConstraint: typeConstraint, } } // TypeParamListNode represents the production // // TypeParamList = TypeParamDecl { "," TypeParamDecl } . type TypeParamListNode struct { COMMA Token TypeParamDecl *TypeParamDeclNode List *TypeParamListNode } // Source implements Node. func (n *TypeParamListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeParamListNode) Position() (r token.Position) { if n == nil { return r } return n.TypeParamDecl.Position() } func (p *parser) typeParamList() *TypeParamListNode { var ( typeParamDecl *TypeParamDeclNode list, last *TypeParamListNode ) // ebnf.Sequence TypeParamDecl { "," TypeParamDecl } ctx [IDENT] { ix := p.ix // *ebnf.Name TypeParamDecl ctx [IDENT] if typeParamDecl = p.typeParamDecl(); typeParamDecl == nil { p.back(ix) return nil } list = &TypeParamListNode{ TypeParamDecl: typeParamDecl, } last = list // *ebnf.Repetition { "," TypeParamDecl } ctx [] _0: { var commaTok Token var typeParamDecl *TypeParamDeclNode switch p.c() { case COMMA: // ebnf.Sequence "," TypeParamDecl ctx [COMMA] switch p.peek(1) { case IDENT: default: goto _1 } ix := p.ix // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) // *ebnf.Name TypeParamDecl ctx [IDENT] if typeParamDecl = p.typeParamDecl(); typeParamDecl == nil { p.back(ix) goto _1 } next := &TypeParamListNode{ COMMA: commaTok, TypeParamDecl: typeParamDecl, } last.List = next last = next goto _0 } _1: } } return list } // TypeParametersNode represents the production // // TypeParameters = "[" TypeParamList [ "," ] "]" . type TypeParametersNode struct { LBRACK Token TypeParamList *TypeParamListNode COMMA Token RBRACK Token } // Source implements Node. func (n *TypeParametersNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeParametersNode) Position() (r token.Position) { if n == nil { return r } return n.LBRACK.Position() } func (p *parser) typeParameters() *TypeParametersNode { var ( ok bool lbrackTok Token typeParamList *TypeParamListNode commaTok Token rbrackTok Token ) // ebnf.Sequence "[" TypeParamList [ "," ] "]" ctx [LBRACK] { switch p.peek(1) { case IDENT: default: return nil } ix := p.ix // *ebnf.Token "[" ctx [LBRACK] lbrackTok = p.expect(LBRACK) // *ebnf.Name TypeParamList ctx [IDENT] if typeParamList = p.typeParamList(); typeParamList == nil { p.back(ix) return nil } // *ebnf.Option [ "," ] ctx [] switch p.c() { case COMMA: // *ebnf.Token "," ctx [COMMA] commaTok = p.expect(COMMA) } // *ebnf.Token "]" ctx [] if rbrackTok, ok = p.accept(RBRACK); !ok { p.back(ix) return nil } } return &TypeParametersNode{ LBRACK: lbrackTok, TypeParamList: typeParamList, COMMA: commaTok, RBRACK: rbrackTok, } } func (p *parser) typeSpec() Node { var ( aliasDecl *AliasDeclNode typeDef *TypeDefNode ) // ebnf.Alternative AliasDecl | TypeDef ctx [IDENT] switch p.c() { case IDENT: // 0 1 // *ebnf.Name AliasDecl ctx [IDENT] if aliasDecl = p.aliasDecl(); aliasDecl == nil { goto _0 } return aliasDecl _0: aliasDecl = nil // *ebnf.Name TypeDef ctx [IDENT] if typeDef = p.typeDef(); typeDef == nil { return nil } return typeDef default: return nil } } // TypeSwitchCaseNode represents the production // // TypeSwitchCase = "case" TypeList | "default" . type TypeSwitchCaseNode struct { CASE Token TypeList *TypeListNode DEFAULT Token } // Source implements Node. func (n *TypeSwitchCaseNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeSwitchCaseNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) typeSwitchCase() *TypeSwitchCaseNode { var ( caseTok Token typeList *TypeListNode defaultTok Token ) // ebnf.Alternative "case" TypeList | "default" ctx [CASE, DEFAULT] switch p.c() { case CASE: // 0 // ebnf.Sequence "case" TypeList ctx [CASE] { switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: goto _0 } ix := p.ix // *ebnf.Token "case" ctx [CASE] caseTok = p.expect(CASE) // *ebnf.Name TypeList ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeList = p.typeList(); typeList == nil { p.back(ix) goto _0 } } break _0: caseTok = Token{} typeList = nil return nil case DEFAULT: // 1 // *ebnf.Token "default" ctx [DEFAULT] defaultTok = p.expect(DEFAULT) default: return nil } return &TypeSwitchCaseNode{ CASE: caseTok, TypeList: typeList, DEFAULT: defaultTok, } } // TypeSwitchGuardNode represents the production // // TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . type TypeSwitchGuardNode struct { IDENT Token DEFINE Token PrimaryExpr Expression PERIOD Token LPAREN Token TYPE Token RPAREN Token } // Source implements Node. func (n *TypeSwitchGuardNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeSwitchGuardNode) Position() (r token.Position) { if n == nil { return r } panic("TODO") } func (p *parser) typeSwitchGuard() *TypeSwitchGuardNode { var ( ok bool identTok Token defineTok Token primaryExpr Expression periodTok Token lparenTok Token typeTok Token rparenTok Token ) // ebnf.Sequence [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT] { ix := p.ix // *ebnf.Option [ identifier ":=" ] ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT] switch p.c() { case IDENT: // ebnf.Sequence identifier ":=" ctx [IDENT] { if p.peek(1) != DEFINE { goto _0 } // *ebnf.Name identifier ctx [IDENT] identTok = p.expect(IDENT) // *ebnf.Token ":=" ctx [DEFINE] defineTok = p.expect(DEFINE) } } goto _1 _0: defineTok = Token{} identTok = Token{} _1: // *ebnf.Name PrimaryExpr ctx [] switch p.c() { case ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT: if primaryExpr = p.primaryExpr(false); primaryExpr == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Token "." ctx [] if periodTok, ok = p.accept(PERIOD); !ok { p.back(ix) return nil } // *ebnf.Token "(" ctx [] if lparenTok, ok = p.accept(LPAREN); !ok { p.back(ix) return nil } // *ebnf.Token "type" ctx [] if typeTok, ok = p.accept(TYPE); !ok { p.back(ix) return nil } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) return nil } } return &TypeSwitchGuardNode{ IDENT: identTok, DEFINE: defineTok, PrimaryExpr: primaryExpr, PERIOD: periodTok, LPAREN: lparenTok, TYPE: typeTok, RPAREN: rparenTok, } } // TypeCaseClauseListNode represents the production // // TypeCaseClauseListNode = { TypeCaseClause } . type TypeCaseClauseListNode struct { TypeCaseClause *TypeCaseClauseNode List *TypeCaseClauseListNode } // Source implements Node. func (n *TypeCaseClauseListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeCaseClauseListNode) Position() (r token.Position) { if n == nil { return r } return n.TypeCaseClause.Position() } // TypeSwitchStmtNode represents the production // // TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . type TypeSwitchStmtNode struct { SWITCH Token SimpleStmt Node SEMICOLON Token TypeSwitchGuard *TypeSwitchGuardNode LBRACE Token TypeCaseClauseList *TypeCaseClauseListNode RBRACE Token } // Source implements Node. func (n *TypeSwitchStmtNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeSwitchStmtNode) Position() (r token.Position) { if n == nil { return r } return n.SWITCH.Position() } func (p *parser) typeSwitchStmt() *TypeSwitchStmtNode { var ( ok bool switchTok Token simpleStmt Node semicolonTok Token typeSwitchGuard *TypeSwitchGuardNode lbraceTok Token list, last *TypeCaseClauseListNode rbraceTok Token ) // ebnf.Sequence "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" ctx [SWITCH] { ix := p.ix // *ebnf.Token "switch" ctx [SWITCH] switchTok = p.expect(SWITCH) // *ebnf.Option [ SimpleStmt ";" ] ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR: // ebnf.Sequence SimpleStmt ";" ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR] { ix := p.ix // *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if simpleStmt = p.simpleStmt(false); simpleStmt == nil { p.back(ix) goto _0 } default: p.back(ix) goto _0 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _0 } } } goto _1 _0: semicolonTok = Token{} simpleStmt = nil _1: // *ebnf.Name TypeSwitchGuard ctx [] switch p.c() { case ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT: if typeSwitchGuard = p.typeSwitchGuard(); typeSwitchGuard == nil { p.back(ix) return nil } default: p.back(ix) return nil } // *ebnf.Token "{" ctx [] if lbraceTok, ok = p.accept(LBRACE); !ok { p.back(ix) return nil } // *ebnf.Repetition { TypeCaseClause } ctx [] _2: { var typeCaseClause *TypeCaseClauseNode switch p.c() { case CASE, DEFAULT: // *ebnf.Name TypeCaseClause ctx [CASE, DEFAULT] if typeCaseClause = p.typeCaseClause(); typeCaseClause == nil { goto _3 } next := &TypeCaseClauseListNode{ TypeCaseClause: typeCaseClause, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _2 } _3: } // *ebnf.Token "}" ctx [] if rbraceTok, ok = p.accept(RBRACE); !ok { p.back(ix) return nil } } return &TypeSwitchStmtNode{ SWITCH: switchTok, SimpleStmt: simpleStmt, SEMICOLON: semicolonTok, TypeSwitchGuard: typeSwitchGuard, LBRACE: lbraceTok, TypeCaseClauseList: list, RBRACE: rbraceTok, } } // TypeTermNode represents the production // // TypeTerm = Type | UnderlyingType . type TypeTermNode struct { TypeNode Type UnderlyingType *UnderlyingTypeNode } // Source implements Node. func (n *TypeTermNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *TypeTermNode) Position() (r token.Position) { if n == nil { return r } if n.TypeNode != nil { return n.TypeNode.Position() } return n.UnderlyingType.Position() } func (p *parser) typeTerm() *TypeTermNode { var ( typeNode Type underlyingType *UnderlyingTypeNode ) // ebnf.Alternative Type | UnderlyingType ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 0 // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { goto _0 } break _0: typeNode = nil return nil case TILDE: // 1 // *ebnf.Name UnderlyingType ctx [TILDE] if underlyingType = p.underlyingType(); underlyingType == nil { goto _2 } break _2: underlyingType = nil return nil default: return nil } return &TypeTermNode{ TypeNode: typeNode, UnderlyingType: underlyingType, } } // UnaryExprNode represents the production // // UnaryExpr = PrimaryExpr | ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr . type UnaryExprNode struct { Op Token UnaryExpr Expression typeCache valueCache } // Source implements Node. func (n *UnaryExprNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *UnaryExprNode) Position() (r token.Position) { if n == nil { return r } return n.Op.Position() } func (p *parser) unaryExpr(preBlock bool) Expression { var ( primaryExpr Expression op Token unaryExpr Expression ) // ebnf.Alternative PrimaryExpr | ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] switch p.c() { case CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, STRING, STRUCT: // 0 // *ebnf.Name PrimaryExpr ctx [CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, STRING, STRUCT] if primaryExpr = p.primaryExpr(preBlock); primaryExpr == nil { return nil } return primaryExpr case ARROW, MUL: // 0 1 // *ebnf.Name PrimaryExpr ctx [ARROW, MUL] if primaryExpr = p.primaryExpr(preBlock); primaryExpr == nil { goto _2 } return primaryExpr _2: primaryExpr = nil // ebnf.Sequence ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr ctx [ARROW, MUL] { ix := p.ix // *ebnf.Group ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) ctx [ARROW, MUL] // ebnf.Alternative "+" | "-" | "!" | "^" | "*" | "&" | "<-" ctx [ARROW, MUL] op = p.consume() // *ebnf.Name UnaryExpr ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil { p.back(ix) goto _3 } default: p.back(ix) goto _3 } } break _3: unaryExpr = nil return nil case ADD, AND, NOT, SUB, XOR: // 1 // ebnf.Sequence ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr ctx [ADD, AND, NOT, SUB, XOR] { ix := p.ix // *ebnf.Group ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) ctx [ADD, AND, NOT, SUB, XOR] // ebnf.Alternative "+" | "-" | "!" | "^" | "*" | "&" | "<-" ctx [ADD, AND, NOT, SUB, XOR] op = p.consume() // *ebnf.Name UnaryExpr ctx [] switch p.c() { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil { p.back(ix) goto _8 } default: p.back(ix) goto _8 } } break _8: op = Token{} unaryExpr = nil return nil default: return nil } return &UnaryExprNode{ Op: op, UnaryExpr: unaryExpr, } } // UnderlyingTypeNode represents the production // // UnderlyingType = "~" Type . type UnderlyingTypeNode struct { TILDE Token TypeNode Type } // Source implements Node. func (n *UnderlyingTypeNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *UnderlyingTypeNode) Position() (r token.Position) { if n == nil { return r } return n.TILDE.Position() } func (p *parser) underlyingType() *UnderlyingTypeNode { var ( tildeTok Token typeNode Type ) // ebnf.Sequence "~" Type ctx [TILDE] { switch p.peek(1) { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: default: return nil } ix := p.ix // *ebnf.Token "~" ctx [TILDE] tildeTok = p.expect(TILDE) // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) return nil } } return &UnderlyingTypeNode{ TILDE: tildeTok, TypeNode: typeNode, } } // VarSpecListNode represents the production // // VarSpecListNode = { VarSpec ";" } . type VarSpecListNode struct { VarSpec Node SEMICOLON Token List *VarSpecListNode } // Source implements Node. func (n *VarSpecListNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *VarSpecListNode) Position() (r token.Position) { if n == nil { return r } return n.VarSpec.Position() } // VarDeclNode represents the production // // VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . type VarDeclNode struct { VAR Token LPAREN Token VarSpec Node RPAREN Token } // Source implements Node. func (n *VarDeclNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *VarDeclNode) Position() (r token.Position) { if n == nil { return r } return n.VAR.Position() } func (p *parser) varDecl() *VarDeclNode { var ( ok bool varTok Token varSpec Node lparenTok Token list, last *VarSpecListNode rparenTok Token ) // ebnf.Sequence "var" ( VarSpec | "(" { VarSpec ";" } ")" ) ctx [VAR] { switch p.peek(1) { case IDENT, LPAREN: default: return nil } ix := p.ix // *ebnf.Token "var" ctx [VAR] varTok = p.expect(VAR) // *ebnf.Group ( VarSpec | "(" { VarSpec ";" } ")" ) ctx [IDENT, LPAREN] // ebnf.Alternative VarSpec | "(" { VarSpec ";" } ")" ctx [IDENT, LPAREN] switch p.c() { case IDENT: // 0 // *ebnf.Name VarSpec ctx [IDENT] if varSpec = p.varSpec(); varSpec == nil { goto _0 } list = &VarSpecListNode{ VarSpec: varSpec, } break _0: varSpec = nil p.back(ix) return nil case LPAREN: // 1 // ebnf.Sequence "(" { VarSpec ";" } ")" ctx [LPAREN] { ix := p.ix // *ebnf.Token "(" ctx [LPAREN] lparenTok = p.expect(LPAREN) // *ebnf.Repetition { VarSpec ";" } ctx [] _4: { var varSpec Node var semicolonTok Token switch p.c() { case IDENT: // ebnf.Sequence VarSpec ";" ctx [IDENT] ix := p.ix // *ebnf.Name VarSpec ctx [IDENT] if varSpec = p.varSpec(); varSpec == nil { p.back(ix) goto _5 } // *ebnf.Token ";" ctx [] if semicolonTok, ok = p.accept(SEMICOLON); !ok { p.back(ix) goto _5 } next := &VarSpecListNode{ VarSpec: varSpec, SEMICOLON: semicolonTok, } if last != nil { last.List = next } if list == nil { list = next } last = next goto _4 } _5: } // *ebnf.Token ")" ctx [] if rparenTok, ok = p.accept(RPAREN); !ok { p.back(ix) goto _2 } } break _2: lparenTok = Token{} rparenTok = Token{} p.back(ix) return nil default: p.back(ix) return nil } } if list != nil && list.List == nil && !list.SEMICOLON.IsValid() { return &VarDeclNode{ VAR: varTok, LPAREN: lparenTok, VarSpec: list.VarSpec, RPAREN: rparenTok, } } return &VarDeclNode{ VAR: varTok, LPAREN: lparenTok, VarSpec: list, RPAREN: rparenTok, } } // VarSpecNode represents the production // // VarSpec = identifier ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . type VarSpecNode struct { IDENT Token TypeNode Type ASSIGN Token ExpressionList *ExpressionListNode lexicalScoper visible } // Source implements Node. func (n *VarSpecNode) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *VarSpecNode) Position() (r token.Position) { if n == nil { return r } return n.IDENT.Position() } // VarSpec2Node represents the production // // VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . type VarSpec2Node struct { IdentifierList *IdentifierListNode TypeNode Type ASSIGN Token ExpressionList *ExpressionListNode lexicalScoper visible } // Source implements Node. func (n *VarSpec2Node) Source(full bool) string { return nodeSource(n, full) } // Position implements Node. func (n *VarSpec2Node) Position() (r token.Position) { if n == nil { return r } return n.IdentifierList.Position() } func (p *parser) varSpec() Node { var ( identifierList *IdentifierListNode typeNode Type assignTok Token expressionList *ExpressionListNode ) // ebnf.Sequence IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) ctx [IDENT] { ix := p.ix // *ebnf.Name IdentifierList ctx [IDENT] if identifierList = p.identifierList(); identifierList == nil { p.back(ix) return nil } // *ebnf.Group ( Type [ "=" ExpressionList ] | "=" ExpressionList ) ctx [] // ebnf.Alternative Type [ "=" ExpressionList ] | "=" ExpressionList ctx [ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] switch p.c() { case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 0 // ebnf.Sequence Type [ "=" ExpressionList ] ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] { ix := p.ix // *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT] if typeNode = p.type1(); typeNode == nil { p.back(ix) goto _0 } // *ebnf.Option [ "=" ExpressionList ] ctx [] switch p.c() { case ASSIGN: // ebnf.Sequence "=" ExpressionList ctx [ASSIGN] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _2 } ix := p.ix // *ebnf.Token "=" ctx [ASSIGN] assignTok = p.expect(ASSIGN) // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _2 } } } goto _3 _2: assignTok = Token{} expressionList = nil _3: } break _0: assignTok = Token{} expressionList = nil typeNode = nil p.back(ix) return nil case ASSIGN: // 1 // ebnf.Sequence "=" ExpressionList ctx [ASSIGN] { switch p.peek(1) { case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: default: goto _4 } ix := p.ix // *ebnf.Token "=" ctx [ASSIGN] assignTok = p.expect(ASSIGN) // *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR] if expressionList = p.expressionList(false); expressionList == nil { p.back(ix) goto _4 } } break _4: assignTok = Token{} expressionList = nil p.back(ix) return nil default: p.back(ix) return nil } } sc := p.sc if identifierList.Len() == 1 { r := &VarSpecNode{ lexicalScoper: newLexicalScoper(sc), IDENT: identifierList.IDENT, TypeNode: typeNode, ASSIGN: assignTok, ExpressionList: expressionList, } visible := int32(p.ix) p.declare(sc, r.IDENT, r, visible, false) return r } r := &VarSpec2Node{ lexicalScoper: newLexicalScoper(sc), IdentifierList: identifierList, TypeNode: typeNode, ASSIGN: assignTok, ExpressionList: expressionList, } visible := int32(p.ix) for l := r.IdentifierList; l != nil; l = l.List { p.declare(sc, l.IDENT, r, visible, false) } return r } const ( balanceZero = iota balanceTuple balanceEqual balanceExtraRhs balanceExtraLhs ) func checkBalance(lhs, rhs int) int { switch { case lhs == rhs: return balanceEqual case lhs > 1 && rhs == 1: return balanceTuple case lhs > rhs: return balanceExtraLhs case lhs < rhs: return balanceExtraRhs default: panic(todo("", lhs, rhs)) } }