matterbridge/vendor/modernc.org/gc/v3/parser.go

9416 lines
227 KiB
Go
Raw Normal View History

// Copyright 2022 The Gc Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc // modernc.org/gc/v3
import (
"go/constant"
"go/token"
"path/filepath"
"reflect"
"runtime"
"sort"
"strings"
"modernc.org/mathutil"
"modernc.org/strutil"
)
// === RUN TestTypeCheck/GOROOT
// === CONT TestTypeCheck
// all_test.go:1123: TOTAL packages 516, files 2,301, skip 0, ok 516, fail 0
// all_test.go:1127: pkg count 516, heap 626,182,264
// --- PASS: TestTypeCheck (2.28s)
// --- PASS: TestTypeCheck/GOROOT (2.12s)
// all_test.go:1127: pkg count 516, heap 626,153,184
// all_test.go:1128: pkg count 516, heap 590,057,064
// all_test.go:1128: pkg count 516, heap 572,015,152
// all_test.go:1129: pkg count 516, heap 567,709,952
// all_test.go:1129: pkg count 516, heap 555,500,960
// all_test.go:1129: pkg count 516, heap 551,777,488
// all_test.go:1129: pkg count 516, heap 548,683,512
// all_test.go:1129: pkg count 516, heap 548,447,936
// all_test.go:1129: pkg count 516, heap 547,480,288
// all_test.go:1129: pkg count 516, heap 546,915,592
// all_test.go:1129: pkg count 516, heap 543,393,136
// all_test.go:1129: pkg count 516, heap 544,638,544
// all_test.go:1129: pkg count 516, heap 474,343,936
// all_test.go:1129: pkg count 516, heap 459,353,840
// all_test.go:1129: pkg count 516, heap 457,275,512
// all_test.go:1129: pkg count 516, heap 455,355,680
// all_test.go:1129: pkg count 516, heap 454,663,568
// all_test.go:1129: pkg count 516, heap 454,581,072
// all_test.go:1129: pkg count 516, heap 454,607,112
// all_test.go:1129: pkg count 516, heap 454,709,968
// all_test.go:1129: pkg count 516, heap 455,312,784
// all_test.go:1129: pkg count 516, heap 456,016,824
// all_test.go:1129: pkg count 516, heap 455,954,544
// all_test.go:1129: pkg count 516, heap 456,016,592
// all_test.go:1129: pkg count 516, heap 457,121,224
// all_test.go:1129: pkg count 516, heap 427,262,960
// all_test.go:1130: pkg count 516, heap 428,998,600
// all_test.go:1130: pkg count 551, heap 448,395,152
// all_test.go:1130: pkg count 551, heap 451,817,616
// all_test.go:1131: pkg count 551, heap 452,091,200
// all_test.go:1131: pkg count 551, heap 452,999,840
// <total> x 16,603,469 = 892,265,816 á 54
// <total> x 16,024,194 = 887,787,224 á 55
// <total> x 16,025,144 = 888,006,760 á 55
// <total> x 16,025,211 = 823,222,088 á 51
// <total> x 16,025,281 = 822,404,264 á 51
// <total> x 14,056,450 = 696,398,872 á 50
// <total> x 14,056,581 = 696,851,856 á 50
// <total> x 14,056,453 = 708,480,848 á 50
// <total> x 14,422,414 = 719,035,680 á 50
// <total> x 14,423,240 = 717,114,200 á 50
// <total> x 14,425,901 = 711,567,152 á 49
// <total> x 14,474,065 = 710,068,032 á 49
// <total> x 14,481,041 = 710,373,680 á 49
// <total> x 14,481,767 = 710,408,768 á 49
// <total> x 14,484,493 = 710,543,264 á 49
// <total> x 14,461,141 = 706,268,448 á 49
// <total> x 14,461,182 = 707,678,232 á 49
// <total> x 14,461,242 = 714,720,336 á 49
// <total> x 14,461,219 = 797,198,184 á 55
// <total> x 14,461,496 = 797,214,104 á 55
// <total> x 14,461,329 = 716,132,376 á 50
// <total> x 14,461,680 = 711,984,376 á 49
// <total> x 14,160,586 = 702,969,536 á 50
// <total> x 14,160,709 = 682,184,664 á 48
// <total> x 14,160,848 = 673,044,152 á 48
// <total> x 14,160,317 = 665,980,184 á 47
// <total> x 14,005,861 = 661,267,672 á 47
// <total> x 13,983,296 = 660,781,720 á 47
// <total> x 13,943,950 = 660,175,016 á 47
// <total> x 13,943,178 = 647,906,568 á 46
// <total> x 13,924,463 = 648,999,976 á 47
// <total> x 13,322,751 = 541,059,736 á 41
// <total> x 12,815,541 = 510,052,400 á 40
// <total> x 12,815,675 = 506,593,488 á 40
// <total> x 12,639,779 = 500,965,136 á 40
// <total> x 12,640,847 = 501,008,776 á 40
// <total> x 12,603,003 = 499,658,832 á 40
// <total> x 12,603,001 = 502,473,720 á 40
// <total> x 12,602,667 = 505,274,416 á 40
// <total> x 12,603,389 = 505,302,936 á 40
// <total> x 12,604,481 = 507,314,552 á 40
// <total> x 12,590,468 = 454,314,392 á 36
// <total> x 12,591,896 = 456,980,832 á 36
// <total> x 12,597,633 = 457,211,632 á 36
// <total> x 12,597,637 = 458,714,592 á 36
// <total> x 12,931,431 = 471,180,992 á 36
// <total> x 12,931,309 = 481,877,912 á 37
// <total> x 12,933,798 = 482,402,192 á 37
// <total> x 12,934,587 = 483,606,808 á 37
const parserBudget = 1e7
var (
noBack bool
panicBack bool
)
type visibiliter interface {
Node
Visible() int
setVisible(int32)
}
type visible struct {
visible int32 // first token index where n is visible
}
// Visible reports the first token index where n is visible (in scope). Applies
// to local scopes only.
func (n *visible) Visible() int { return int(n.visible) }
func (n *visible) setVisible(i int32) { n.visible = i }
type named struct {
n visibiliter
declTok Token
}
type ScopeKind int
const (
scZero ScopeKind = iota
UniverseScope
PackageScope
FileScope
OtherScope
)
type Scope struct {
nodes map[string]named
parent *Scope
kind ScopeKind
}
func newScope(parent *Scope, kind ScopeKind) *Scope { return &Scope{parent: parent, kind: kind} }
func (s *Scope) Iterate(f func(name string, n Node) (stop bool)) {
for name, v := range s.nodes {
if f(name, v.n) {
return
}
}
}
func (s *Scope) Kind() ScopeKind { return s.kind }
func (s *Scope) Parent() *Scope { return s.parent }
func (s *Scope) declare(nm Token, n visibiliter, visible int32, p *parser, initOK bool) (r named) {
snm := nm.Src()
switch snm {
case "_":
return r
case "init":
if s.kind == PackageScope {
if p != nil && !initOK && p.reportDeclarationErrors {
p.err(nm.Position(), "in the package block, the identifier init may only be used for init function declarations")
}
return r
}
}
if ex, ok := s.nodes[snm]; ok {
return ex
}
if s.nodes == nil {
s.nodes = map[string]named{}
}
// trc("%v: add %s %p", nm.Position(), snm, s)
n.setVisible(visible)
s.nodes[snm] = named{n, nm}
return r
}
func (s *Scope) lookup(id Token) (in *Scope, r named) {
nm := id.Src()
ix := int(id.index)
for s != nil {
switch s.kind {
case PackageScope, UniverseScope:
ix = -1
}
sc, ok := s.nodes[nm]
if ok && (ix < 0 || ix > sc.n.Visible()) {
return s, sc
}
s = s.parent
}
return nil, r
}
type lexicalScoper struct{ s *Scope }
func newLexicalScoper(s *Scope) lexicalScoper { return lexicalScoper{s} }
func (n *lexicalScoper) LexicalScope() *Scope { return n.s }
// Node is an item of the CST tree.
type Node interface {
Position() token.Position
Source(full bool) string
}
var hooks = strutil.PrettyPrintHooks{
reflect.TypeOf(Token{}): func(f strutil.Formatter, v interface{}, prefix, suffix string) {
t := v.(Token)
if !t.IsValid() {
return
}
pos := t.Position()
if pos.Filename != "" {
pos.Filename = filepath.Base(pos.Filename)
}
f.Format(string(prefix)+"%10s %q %q\t(%v:)"+string(suffix), tokSource(t.Ch()), t.Sep(), t.Src(), pos)
},
}
func dump(n Node) string { return strutil.PrettyString(n, "", "", hooks) }
// NodeSource returns the source text of 'n'. If 'full' is false, every non
// empty separator is replaced by a single space. Nodes found in 'kill' are
// skipped, transitively.
func NodeSource(n Node, full bool, kill map[Node]struct{}) string {
return nodeSource2(n, full, kill)
}
func nodeSource(n interface{}, full bool) string {
return nodeSource2(n, full, nil)
}
func nodeSource2(n interface{}, full bool, kill map[Node]struct{}) string {
var a []int32
var t Token
nodeSource0(&t.source, &a, n, kill)
if len(a) == 0 {
return ""
}
var b strings.Builder
sort.Slice(a, func(i, j int) bool { return a[i] < a[j] })
for _, v := range a {
t.index = v
t.ch = t.source.toks[t.index].ch
b.WriteString(t.Source(full))
}
return b.String()
}
func nodeSource0(ps **source, a *[]int32, n interface{}, kill map[Node]struct{}) {
if x, ok := n.(Node); ok {
if _, ok := kill[x]; ok {
return
}
}
switch x := n.(type) {
case nil:
// nop
case Token:
if x.IsValid() {
*ps = x.source
*a = append(*a, x.index)
}
case *BasicLitNode:
if x.IsValid() {
*ps = x.source
*a = append(*a, x.index)
}
default:
t := reflect.TypeOf(n)
v := reflect.ValueOf(n)
if v.IsZero() {
break
}
switch t.Kind() {
case reflect.Pointer:
nodeSource0(ps, a, v.Elem().Interface(), kill)
case reflect.Struct:
for i := 0; i < t.NumField(); i++ {
if token.IsExported(t.Field(i).Name) {
nodeSource0(ps, a, v.Field(i).Interface(), kill)
}
}
case reflect.Slice:
for i := 0; i < v.Len(); i++ {
nodeSource0(ps, a, v.Index(i).Interface(), kill)
}
default:
panic(todo("", t.Name(), t.Kind()))
}
}
}
type AST struct {
EOF Token
FileScope *Scope
SourceFile *SourceFileNode
packageScope *Scope // For the individual file, enables parallelism, consolidated by Package.check()
}
func (n *AST) Source(full bool) string { return nodeSource(n, full) }
func (n *AST) Position() (r token.Position) {
if n == nil {
return r
}
return n.SourceFile.Position()
}
type parser struct {
a *analyzer
fileScope *Scope
maxBackOrigin string
maxBackRange [2]int
packageScope *Scope
path string
s *scanner
sc *Scope
backs int
budget int
ix int
maxBack int
maxIx int
isClosed bool
record bool
reportDeclarationErrors bool
}
func newParser(pkgScope *Scope, path string, src []byte, record bool) *parser {
return &parser{
a: newAnalyzer(),
budget: parserBudget,
fileScope: newScope(pkgScope, FileScope),
packageScope: pkgScope,
path: path,
record: record,
s: newScanner(path, src),
sc: pkgScope,
}
}
func (p *parser) c() token.Token { return p.peek(0) }
func (p *parser) closeScope() { p.sc = p.sc.parent }
func (p *parser) errPosition() (r token.Position) { return p.s.toks[p.maxIx].position(p.s.source) }
func (p *parser) openScope() { p.sc = newScope(p.sc, OtherScope) }
func (p *parser) pos() (r token.Position) {
return p.s.toks[mathutil.MinInt32(int32(p.ix), int32(len(p.s.toks)-1))].position(p.s.source)
}
func (p *parser) err(pos token.Position, msg string, args ...interface{}) {
p.s.errs.err(pos, msg, args...)
}
func (p *parser) declare(s *Scope, nm Token, n visibiliter, visible int32, initOK bool) {
if ex := s.declare(nm, n, visible, p, initOK); ex.declTok.IsValid() && p.reportDeclarationErrors {
p.err(nm.Position(), "%s redeclared, previous declaration at %v:", nm.Src(), ex.declTok.Position())
}
}
func (p *parser) consume() (r Token) {
r = Token{p.s.source, p.s.toks[p.ix].ch, int32(p.ix)}
p.ix++
p.budget--
return r
}
func (p *parser) accept(t token.Token) (r Token, _ bool) {
if p.c() == t {
return p.consume(), true
}
return r, false
}
func (p *parser) expect(t token.Token) (r Token) {
var ok bool
if r, ok = p.accept(t); !ok {
p.isClosed = true
}
return r
}
func (p *parser) peek(n int) token.Token {
for p.ix+n >= len(p.s.toks) {
if p.budget <= 0 || p.isClosed {
return EOF
}
p.s.scan()
if p.s.isClosed {
p.isClosed = true
}
}
p.maxIx = mathutil.Max(p.maxIx, p.ix)
return token.Token(p.s.toks[p.ix+n].ch)
}
func (p *parser) recordBacktrack(ix int, record bool) {
delta := p.ix - ix
p.backs += delta
if delta > p.maxBack {
p.maxBack = delta
p.maxBackRange = [2]int{ix, p.ix}
p.maxBackOrigin = origin(3)
}
p.ix = ix
if p.record && record {
if _, _, line, ok := runtime.Caller(2); ok {
p.a.record(line, delta)
}
}
}
func (p *parser) back(ix int) {
p.recordBacktrack(ix, true)
if p.isClosed {
return
}
if noBack {
p.isClosed = true
}
if panicBack {
panic(todo("%v: (%v:)", p.errPosition(), origin(2)))
}
}
func (p *parser) parse() (ast *AST, err error) {
if p.c() != PACKAGE {
p.s.errs.err(p.errPosition(), "syntax error")
return nil, p.s.errs
}
sourceFile := p.sourceFile()
if p.budget <= 0 {
return nil, errorf("%s: resources exhausted", p.path)
}
if eof, ok := p.accept(EOF); ok && p.ix == len(p.s.toks) {
return &AST{packageScope: p.packageScope, FileScope: p.fileScope, SourceFile: sourceFile, EOF: eof}, p.s.errs.Err()
}
p.s.errs.err(p.errPosition(), "syntax error")
return nil, p.s.errs
}
type BinaryExpressionNode struct {
LHS Expression
Op Token
RHS Expression
typeCache
valueCache
}
// Position implements Node.
func (n *BinaryExpressionNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LHS.Position()
}
// Source implements Node.
func (n *BinaryExpressionNode) Source(full bool) string { return nodeSource(n, full) }
func (p *parser) additiveExpression(preBlock bool) (r Expression) {
var multiplicativeExpression Expression
// ebnf.Sequence MultiplicativeExpression { ( "+" | "-" | "|" | "^" ) MultiplicativeExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name MultiplicativeExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if multiplicativeExpression = p.multiplicativeExpression(preBlock); multiplicativeExpression == nil {
p.back(ix)
return nil
}
// *ebnf.Repetition { ( "+" | "-" | "|" | "^" ) MultiplicativeExpression } ctx []
r = multiplicativeExpression
_0:
{
var op Token
var multiplicativeExpression Expression
switch p.c() {
case ADD, OR, SUB, XOR:
// ebnf.Sequence ( "+" | "-" | "|" | "^" ) MultiplicativeExpression ctx [ADD, OR, SUB, XOR]
// *ebnf.Group ( "+" | "-" | "|" | "^" ) ctx [ADD, OR, SUB, XOR]
// ebnf.Alternative "+" | "-" | "|" | "^" ctx [ADD, OR, SUB, XOR]
op = p.consume()
// *ebnf.Name MultiplicativeExpression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if multiplicativeExpression = p.multiplicativeExpression(preBlock); multiplicativeExpression == nil {
p.back(ix)
goto _1
}
default:
p.back(ix)
goto _1
}
r = &BinaryExpressionNode{LHS: r, Op: op, RHS: multiplicativeExpression}
goto _0
}
_1:
}
}
return r
}
// AliasDeclNode represents the production
//
// AliasDecl = identifier "=" Type .
type AliasDeclNode struct {
IDENT Token
ASSIGN Token
TypeNode Type
visible
}
// Source implements Node.
func (n *AliasDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *AliasDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IDENT.Position()
}
func (p *parser) aliasDecl() (r *AliasDeclNode) {
var (
identTok Token
assignTok Token
typeNode Type
)
// ebnf.Sequence identifier "=" Type ctx [IDENT]
{
if p.peek(1) != ASSIGN {
return nil
}
ix := p.ix
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
// *ebnf.Token "=" ctx [ASSIGN]
assignTok = p.expect(ASSIGN)
// *ebnf.Name Type ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
r = &AliasDeclNode{
IDENT: identTok,
ASSIGN: assignTok,
TypeNode: typeNode,
}
p.declare(p.sc, identTok, r, int32(p.ix), false)
return r
}
// ArgumentsNode represents the production
//
// Arguments = "(" [ Expression ] ")" .
type ArgumentsNode struct {
LPAREN Token
Expression Expression
RPAREN Token
}
// Source implements Node.
func (n *ArgumentsNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ArgumentsNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LPAREN.Position()
}
// Arguments1Node represents the production
//
// Arguments = "(" [ ( Expression | Type [ "," Expression ] ) [ "..." ] [ "," ] ] ")" .
type Arguments1Node struct {
LPAREN Token
Expression Expression
TypeNode Type
COMMA Token
ELLIPSIS Token
COMMA2 Token
RPAREN Token
}
// Source implements Node.
func (n *Arguments1Node) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *Arguments1Node) Position() (r token.Position) {
if n == nil {
return r
}
return n.LPAREN.Position()
}
// Arguments2Node represents the production
//
// Arguments = "(" ExpressionList ")" .
type Arguments2Node struct {
LPAREN Token
ExpressionList *ExpressionListNode
RPAREN Token
}
// Source implements Node.
func (n *Arguments2Node) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *Arguments2Node) Position() (r token.Position) {
if n == nil {
return r
}
return n.LPAREN.Position()
}
// Arguments3Node represents the production
//
// Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
type Arguments3Node struct {
LPAREN Token
ExpressionList *ExpressionListNode
TypeNode Type
COMMA Token
ELLIPSIS Token
COMMA2 Token
RPAREN Token
}
// Source implements Node.
func (n *Arguments3Node) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *Arguments3Node) Position() (r token.Position) {
if n == nil {
return r
}
return n.LPAREN.Position()
}
func (p *parser) arguments() Node {
var (
ok bool
lparenTok Token
expressionList *ExpressionListNode
typeNode Type
commaTok Token
ellipsisTok Token
comma2Tok Token
rparenTok Token
)
// ebnf.Sequence "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" ctx [LPAREN]
{
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Option [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// ebnf.Sequence ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Group ( ExpressionList | Type [ "," ExpressionList ] ) ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
// ebnf.Alternative ExpressionList | Type [ "," ExpressionList ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
switch p.c() {
case ADD, AND, CHAR, FLOAT, IMAG, INT, NOT, STRING, SUB, XOR: // 0
// *ebnf.Name ExpressionList ctx [ADD, AND, CHAR, FLOAT, IMAG, INT, NOT, STRING, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
goto _2
}
break
_2:
expressionList = nil
p.back(ix)
goto _0
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 0 1
// *ebnf.Name ExpressionList ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if expressionList = p.expressionList(false); expressionList == nil {
goto _4
}
break
_4:
expressionList = nil
// ebnf.Sequence Type [ "," ExpressionList ] ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
{
ix := p.ix
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _5
}
// *ebnf.Option [ "," ExpressionList ] ctx []
switch p.c() {
case COMMA:
// ebnf.Sequence "," ExpressionList ctx [COMMA]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _6
}
ix := p.ix
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _6
}
}
}
goto _7
_6:
commaTok = Token{}
expressionList = nil
_7:
}
break
_5:
commaTok = Token{}
expressionList = nil
typeNode = nil
p.back(ix)
goto _0
default:
p.back(ix)
goto _0
}
// *ebnf.Option [ "..." ] ctx []
switch p.c() {
case ELLIPSIS:
// *ebnf.Token "..." ctx [ELLIPSIS]
ellipsisTok = p.expect(ELLIPSIS)
}
// *ebnf.Option [ "," ] ctx []
switch p.c() {
case COMMA:
// *ebnf.Token "," ctx [COMMA]
comma2Tok = p.expect(COMMA)
}
}
}
goto _1
_0:
comma2Tok = Token{}
ellipsisTok = Token{}
expressionList = nil
_1:
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
return nil
}
}
switch expressionList.Len() {
case 0, 1:
if typeNode == nil && !commaTok.IsValid() && !ellipsisTok.IsValid() && !comma2Tok.IsValid() {
return &ArgumentsNode{
LPAREN: lparenTok,
Expression: expressionList.first(),
RPAREN: rparenTok,
}
}
return &Arguments1Node{
LPAREN: lparenTok,
Expression: expressionList.first(),
TypeNode: typeNode,
COMMA: commaTok,
ELLIPSIS: ellipsisTok,
COMMA2: comma2Tok,
RPAREN: rparenTok,
}
default:
if typeNode == nil && !commaTok.IsValid() && !ellipsisTok.IsValid() && !comma2Tok.IsValid() {
return &Arguments2Node{
LPAREN: lparenTok,
ExpressionList: expressionList,
RPAREN: rparenTok,
}
}
return &Arguments3Node{
LPAREN: lparenTok,
ExpressionList: expressionList,
TypeNode: typeNode,
COMMA: commaTok,
ELLIPSIS: ellipsisTok,
COMMA2: comma2Tok,
RPAREN: rparenTok,
}
}
}
func (p *parser) arrayLength() Expression {
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
return p.expression(false)
}
// ArrayTypeNode represents the production
//
// ArrayType = "[" ArrayLength "]" ElementType .
type ArrayTypeNode struct {
LBRACK Token
ArrayLength Expression
RBRACK Token
ElementType Type
}
// Source implements Node.
func (n *ArrayTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ArrayTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACK.Position()
}
func (p *parser) arrayType() *ArrayTypeNode {
var (
ok bool
lbrackTok Token
arrayLength Expression
rbrackTok Token
elementType Type
)
// ebnf.Sequence "[" ArrayLength "]" ElementType ctx [LBRACK]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
return nil
}
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Name ArrayLength ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if arrayLength = p.arrayLength(); arrayLength == nil {
p.back(ix)
return nil
}
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
return nil
}
// *ebnf.Name ElementType ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if elementType = p.type1(); elementType == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &ArrayTypeNode{
LBRACK: lbrackTok,
ArrayLength: arrayLength,
RBRACK: rbrackTok,
ElementType: elementType,
}
}
// AssignmentNode represents the production
//
// Assignment = ExpressionList ( "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ) ExpressionList .
type AssignmentNode struct {
ExpressionList *ExpressionListNode
Op Token
ExpressionList2 *ExpressionListNode
}
// Source implements Node.
func (n *AssignmentNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *AssignmentNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) assignment(expressionList *ExpressionListNode, preBlock bool) *AssignmentNode {
var (
op Token
expressionList2 *ExpressionListNode
)
// ebnf.Sequence ( "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ) ExpressionList ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN]
{
ix := p.ix
// *ebnf.Group ( "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ) ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN]
// ebnf.Alternative "=" | "+=" | "-=" | "|=" | "^=" | "*=" | "/=" | "%=" | "<<=" | ">>=" | "&=" | "&^=" ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN]
op = p.consume()
// *ebnf.Name ExpressionList ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expressionList2 = p.expressionList(preBlock); expressionList2 == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &AssignmentNode{
ExpressionList: expressionList,
Op: op,
ExpressionList2: expressionList2,
}
}
// BasicLitNode represents the production
//
// BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
type BasicLitNode struct {
Token
ctx *ctx
}
//TODO- // Source implements Node.
//TODO- func (n *BasicLitNode) Source(full bool) string { return nodeSource(n, full) }
//TODO-
//TODO- // Position implements Node.
//TODO- func (n *BasicLitNode) Position() (r token.Position) {
//TODO- if !n.IsValid() {
//TODO- return r
//TODO- }
//TODO-
//TODO- return Token(*n).Position()
//TODO- }
//TODO-
//TODO- func (n *BasicLitNode) Ch() token.Token { return Token(*n).Ch() }
//TODO- func (n *BasicLitNode) IsValid() bool { return Token(*n).IsValid() }
func (p *parser) basicLit() Expression {
// ebnf.Alternative int_lit | float_lit | imaginary_lit | rune_lit | string_lit ctx [CHAR, FLOAT, IMAG, INT, STRING]
t := p.consume()
v := constant.MakeFromLiteral(t.Src(), token.Token(t.ch), 0)
if v.Kind() == constant.Unknown {
p.err(t.Position(), "invalid literal: %s", t.Src())
}
return &BasicLitNode{Token: t}
}
// BlockNode represents the production
//
// Block = "{" StatementList "}" .
type BlockNode struct {
LBRACE Token
StatementList *StatementListNode
RBRACE Token
}
// Source implements Node.
func (n *BlockNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *BlockNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACE.Position()
}
func (p *parser) block(rx *ParametersNode, s *SignatureNode) *BlockNode {
var (
ok bool
lbraceTok Token
statementList *StatementListNode
rbraceTok Token
)
// ebnf.Sequence "{" StatementList "}" ctx [LBRACE]
{
p.openScope()
defer p.closeScope()
ix := p.ix
// *ebnf.Token "{" ctx [LBRACE]
lbraceTok = p.expect(LBRACE)
if rx != nil {
rx.declare(p, p.sc)
}
if s != nil {
s.Parameters.declare(p, p.sc)
if s.Result != nil {
s.Result.Parameters.declare(p, p.sc)
}
}
// *ebnf.Name StatementList ctx []
switch p.c() {
case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ :
if statementList = p.statementList(); statementList == nil {
p.back(ix)
return nil
}
}
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
return nil
}
}
return &BlockNode{
LBRACE: lbraceTok,
StatementList: statementList,
RBRACE: rbraceTok,
}
}
// BreakStmtNode represents the production
//
// BreakStmt = "break" [ Label ] .
type BreakStmtNode struct {
BREAK Token
Label *LabelNode
}
// Source implements Node.
func (n *BreakStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *BreakStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.BREAK.Position()
}
func (p *parser) breakStmt() *BreakStmtNode {
var (
breakTok Token
label *LabelNode
)
// ebnf.Sequence "break" [ Label ] ctx [BREAK]
{
// *ebnf.Token "break" ctx [BREAK]
breakTok = p.expect(BREAK)
// *ebnf.Option [ Label ] ctx []
switch p.c() {
case IDENT:
// *ebnf.Name Label ctx [IDENT]
if label = p.label(); label == nil {
goto _0
}
}
goto _1
_0:
label = nil
_1:
}
return &BreakStmtNode{
BREAK: breakTok,
Label: label,
}
}
func (p *parser) channel() Expression {
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
return p.expression(false)
}
// ChannelTypeNode represents the production
//
// ChannelType = ( "chan" "<-" | "chan" | "<-" "chan" ) ElementType .
type ChannelTypeNode struct {
CHAN Token
ARROW Token
ElementType Type
}
// Source implements Node.
func (n *ChannelTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ChannelTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.ARROW.IsValid() && n.ARROW.index < n.CHAN.index {
return n.ARROW.Position()
}
return n.CHAN.Position()
}
func (p *parser) channelType() *ChannelTypeNode {
var (
chanTok Token
arrowTok Token
elementType Type
)
// ebnf.Sequence ( "chan" "<-" | "chan" | "<-" "chan" ) ElementType ctx [ARROW, CHAN]
{
ix := p.ix
// *ebnf.Group ( "chan" "<-" | "chan" | "<-" "chan" ) ctx [ARROW, CHAN]
// ebnf.Alternative "chan" "<-" | "chan" | "<-" "chan" ctx [ARROW, CHAN]
switch p.c() {
case CHAN: // 0 1
// ebnf.Sequence "chan" "<-" ctx [CHAN]
{
if p.peek(1) != ARROW {
goto _0
}
// *ebnf.Token "chan" ctx [CHAN]
chanTok = p.expect(CHAN)
// *ebnf.Token "<-" ctx [ARROW]
arrowTok = p.expect(ARROW)
}
break
_0:
arrowTok = Token{}
chanTok = Token{}
// *ebnf.Token "chan" ctx [CHAN]
chanTok = p.expect(CHAN)
break
p.back(ix)
return nil
case ARROW: // 2
// ebnf.Sequence "<-" "chan" ctx [ARROW]
{
if p.peek(1) != CHAN {
goto _2
}
// *ebnf.Token "<-" ctx [ARROW]
arrowTok = p.expect(ARROW)
// *ebnf.Token "chan" ctx [CHAN]
chanTok = p.expect(CHAN)
}
break
_2:
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
// *ebnf.Name ElementType ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if elementType = p.type1(); elementType == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &ChannelTypeNode{
CHAN: chanTok,
ARROW: arrowTok,
ElementType: elementType,
}
}
// CommCaseNode represents the production
//
// CommCase = "case" ( SendStmt | RecvStmt ) | "default" .
type CommCaseNode struct {
CASE Token
SendStmt *SendStmtNode
RecvStmt *RecvStmtNode
DEFAULT Token
}
// Source implements Node.
func (n *CommCaseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *CommCaseNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) commCase() *CommCaseNode {
var (
caseTok Token
sendStmt *SendStmtNode
recvStmt *RecvStmtNode
defaultTok Token
)
// ebnf.Alternative "case" ( SendStmt | RecvStmt ) | "default" ctx [CASE, DEFAULT]
switch p.c() {
case CASE: // 0
// ebnf.Sequence "case" ( SendStmt | RecvStmt ) ctx [CASE]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _0
}
ix := p.ix
// *ebnf.Token "case" ctx [CASE]
caseTok = p.expect(CASE)
// *ebnf.Group ( SendStmt | RecvStmt ) ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
// ebnf.Alternative SendStmt | RecvStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0 1
// *ebnf.Name SendStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if sendStmt = p.sendStmt(); sendStmt == nil {
goto _2
}
break
_2:
sendStmt = nil
// *ebnf.Name RecvStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if recvStmt = p.recvStmt(); recvStmt == nil {
goto _3
}
break
_3:
recvStmt = nil
p.back(ix)
goto _0
default:
p.back(ix)
goto _0
}
}
break
_0:
caseTok = Token{}
return nil
case DEFAULT: // 1
// *ebnf.Token "default" ctx [DEFAULT]
defaultTok = p.expect(DEFAULT)
default:
return nil
}
return &CommCaseNode{
CASE: caseTok,
SendStmt: sendStmt,
RecvStmt: recvStmt,
DEFAULT: defaultTok,
}
}
// CommClauseNode represents the production
//
// CommClause = CommCase ":" StatementList .
type CommClauseNode struct {
CommCase *CommCaseNode
COLON Token
StatementList *StatementListNode
}
// Source implements Node.
func (n *CommClauseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *CommClauseNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.CommCase.Position()
}
func (p *parser) commClause() *CommClauseNode {
var (
ok bool
commCase *CommCaseNode
colonTok Token
statementList *StatementListNode
)
// ebnf.Sequence CommCase ":" StatementList ctx [CASE, DEFAULT]
{
p.openScope()
defer p.closeScope()
ix := p.ix
// *ebnf.Name CommCase ctx [CASE, DEFAULT]
if commCase = p.commCase(); commCase == nil {
p.back(ix)
return nil
}
// *ebnf.Token ":" ctx []
if colonTok, ok = p.accept(COLON); !ok {
p.back(ix)
return nil
}
// *ebnf.Name StatementList ctx []
switch p.c() {
case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ :
if statementList = p.statementList(); statementList == nil {
p.back(ix)
return nil
}
}
}
return &CommClauseNode{
CommCase: commCase,
COLON: colonTok,
StatementList: statementList,
}
}
// CompositeLitNode represents the production
//
// CompositeLit = LiteralType LiteralValue .
type CompositeLitNode struct {
LiteralType Node
LiteralValue *LiteralValueNode
typeCache
}
// Source implements Node.
func (n *CompositeLitNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *CompositeLitNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LiteralType.Position()
}
func (p *parser) compositeLit() *CompositeLitNode {
var (
literalType Node
literalValue *LiteralValueNode
)
// ebnf.Sequence LiteralType LiteralValue ctx [LBRACK, MAP, STRUCT]
{
ix := p.ix
// *ebnf.Name LiteralType ctx [LBRACK, MAP, STRUCT]
if literalType = p.literalType(); literalType == nil {
p.back(ix)
return nil
}
// *ebnf.Name LiteralValue ctx []
switch p.c() {
case LBRACE:
if literalValue = p.literalValue(); literalValue == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &CompositeLitNode{
LiteralType: literalType,
LiteralValue: literalValue,
}
}
func (p *parser) condition(preBlock bool) Expression {
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
return p.expression(preBlock)
}
// ConstSpecListNode represents the production
//
// ConstSpecListNode = { ConstSpec ";" } .
type ConstSpecListNode struct {
ConstSpec Node
SEMICOLON Token
List *ConstSpecListNode
}
// Source implements Node.
func (n *ConstSpecListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ConstSpecListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.ConstSpec.Position()
}
// ConstDeclNode represents the production
//
// ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
type ConstDeclNode struct {
CONST Token
LPAREN Token
ConstSpec Node
RPAREN Token
}
// Source implements Node.
func (n *ConstDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ConstDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.CONST.Position()
}
func (p *parser) constDecl() *ConstDeclNode {
var (
ok bool
constTok Token
constSpec Node
lparenTok Token
list *ConstSpecListNode
rparenTok Token
iota int64
)
// ebnf.Sequence "const" ( ConstSpec | "(" { ConstSpec ";" } [ ConstSpec ] ")" ) ctx [CONST]
{
switch p.peek(1) {
case IDENT, LPAREN:
default:
return nil
}
ix := p.ix
// *ebnf.Token "const" ctx [CONST]
constTok = p.expect(CONST)
// *ebnf.Group ( ConstSpec | "(" { ConstSpec ";" } [ ConstSpec ] ")" ) ctx [IDENT, LPAREN]
// ebnf.Alternative ConstSpec | "(" { ConstSpec ";" } [ ConstSpec ] ")" ctx [IDENT, LPAREN]
switch p.c() {
case IDENT: // 0
// *ebnf.Name ConstSpec ctx [IDENT]
if constSpec = p.constSpec(iota); constSpec == nil {
goto _0
}
list = &ConstSpecListNode{
ConstSpec: constSpec,
}
break
_0:
constSpec = nil
p.back(ix)
return nil
case LPAREN: // 1
// ebnf.Sequence "(" { ConstSpec ";" } [ ConstSpec ] ")" ctx [LPAREN]
{
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Repetition { ConstSpec ";" } ctx []
var item *ConstSpecListNode
_4:
{
var constSpec Node
var semicolonTok Token
switch p.c() {
case IDENT:
// ebnf.Sequence ConstSpec ";" ctx [IDENT]
ix := p.ix
// *ebnf.Name ConstSpec ctx [IDENT]
if constSpec = p.constSpec(iota); constSpec == nil {
p.back(ix)
goto _5
}
if p.c() == RPAREN {
next := &ConstSpecListNode{
ConstSpec: constSpec,
}
if item != nil {
item.List = next
}
item = next
if list == nil {
list = item
}
break
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _5
}
next := &ConstSpecListNode{
ConstSpec: constSpec,
SEMICOLON: semicolonTok,
}
iota++
if item != nil {
item.List = next
}
item = next
if list == nil {
list = item
}
goto _4
}
_5:
}
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
goto _2
}
}
break
_2:
lparenTok = Token{}
rparenTok = Token{}
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
}
if list != nil && list.List == nil && !list.SEMICOLON.IsValid() {
return &ConstDeclNode{
CONST: constTok,
LPAREN: lparenTok,
ConstSpec: list.ConstSpec,
RPAREN: rparenTok,
}
}
return &ConstDeclNode{
CONST: constTok,
LPAREN: lparenTok,
ConstSpec: list,
RPAREN: rparenTok,
}
}
// ConstSpecNode represents the production
//
// ConstSpec = Identifier [ [ Type ] "=" Expression ] .
type ConstSpecNode struct {
IDENT Token
TypeNode Type
ASSIGN Token
Expression Expression
iota int64
visible
guard
}
// Source implements Node.
func (n *ConstSpecNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ConstSpecNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IDENT.Position()
}
// ConstSpec2Node represents the production
//
// ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] .
type ConstSpec2Node struct {
IdentifierList *IdentifierListNode
TypeNode Type
ASSIGN Token
ExpressionList *ExpressionListNode
iota int64
visible
}
// Source implements Node.
func (n *ConstSpec2Node) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ConstSpec2Node) Position() (r token.Position) {
if n == nil {
return r
}
return n.IdentifierList.Position()
}
func (p *parser) constSpec(iota int64) Node {
var (
ok bool
identifierList *IdentifierListNode
typeNode Type
assignTok Token
expressionList *ExpressionListNode
)
// ebnf.Sequence IdentifierList [ [ Type ] "=" ExpressionList ] ctx [IDENT]
{
ix := p.ix
// *ebnf.Name IdentifierList ctx [IDENT]
if identifierList = p.identifierList(); identifierList == nil {
p.back(ix)
return nil
}
// *ebnf.Option [ [ Type ] "=" ExpressionList ] ctx []
switch p.c() {
case ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
// ebnf.Sequence [ Type ] "=" ExpressionList ctx [ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
{
ix := p.ix
// *ebnf.Option [ Type ] ctx [ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
goto _2
}
}
goto _3
_2:
typeNode = nil
_3:
// *ebnf.Token "=" ctx []
if assignTok, ok = p.accept(ASSIGN); !ok {
p.back(ix)
goto _0
}
// *ebnf.Name ExpressionList ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _0
}
default:
p.back(ix)
goto _0
}
}
}
goto _1
_0:
assignTok = Token{}
expressionList = nil
typeNode = nil
_1:
}
sc := p.sc
visible := int32(p.ix)
if expressionList.Len() < 2 && identifierList.Len() < 2 {
r := &ConstSpecNode{
IDENT: identifierList.first(),
TypeNode: typeNode,
ASSIGN: assignTok,
Expression: expressionList.first(),
iota: iota,
}
ids := identifierList.Len()
exprs := expressionList.Len()
if exprs != 0 && ids != exprs {
p.err(r.ASSIGN.Position(), "different number of identifiers and expressions: %v %v", ids, exprs)
}
for l := identifierList; l != nil; l = l.List {
p.declare(sc, l.IDENT, r, visible, false)
}
return r
}
r := &ConstSpec2Node{
IdentifierList: identifierList,
TypeNode: typeNode,
ASSIGN: assignTok,
ExpressionList: expressionList,
iota: iota,
}
ids := r.IdentifierList.Len()
exprs := r.ExpressionList.Len()
if exprs != 0 && ids != exprs {
p.err(r.ASSIGN.Position(), "different number of identifiers and expressions: %v %v", ids, exprs)
}
for l := r.IdentifierList; l != nil; l = l.List {
p.declare(sc, l.IDENT, r, visible, false)
}
return r
}
// ContinueStmtNode represents the production
//
// ContinueStmt = "continue" [ Label ] .
type ContinueStmtNode struct {
CONTINUE Token
Label *LabelNode
}
// Source implements Node.
func (n *ContinueStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ContinueStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.CONTINUE.Position()
}
func (p *parser) continueStmt() *ContinueStmtNode {
var (
continueTok Token
label *LabelNode
)
// ebnf.Sequence "continue" [ Label ] ctx [CONTINUE]
{
// *ebnf.Token "continue" ctx [CONTINUE]
continueTok = p.expect(CONTINUE)
// *ebnf.Option [ Label ] ctx []
switch p.c() {
case IDENT:
// *ebnf.Name Label ctx [IDENT]
if label = p.label(); label == nil {
goto _0
}
}
goto _1
_0:
label = nil
_1:
}
return &ContinueStmtNode{
CONTINUE: continueTok,
Label: label,
}
}
// ConversionNode represents the production
//
// Conversion = Type "(" Expression [ "," ] ")" .
type ConversionNode struct {
TypeNode Type
LPAREN Token
Expression Expression
COMMA Token
RPAREN Token
valueCache
}
// Source implements Node.
func (n *ConversionNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ConversionNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TypeNode.Position()
}
func (p *parser) conversion() *ConversionNode {
var (
ok bool
typeNode Type
lparenTok Token
expression Expression
commaTok Token
rparenTok Token
)
// ebnf.Sequence Type "(" Expression [ "," ] ")" ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
{
ix := p.ix
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
return nil
}
// *ebnf.Token "(" ctx []
if lparenTok, ok = p.accept(LPAREN); !ok {
p.back(ix)
return nil
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression = p.expression(false); expression == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Option [ "," ] ctx []
switch p.c() {
case COMMA:
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
return nil
}
}
return &ConversionNode{
TypeNode: typeNode,
LPAREN: lparenTok,
Expression: expression,
COMMA: commaTok,
RPAREN: rparenTok,
}
}
func (p *parser) declaration() Node {
// ebnf.Alternative ConstDecl | TypeDecl | VarDecl ctx [CONST, TYPE, VAR]
switch p.c() {
case CONST: // 0
// *ebnf.Name ConstDecl ctx [CONST]
return p.constDecl()
case TYPE: // 1
// *ebnf.Name TypeDecl ctx [TYPE]
return p.typeDecl()
case VAR: // 2
// *ebnf.Name VarDecl ctx [VAR]
return p.varDecl()
default:
return nil
}
}
// DeferStmtNode represents the production
//
// DeferStmt = "defer" Expression .
type DeferStmtNode struct {
DEFER Token
Expression Expression
}
// Source implements Node.
func (n *DeferStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *DeferStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.DEFER.Position()
}
func (p *parser) deferStmt() *DeferStmtNode {
var (
deferTok Token
expression Expression
)
// ebnf.Sequence "defer" Expression ctx [DEFER]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
return nil
}
ix := p.ix
// *ebnf.Token "defer" ctx [DEFER]
deferTok = p.expect(DEFER)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(false); expression == nil {
p.back(ix)
return nil
}
}
return &DeferStmtNode{
DEFER: deferTok,
Expression: expression,
}
}
func (p *parser) element() Expression {
var (
expression Expression
literalValue *LiteralValueNode
)
// ebnf.Alternative Expression | LiteralValue ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(false); expression != nil {
return expression
}
case LBRACE: // 1
// *ebnf.Name LiteralValue ctx [LBRACE]
if literalValue = p.literalValue(); literalValue != nil {
return literalValue
}
}
return nil
}
// EmbeddedFieldNode represents the production
//
// EmbeddedField = [ "*" ] TypeName [ TypeArgs ] .
type EmbeddedFieldNode struct {
MUL Token
TypeName *TypeNameNode
TypeArgs *TypeArgsNode
}
// Source implements Node.
func (n *EmbeddedFieldNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *EmbeddedFieldNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) embeddedField() *EmbeddedFieldNode {
var (
mulTok Token
typeName *TypeNameNode
typeArgs *TypeArgsNode
)
// ebnf.Sequence [ "*" ] TypeName [ TypeArgs ] ctx [IDENT, MUL]
{
ix := p.ix
// *ebnf.Option [ "*" ] ctx [IDENT, MUL]
switch p.c() {
case MUL:
// *ebnf.Token "*" ctx [MUL]
mulTok = p.expect(MUL)
}
// *ebnf.Name TypeName ctx []
switch p.c() {
case IDENT:
if typeName = p.typeName(); typeName == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Option [ TypeArgs ] ctx []
switch p.c() {
case LBRACK:
// *ebnf.Name TypeArgs ctx [LBRACK]
if typeArgs = p.typeArgs(); typeArgs == nil {
goto _2
}
}
goto _3
_2:
typeArgs = nil
_3:
}
return &EmbeddedFieldNode{
MUL: mulTok,
TypeName: typeName,
TypeArgs: typeArgs,
}
}
// EmptyStmtNode represents the production
//
// EmptyStmt = .
type EmptyStmtNode struct {
}
// Source implements Node.
func (n *EmptyStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *EmptyStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) emptyStmt() *EmptyStmtNode {
return &EmptyStmtNode{}
}
// ExprCaseClauseListNode represents the production
//
// ExprCaseClause = ExprSwitchCase ":" StatementList .
type ExprCaseClauseListNode struct {
ExprSwitchCase Node
COLON Token
StatementList *StatementListNode
List *ExprCaseClauseListNode
}
// Source implements Node.
func (n *ExprCaseClauseListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ExprCaseClauseListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.ExprSwitchCase.Position()
}
func (p *parser) exprCaseClause() *ExprCaseClauseListNode {
var (
ok bool
exprSwitchCase Node
colonTok Token
statementList *StatementListNode
)
// ebnf.Sequence ExprSwitchCase ":" StatementList ctx [CASE, DEFAULT]
{
p.openScope()
defer p.closeScope()
ix := p.ix
// *ebnf.Name ExprSwitchCase ctx [CASE, DEFAULT]
if exprSwitchCase = p.exprSwitchCase(); exprSwitchCase == nil {
p.back(ix)
return nil
}
// *ebnf.Token ":" ctx []
if colonTok, ok = p.accept(COLON); !ok {
p.back(ix)
return nil
}
// *ebnf.Name StatementList ctx []
switch p.c() {
case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ :
if statementList = p.statementList(); statementList == nil {
p.back(ix)
return nil
}
}
}
return &ExprCaseClauseListNode{
ExprSwitchCase: exprSwitchCase,
COLON: colonTok,
StatementList: statementList,
}
}
// ExprSwitchCaseNode represents the production
//
// ExprSwitchCase = "case" ExpressionList | "default" .
type ExprSwitchCaseNode struct {
CASE Token
Expression Expression
DEFAULT Token
}
// Source implements Node.
func (n *ExprSwitchCaseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ExprSwitchCaseNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.CASE.Position()
}
// ExprSwitchCase2Node represents the production
//
// ExprSwitchCase = "case" ExpressionList | "default" .
type ExprSwitchCase2Node struct {
CASE Token
ExpressionList *ExpressionListNode
DEFAULT Token
}
// Source implements Node.
func (n *ExprSwitchCase2Node) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ExprSwitchCase2Node) Position() (r token.Position) {
if n == nil {
return r
}
return n.CASE.Position()
}
func (p *parser) exprSwitchCase() Node {
var (
caseTok Token
expressionList *ExpressionListNode
defaultTok Token
)
// ebnf.Alternative "case" ExpressionList | "default" ctx [CASE, DEFAULT]
switch p.c() {
case CASE: // 0
// ebnf.Sequence "case" ExpressionList ctx [CASE]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _0
}
ix := p.ix
// *ebnf.Token "case" ctx [CASE]
caseTok = p.expect(CASE)
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _0
}
}
break
_0:
caseTok = Token{}
expressionList = nil
return nil
case DEFAULT: // 1
// *ebnf.Token "default" ctx [DEFAULT]
defaultTok = p.expect(DEFAULT)
default:
return nil
}
if expressionList.Len() == 1 {
return &ExprSwitchCaseNode{
CASE: caseTok,
Expression: expressionList.first(),
DEFAULT: defaultTok,
}
}
return &ExprSwitchCase2Node{
CASE: caseTok,
ExpressionList: expressionList,
DEFAULT: defaultTok,
}
}
// ExprSwitchStmtNode represents the production
//
// ExprSwitchStmt = "switch" [ Expression ] "{" { ExprCaseClause } "}" | "switch" SimpleStmt ";" [ Expression ] "{" { ExprCaseClause } "}" .
type ExprSwitchStmtNode struct {
SWITCH Token
Expression Expression
LBRACE Token
ExprCaseClauseList *ExprCaseClauseListNode
RBRACE Token
SimpleStmt Node
SEMICOLON Token
}
// Source implements Node.
func (n *ExprSwitchStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ExprSwitchStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) exprSwitchStmt() *ExprSwitchStmtNode {
var (
ok bool
switchTok Token
expression Expression
lbraceTok Token
list *ExprCaseClauseListNode
rbraceTok Token
simpleStmt Node
semicolonTok Token
)
// ebnf.Alternative "switch" [ Expression ] "{" { ExprCaseClause } "}" | "switch" SimpleStmt ";" [ Expression ] "{" { ExprCaseClause } "}" ctx [SWITCH]
switch p.c() {
case SWITCH: // 0 1
// ebnf.Sequence "switch" [ Expression ] "{" { ExprCaseClause } "}" ctx [SWITCH]
{
ix := p.ix
// *ebnf.Token "switch" ctx [SWITCH]
switchTok = p.expect(SWITCH)
// *ebnf.Option [ Expression ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(true); expression == nil {
goto _1
}
}
goto _2
_1:
expression = nil
_2:
// *ebnf.Token "{" ctx []
if lbraceTok, ok = p.accept(LBRACE); !ok {
p.back(ix)
goto _0
}
// *ebnf.Repetition { ExprCaseClause } ctx []
var item *ExprCaseClauseListNode
_3:
{
var exprCaseClause *ExprCaseClauseListNode
switch p.c() {
case CASE, DEFAULT:
// *ebnf.Name ExprCaseClause ctx [CASE, DEFAULT]
if exprCaseClause = p.exprCaseClause(); exprCaseClause == nil {
goto _4
}
if item != nil {
item.List = exprCaseClause
}
item = exprCaseClause
if list == nil {
list = item
}
goto _3
}
_4:
}
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
goto _0
}
}
break
_0:
expression = nil
lbraceTok = Token{}
rbraceTok = Token{}
switchTok = Token{}
// ebnf.Sequence "switch" SimpleStmt ";" [ Expression ] "{" { ExprCaseClause } "}" ctx [SWITCH]
{
ix := p.ix
// *ebnf.Token "switch" ctx [SWITCH]
switchTok = p.expect(SWITCH)
// *ebnf.Name SimpleStmt ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ :
if simpleStmt = p.simpleStmt(false); simpleStmt == nil {
p.back(ix)
goto _5
}
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _5
}
// *ebnf.Option [ Expression ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(true); expression == nil {
goto _6
}
}
goto _7
_6:
expression = nil
_7:
// *ebnf.Token "{" ctx []
if lbraceTok, ok = p.accept(LBRACE); !ok {
p.back(ix)
goto _5
}
// *ebnf.Repetition { ExprCaseClause } ctx []
var item *ExprCaseClauseListNode
_8:
{
var exprCaseClause *ExprCaseClauseListNode
switch p.c() {
case CASE, DEFAULT:
// *ebnf.Name ExprCaseClause ctx [CASE, DEFAULT]
if exprCaseClause = p.exprCaseClause(); exprCaseClause == nil {
goto _9
}
if item != nil {
item.List = exprCaseClause
}
item = exprCaseClause
if list == nil {
list = item
}
goto _8
}
_9:
}
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
goto _5
}
}
break
_5:
expression = nil
lbraceTok = Token{}
rbraceTok = Token{}
semicolonTok = Token{}
simpleStmt = nil
switchTok = Token{}
return nil
default:
return nil
}
return &ExprSwitchStmtNode{
SWITCH: switchTok,
Expression: expression,
LBRACE: lbraceTok,
ExprCaseClauseList: list,
RBRACE: rbraceTok,
SimpleStmt: simpleStmt,
SEMICOLON: semicolonTok,
}
}
func (p *parser) expression(preBlock bool) (r Expression) {
var logicalAndExpression Expression
// ebnf.Sequence LogicalAndExpression { "||" LogicalAndExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name LogicalAndExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if logicalAndExpression = p.logicalAndExpression(preBlock); logicalAndExpression == nil {
p.back(ix)
return nil
}
r = logicalAndExpression
// *ebnf.Repetition { "||" LogicalAndExpression } ctx []
_0:
{
var lorTok Token
var logicalAndExpression Expression
switch p.c() {
case LOR:
// ebnf.Sequence "||" LogicalAndExpression ctx [LOR]
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _1
}
ix := p.ix
// *ebnf.Token "||" ctx [LOR]
lorTok = p.expect(LOR)
// *ebnf.Name LogicalAndExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if logicalAndExpression = p.logicalAndExpression(preBlock); logicalAndExpression == nil {
p.back(ix)
goto _1
}
r = &BinaryExpressionNode{LHS: r, Op: lorTok, RHS: logicalAndExpression}
goto _0
}
_1:
}
}
return r
}
// ExpressionListNode represents the production
//
// ExpressionList = Expression { "," Expression } .
type ExpressionListNode struct {
COMMA Token
Expression Expression
List *ExpressionListNode
}
func (n *ExpressionListNode) first() Expression {
if n == nil {
return nil
}
return n.Expression
}
// Len reports the number of items in n.
func (n *ExpressionListNode) Len() (r int) {
for ; n != nil; n = n.List {
r++
}
return r
}
// Source implements Node.
func (n *ExpressionListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ExpressionListNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.COMMA.IsValid() {
return n.COMMA.Position()
}
return n.Expression.Position()
}
func (p *parser) expressionList(preBlock bool) *ExpressionListNode {
var (
expression Expression
expressionList, last *ExpressionListNode
)
// ebnf.Sequence Expression { "," Expression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(preBlock); expression == nil {
p.back(ix)
return nil
}
expressionList = &ExpressionListNode{
Expression: expression,
}
last = expressionList
// *ebnf.Repetition { "," Expression } ctx []
_0:
{
var commaTok Token
switch p.c() {
case COMMA:
// ebnf.Sequence "," Expression ctx [COMMA]
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _1
}
ix := p.ix
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(preBlock); expression == nil {
p.back(ix)
goto _1
}
next := &ExpressionListNode{
COMMA: commaTok,
Expression: expression,
}
last.List = next
last = next
goto _0
}
_1:
}
}
return expressionList
}
// FallthroughStmtNode represents the production
//
// FallthroughStmt = "fallthrough" .
type FallthroughStmtNode struct {
FALLTHROUGH Token
}
// Source implements Node.
func (n *FallthroughStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FallthroughStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) fallthroughStmt() *FallthroughStmtNode {
var (
fallthroughTok Token
)
// *ebnf.Token "fallthrough" ctx [FALLTHROUGH]
fallthroughTok = p.expect(FALLTHROUGH)
return &FallthroughStmtNode{
FALLTHROUGH: fallthroughTok,
}
}
// FieldDeclNode represents the production
//
// FieldDecl = ( IdentifierList Type | EmbeddedField ) [ Tag ] .
type FieldDeclNode struct {
IdentifierList *IdentifierListNode
TypeNode Type
EmbeddedField *EmbeddedFieldNode
Tag *TagNode
}
// Source implements Node.
func (n *FieldDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FieldDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.IdentifierList != nil {
return n.IdentifierList.Position()
}
return n.EmbeddedField.Position()
}
func (p *parser) fieldDecl() *FieldDeclNode {
var (
identifierList *IdentifierListNode
typeNode Type
embeddedField *EmbeddedFieldNode
tag *TagNode
)
// ebnf.Sequence ( IdentifierList Type | EmbeddedField ) [ Tag ] ctx [IDENT, MUL]
{
ix := p.ix
// *ebnf.Group ( IdentifierList Type | EmbeddedField ) ctx [IDENT, MUL]
// ebnf.Alternative IdentifierList Type | EmbeddedField ctx [IDENT, MUL]
switch p.c() {
case IDENT: // 0 1
// ebnf.Sequence IdentifierList Type ctx [IDENT]
{
ix := p.ix
// *ebnf.Name IdentifierList ctx [IDENT]
if identifierList = p.identifierList(); identifierList == nil {
p.back(ix)
goto _0
}
// *ebnf.Name Type ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _0
}
default:
p.back(ix)
goto _0
}
}
break
_0:
identifierList = nil
typeNode = nil
// *ebnf.Name EmbeddedField ctx [IDENT]
if embeddedField = p.embeddedField(); embeddedField == nil {
goto _1
}
break
_1:
embeddedField = nil
p.back(ix)
return nil
case MUL: // 1
// *ebnf.Name EmbeddedField ctx [MUL]
if embeddedField = p.embeddedField(); embeddedField == nil {
goto _2
}
break
_2:
embeddedField = nil
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
// *ebnf.Option [ Tag ] ctx []
switch p.c() {
case STRING:
// *ebnf.Name Tag ctx [STRING]
if tag = p.tag(); tag == nil {
goto _4
}
}
goto _5
_4:
tag = nil
_5:
}
return &FieldDeclNode{
IdentifierList: identifierList,
TypeNode: typeNode,
EmbeddedField: embeddedField,
Tag: tag,
}
}
// ForClauseNode represents the production
//
// ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
type ForClauseNode struct {
InitStmt Node
SEMICOLON Token
Condition Expression
SEMICOLON2 Token
PostStmt Node
}
// Source implements Node.
func (n *ForClauseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ForClauseNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) forClause() *ForClauseNode {
var (
ok bool
initStmt Node
semicolonTok Token
condition Expression
semicolon2Tok Token
postStmt Node
)
// ebnf.Sequence [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Option [ InitStmt ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR]
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name InitStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if initStmt = p.initStmt(); initStmt == nil {
goto _0
}
}
goto _1
_0:
initStmt = nil
_1:
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
return nil
}
// *ebnf.Option [ Condition ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name Condition ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if condition = p.condition(false); condition == nil {
goto _2
}
}
goto _3
_2:
condition = nil
_3:
// *ebnf.Token ";" ctx []
if semicolon2Tok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
return nil
}
// *ebnf.Option [ PostStmt ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ :
// *ebnf.Name PostStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */]
if postStmt = p.postStmt(); postStmt == nil {
goto _4
}
}
goto _5
_4:
postStmt = nil
_5:
}
return &ForClauseNode{
InitStmt: initStmt,
SEMICOLON: semicolonTok,
Condition: condition,
SEMICOLON2: semicolon2Tok,
PostStmt: postStmt,
}
}
// ForStmtNode represents the production
//
// ForStmt = "for" [ ForClause | RangeClause | Condition ] Block .
type ForStmtNode struct {
FOR Token
ForClause *ForClauseNode
RangeClause *RangeClauseNode
Condition Expression
Block *BlockNode
}
// Source implements Node.
func (n *ForStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ForStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.FOR.Position()
}
func (p *parser) forStmt() *ForStmtNode {
var (
forTok Token
forClause *ForClauseNode
rangeClause *RangeClauseNode
condition Expression
block *BlockNode
)
// ebnf.Sequence "for" [ ForClause | RangeClause | Condition ] Block ctx [FOR]
{
p.openScope()
defer p.closeScope()
ix := p.ix
// *ebnf.Token "for" ctx [FOR]
forTok = p.expect(FOR)
// *ebnf.Option [ ForClause | RangeClause | Condition ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, RANGE, SEMICOLON, STRING, STRUCT, SUB, XOR:
// ebnf.Alternative ForClause | RangeClause | Condition ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, RANGE, SEMICOLON, STRING, STRUCT, SUB, XOR]
switch p.c() {
case SEMICOLON: // 0
// *ebnf.Name ForClause ctx [SEMICOLON]
if forClause = p.forClause(); forClause == nil {
goto _2
}
break
_2:
forClause = nil
goto _0
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0 1 2
// *ebnf.Name ForClause ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if forClause = p.forClause(); forClause == nil {
goto _4
}
break
_4:
forClause = nil
// *ebnf.Name RangeClause ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if rangeClause = p.rangeClause(); rangeClause == nil {
goto _5
}
break
_5:
rangeClause = nil
// *ebnf.Name Condition ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if condition = p.condition(true); condition == nil {
goto _6
}
break
_6:
condition = nil
goto _0
case RANGE: // 1
// *ebnf.Name RangeClause ctx [RANGE]
if rangeClause = p.rangeClause(); rangeClause == nil {
goto _7
}
break
_7:
rangeClause = nil
goto _0
default:
goto _0
}
}
goto _1
_0:
forClause = nil
rangeClause = nil
_1:
// *ebnf.Name Block ctx []
switch p.c() {
case LBRACE:
if block = p.block(nil, nil); block == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &ForStmtNode{
FOR: forTok,
ForClause: forClause,
RangeClause: rangeClause,
Condition: condition,
Block: block,
}
}
// FunctionBodyNode represents the production
//
// FunctionBody = Block .
type FunctionBodyNode struct {
Block *BlockNode
}
// Source implements Node.
func (n *FunctionBodyNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FunctionBodyNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.Block.Position()
}
func (p *parser) functionBody(rx *ParametersNode, s *SignatureNode) *FunctionBodyNode {
var (
block *BlockNode
)
// *ebnf.Name Block ctx [LBRACE]
if block = p.block(rx, s); block == nil {
return nil
}
return &FunctionBodyNode{
Block: block,
}
}
// FunctionDeclNode represents the production
//
// FunctionDecl = "func" FunctionName [ TypeParameters ] Signature [ FunctionBody ] .
type FunctionDeclNode struct {
FUNC Token
FunctionName *FunctionNameNode
TypeParameters *TypeParametersNode
Signature *SignatureNode
FunctionBody *FunctionBodyNode
visible
}
// Source implements Node.
func (n *FunctionDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FunctionDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.FUNC.Position()
}
func (p *parser) functionDecl() (r *FunctionDeclNode) {
var (
funcTok Token
functionName *FunctionNameNode
typeParameters *TypeParametersNode
signature *SignatureNode
functionBody *FunctionBodyNode
)
// ebnf.Sequence "func" FunctionName [ TypeParameters ] Signature [ FunctionBody ] ctx [FUNC]
{
if p.peek(1) != IDENT {
return nil
}
ix := p.ix
// *ebnf.Token "func" ctx [FUNC]
funcTok = p.expect(FUNC)
// *ebnf.Name FunctionName ctx [IDENT]
if functionName = p.functionName(); functionName == nil {
p.back(ix)
return nil
}
// *ebnf.Option [ TypeParameters ] ctx []
switch p.c() {
case LBRACK:
// *ebnf.Name TypeParameters ctx [LBRACK]
if typeParameters = p.typeParameters(); typeParameters == nil {
goto _0
}
}
goto _1
_0:
typeParameters = nil
_1:
// *ebnf.Name Signature ctx []
switch p.c() {
case LPAREN:
if signature = p.signature(); signature == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Option [ FunctionBody ] ctx []
switch p.c() {
case LBRACE:
// *ebnf.Name FunctionBody ctx [LBRACE]
if functionBody = p.functionBody(nil, signature); functionBody == nil {
goto _2
}
}
goto _3
_2:
functionBody = nil
_3:
}
sc := p.sc
r = &FunctionDeclNode{
FUNC: funcTok,
FunctionName: functionName,
TypeParameters: typeParameters,
Signature: signature,
FunctionBody: functionBody,
}
p.declare(sc, functionName.IDENT, r, 0, true)
return r
}
// FunctionLitNode represents the production
//
// FunctionLit = "func" Signature FunctionBody .
type FunctionLitNode struct {
FUNC Token
Signature *SignatureNode
FunctionBody *FunctionBodyNode
}
// Source implements Node.
func (n *FunctionLitNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FunctionLitNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.FUNC.Position()
}
func (p *parser) functionLit() *FunctionLitNode {
var (
funcTok Token
signature *SignatureNode
functionBody *FunctionBodyNode
)
// ebnf.Sequence "func" Signature FunctionBody ctx [FUNC]
{
switch p.peek(1) {
case LPAREN:
default:
return nil
}
ix := p.ix
// *ebnf.Token "func" ctx [FUNC]
funcTok = p.expect(FUNC)
// *ebnf.Name Signature ctx [LPAREN]
if signature = p.signature(); signature == nil {
p.back(ix)
return nil
}
// *ebnf.Name FunctionBody ctx []
switch p.c() {
case LBRACE:
if functionBody = p.functionBody(nil, signature); functionBody == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &FunctionLitNode{
FUNC: funcTok,
Signature: signature,
FunctionBody: functionBody,
}
}
// FunctionNameNode represents the production
//
// FunctionName = identifier .
type FunctionNameNode struct {
IDENT Token
}
// Source implements Node.
func (n *FunctionNameNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FunctionNameNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IDENT.Position()
}
func (p *parser) functionName() *FunctionNameNode {
var (
identTok Token
)
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
return &FunctionNameNode{
IDENT: identTok,
}
}
// FunctionTypeNode represents the production
//
// FunctionType = "func" Signature .
type FunctionTypeNode struct {
FUNC Token
Signature *SignatureNode
guard
}
// Source implements Node.
func (n *FunctionTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FunctionTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.FUNC.Position()
}
func (p *parser) functionType() *FunctionTypeNode {
var (
funcTok Token
signature *SignatureNode
)
// ebnf.Sequence "func" Signature ctx [FUNC]
{
switch p.peek(1) {
case LPAREN:
default:
return nil
}
ix := p.ix
// *ebnf.Token "func" ctx [FUNC]
funcTok = p.expect(FUNC)
// *ebnf.Name Signature ctx [LPAREN]
if signature = p.signature(); signature == nil {
p.back(ix)
return nil
}
}
return &FunctionTypeNode{
FUNC: funcTok,
Signature: signature,
}
}
// GoStmtNode represents the production
//
// GoStmt = "go" Expression .
type GoStmtNode struct {
GO Token
Expression Expression
}
// Source implements Node.
func (n *GoStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *GoStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.GO.Position()
}
func (p *parser) goStmt() *GoStmtNode {
var (
goTok Token
expression Expression
)
// ebnf.Sequence "go" Expression ctx [GO]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
return nil
}
ix := p.ix
// *ebnf.Token "go" ctx [GO]
goTok = p.expect(GO)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(false); expression == nil {
p.back(ix)
return nil
}
}
return &GoStmtNode{
GO: goTok,
Expression: expression,
}
}
// GotoStmtNode represents the production
//
// GotoStmt = "goto" Label .
type GotoStmtNode struct {
GOTO Token
Label *LabelNode
}
// Source implements Node.
func (n *GotoStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *GotoStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.GOTO.Position()
}
func (p *parser) gotoStmt() *GotoStmtNode {
var (
gotoTok Token
label *LabelNode
)
// ebnf.Sequence "goto" Label ctx [GOTO]
{
if p.peek(1) != IDENT {
return nil
}
ix := p.ix
// *ebnf.Token "goto" ctx [GOTO]
gotoTok = p.expect(GOTO)
// *ebnf.Name Label ctx [IDENT]
if label = p.label(); label == nil {
p.back(ix)
return nil
}
}
return &GotoStmtNode{
GOTO: gotoTok,
Label: label,
}
}
// IdentifierListNode represents the production
//
// IdentifierList = identifier { "," identifier } .
type IdentifierListNode struct {
COMMA Token
IDENT Token
List *IdentifierListNode
}
// Len reports the number of items in n.
func (n *IdentifierListNode) Len() (r int) {
for ; n != nil; n = n.List {
r++
}
return r
}
func (n *IdentifierListNode) first() (r Token) {
if n != nil {
r = n.IDENT
}
return r
}
// Source implements Node.
func (n *IdentifierListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *IdentifierListNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.COMMA.IsValid() {
return n.COMMA.Position()
}
return n.IDENT.Position()
}
func (p *parser) identifierList() *IdentifierListNode {
var (
identTok Token
list, last *IdentifierListNode
)
// ebnf.Sequence identifier { "," identifier } ctx [IDENT]
{
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
// *ebnf.Repetition { "," identifier } ctx []
list = &IdentifierListNode{
IDENT: identTok,
}
last = list
_0:
{
var commaTok Token
var identTok Token
switch p.c() {
case COMMA:
// ebnf.Sequence "," identifier ctx [COMMA]
if p.peek(1) != IDENT {
goto _1
}
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
next := &IdentifierListNode{
COMMA: commaTok,
IDENT: identTok,
}
last.List = next
last = next
goto _0
}
_1:
}
}
return list
}
// IfElseStmtNode represents the production
//
// IfStmt = "if" Expression Block [ "else" ( IfStmt | Block ) ] | "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] .
type IfElseStmtNode struct {
IF Token
Expression Expression
Block *BlockNode
ELSE Token
ElseClause Node
SimpleStmt Node
SEMICOLON Token
}
// Source implements Node.
func (n *IfElseStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *IfElseStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
// IfStmtNode represents the production
//
// IfStmt = "if" Expression Block [ "else" ( IfStmt | Block ) ] | "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] .
type IfStmtNode struct {
IF Token
Expression Expression
Block *BlockNode
SimpleStmt Node
SEMICOLON Token
}
// Source implements Node.
func (n *IfStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *IfStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) ifStmt() Node {
var (
ok bool
ifTok Token
expression Expression
block *BlockNode
elseTok Token
ifStmt Node
block2 *BlockNode
simpleStmt Node
semicolonTok Token
)
// ebnf.Alternative "if" Expression Block [ "else" ( IfStmt | Block ) ] | "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] ctx [IF]
switch p.c() {
case IF: // 0 1
p.openScope()
defer p.closeScope()
// ebnf.Sequence "if" Expression Block [ "else" ( IfStmt | Block ) ] ctx [IF]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _0
}
ix := p.ix
// *ebnf.Token "if" ctx [IF]
ifTok = p.expect(IF)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(true); expression == nil {
p.back(ix)
goto _0
}
// *ebnf.Name Block ctx []
switch p.c() {
case LBRACE:
if block = p.block(nil, nil); block == nil {
p.back(ix)
goto _0
}
default:
p.back(ix)
goto _0
}
// *ebnf.Option [ "else" ( IfStmt | Block ) ] ctx []
switch p.c() {
case ELSE:
// ebnf.Sequence "else" ( IfStmt | Block ) ctx [ELSE]
{
switch p.peek(1) {
case IF, LBRACE:
default:
goto _1
}
ix := p.ix
// *ebnf.Token "else" ctx [ELSE]
elseTok = p.expect(ELSE)
// *ebnf.Group ( IfStmt | Block ) ctx [IF, LBRACE]
// ebnf.Alternative IfStmt | Block ctx [IF, LBRACE]
switch p.c() {
case IF: // 0
// *ebnf.Name IfStmt ctx [IF]
if ifStmt = p.ifStmt(); ifStmt == nil {
goto _3
}
break
_3:
ifStmt = nil
p.back(ix)
goto _1
case LBRACE: // 1
// *ebnf.Name Block ctx [LBRACE]
if block2 = p.block(nil, nil); block2 == nil {
goto _5
}
break
_5:
block2 = nil
p.back(ix)
goto _1
default:
p.back(ix)
goto _1
}
}
default:
return &IfStmtNode{
IF: ifTok,
Expression: expression,
Block: block,
SimpleStmt: simpleStmt,
SEMICOLON: semicolonTok,
}
}
goto _2
_1:
block2 = nil
elseTok = Token{}
ifStmt = nil
_2:
}
break
_0:
block = nil
block2 = nil
elseTok = Token{}
expression = nil
ifStmt = nil
ifTok = Token{}
// ebnf.Sequence "if" SimpleStmt ";" Expression Block [ "else" ( IfStmt | Block ) ] ctx [IF]
{
ix := p.ix
// *ebnf.Token "if" ctx [IF]
ifTok = p.expect(IF)
// *ebnf.Name SimpleStmt ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ :
if simpleStmt = p.simpleStmt(false); simpleStmt == nil {
p.back(ix)
goto _7
}
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _7
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression = p.expression(true); expression == nil {
p.back(ix)
goto _7
}
default:
p.back(ix)
goto _7
}
// *ebnf.Name Block ctx []
switch p.c() {
case LBRACE:
if block = p.block(nil, nil); block == nil {
p.back(ix)
goto _7
}
default:
p.back(ix)
goto _7
}
// *ebnf.Option [ "else" ( IfStmt | Block ) ] ctx []
switch p.c() {
case ELSE:
// ebnf.Sequence "else" ( IfStmt | Block ) ctx [ELSE]
{
switch p.peek(1) {
case IF, LBRACE:
default:
goto _8
}
ix := p.ix
// *ebnf.Token "else" ctx [ELSE]
elseTok = p.expect(ELSE)
// *ebnf.Group ( IfStmt | Block ) ctx [IF, LBRACE]
// ebnf.Alternative IfStmt | Block ctx [IF, LBRACE]
switch p.c() {
case IF: // 0
// *ebnf.Name IfStmt ctx [IF]
if ifStmt = p.ifStmt(); ifStmt == nil {
goto _10
}
break
_10:
ifStmt = nil
p.back(ix)
goto _8
case LBRACE: // 1
// *ebnf.Name Block ctx [LBRACE]
if block2 = p.block(nil, nil); block2 == nil {
goto _12
}
break
_12:
block2 = nil
p.back(ix)
goto _8
default:
p.back(ix)
goto _8
}
}
}
goto _9
_8:
block2 = nil
elseTok = Token{}
ifStmt = nil
_9:
}
break
_7:
block = nil
block2 = nil
elseTok = Token{}
expression = nil
ifStmt = nil
ifTok = Token{}
semicolonTok = Token{}
simpleStmt = nil
return nil
default:
return nil
}
var elseClause Node
switch {
case ifStmt != nil:
elseClause = ifStmt
case block2 != nil:
elseClause = block2
}
return &IfElseStmtNode{
IF: ifTok,
Expression: expression,
Block: block,
ELSE: elseTok,
ElseClause: elseClause,
SimpleStmt: simpleStmt,
SEMICOLON: semicolonTok,
}
}
// ImportSpecListNode represents the production
//
// ImportSpecListNode = { ImportSpec ";" } .
type ImportSpecListNode struct {
ImportSpec *ImportSpecNode
SEMICOLON Token
List *ImportSpecListNode
}
// Source implements Node.
func (n *ImportSpecListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ImportSpecListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.ImportSpec.Position()
}
// ImportDeclNode represents the production
//
// ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
type ImportDeclNode struct {
IMPORT Token
LPAREN Token
ImportSpecList *ImportSpecListNode
RPAREN Token
}
// Source implements Node.
func (n *ImportDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ImportDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IMPORT.Position()
}
func (p *parser) importDecl() *ImportDeclNode {
var (
ok bool
importTok Token
importSpec *ImportSpecNode
lparenTok Token
list, last *ImportSpecListNode
rparenTok Token
)
// ebnf.Sequence "import" ( ImportSpec | "(" { ImportSpec ";" } [ ImportSpec ] ")" ) ctx [IMPORT]
{
switch p.peek(1) {
case IDENT, LPAREN, PERIOD, STRING:
default:
return nil
}
ix := p.ix
// *ebnf.Token "import" ctx [IMPORT]
importTok = p.expect(IMPORT)
// *ebnf.Group ( ImportSpec | "(" { ImportSpec ";" } [ ImportSpec ] ")" ) ctx [IDENT, LPAREN, PERIOD, STRING]
// ebnf.Alternative ImportSpec | "(" { ImportSpec ";" } [ ImportSpec ] ")" ctx [IDENT, LPAREN, PERIOD, STRING]
switch p.c() {
case IDENT, PERIOD, STRING: // 0
// *ebnf.Name ImportSpec ctx [IDENT, PERIOD, STRING]
if importSpec = p.importSpec(); importSpec == nil {
goto _0
}
list = &ImportSpecListNode{
ImportSpec: importSpec,
}
break
_0:
importSpec = nil
p.back(ix)
return nil
case LPAREN: // 1
// ebnf.Sequence "(" { ImportSpec ";" } [ ImportSpec ] ")" ctx [LPAREN]
{
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Repetition { ImportSpec ";" } ctx []
_4:
{
var importSpec *ImportSpecNode
var semicolonTok Token
switch p.c() {
case IDENT, PERIOD, STRING:
// ebnf.Sequence ImportSpec ";" ctx [IDENT, PERIOD, STRING]
ix := p.ix
// *ebnf.Name ImportSpec ctx [IDENT, PERIOD, STRING]
if importSpec = p.importSpec(); importSpec == nil {
p.back(ix)
goto _5
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
next := &ImportSpecListNode{
ImportSpec: importSpec,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _5
}
next := &ImportSpecListNode{
ImportSpec: importSpec,
SEMICOLON: semicolonTok,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _4
}
_5:
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
goto _2
}
}
break
_2:
lparenTok = Token{}
rparenTok = Token{}
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
}
return &ImportDeclNode{
IMPORT: importTok,
LPAREN: lparenTok,
ImportSpecList: list,
RPAREN: rparenTok,
}
}
// ImportSpecNode represents the production
//
// ImportSpec = [ "." | PackageName ] ImportPath .
type ImportSpecNode struct {
PERIOD Token
PackageName Token
ImportPath *BasicLitNode
pkg *Package
visible
}
// Source implements Node.
func (n *ImportSpecNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ImportSpecNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.PERIOD.IsValid() {
return n.PERIOD.Position()
}
if n.PackageName.IsValid() {
return n.PackageName.Position()
}
return n.ImportPath.Position()
}
func (p *parser) importSpec() *ImportSpecNode {
var (
periodTok Token
packageName Token
importPath *BasicLitNode
)
// ebnf.Sequence [ "." | PackageName ] ImportPath ctx [IDENT, PERIOD, STRING]
{
ix := p.ix
// *ebnf.Option [ "." | PackageName ] ctx [IDENT, PERIOD, STRING]
switch p.c() {
case IDENT, PERIOD:
// ebnf.Alternative "." | PackageName ctx [IDENT, PERIOD]
switch p.c() {
case PERIOD: // 0
// *ebnf.Token "." ctx [PERIOD]
periodTok = p.expect(PERIOD)
case IDENT: // 1
// *ebnf.Name PackageName ctx [IDENT]
if packageName = p.packageName(); !packageName.IsValid() {
goto _4
}
break
_4:
packageName = Token{}
goto _0
default:
goto _0
}
}
goto _1
_0:
packageName = Token{}
periodTok = Token{}
_1:
// *ebnf.Name ImportPath ctx []
switch p.c() {
case STRING:
if importPath = p.basicLit().(*BasicLitNode); importPath == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &ImportSpecNode{
PERIOD: periodTok,
PackageName: packageName,
ImportPath: importPath,
}
}
// IndexNode represents the production
//
// Index = "[" Expression "]" .
type IndexNode struct {
LBRACK Token
Expression Expression
RBRACK Token
}
// Source implements Node.
func (n *IndexNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *IndexNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACK.Position()
}
func (p *parser) index() *IndexNode {
var (
ok bool
lbrackTok Token
expression Expression
rbrackTok Token
)
// ebnf.Sequence "[" Expression "]" ctx [LBRACK]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
return nil
}
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(false); expression == nil {
p.back(ix)
return nil
}
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
return nil
}
}
return &IndexNode{
LBRACK: lbrackTok,
Expression: expression,
RBRACK: rbrackTok,
}
}
func (p *parser) initStmt() Node {
// *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */]
return p.simpleStmt(true)
}
// InterfaceElemNode represents the production
//
// InterfaceElem = MethodElem | TypeElem .
type InterfaceElemNode struct {
MethodElem *MethodElemNode
TypeElem *TypeElemListNode
}
// Source implements Node.
func (n *InterfaceElemNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *InterfaceElemNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.MethodElem != nil {
return n.MethodElem.Position()
}
return n.TypeElem.Position()
}
func (p *parser) interfaceElem() *InterfaceElemNode {
var (
methodElem *MethodElemNode
typeElem *TypeElemListNode
)
// ebnf.Alternative MethodElem | TypeElem ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
switch p.c() {
case IDENT: // 0 1
// *ebnf.Name MethodElem ctx [IDENT]
if methodElem = p.methodElem(); methodElem == nil {
goto _0
}
break
_0:
methodElem = nil
// *ebnf.Name TypeElem ctx [IDENT]
if typeElem = p.typeElem(); typeElem == nil {
goto _1
}
break
_1:
typeElem = nil
return nil
case ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE: // 1
// *ebnf.Name TypeElem ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
if typeElem = p.typeElem(); typeElem == nil {
goto _2
}
break
_2:
typeElem = nil
return nil
default:
return nil
}
return &InterfaceElemNode{
MethodElem: methodElem,
TypeElem: typeElem,
}
}
// InterfaceElemListNode represents the production
//
// InterfaceElemListNode = { InterfaceElem ";" } .
type InterfaceElemListNode struct {
InterfaceElem *InterfaceElemNode
SEMICOLON Token
List *InterfaceElemListNode
}
// Source implements Node.
func (n *InterfaceElemListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *InterfaceElemListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.InterfaceElem.Position()
}
// InterfaceTypeNode represents the production
//
// InterfaceType = "interface" "{" { InterfaceElem ";" } "}" .
type InterfaceTypeNode struct {
INTERFACE Token
LBRACE Token
InterfaceElemList *InterfaceElemListNode
RBRACE Token
guard
methods map[string]*MethodElemNode
}
// Source implements Node.
func (n *InterfaceTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *InterfaceTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.INTERFACE.Position()
}
func (p *parser) interfaceType() *InterfaceTypeNode {
var (
ok bool
interfaceTok Token
lbraceTok Token
list, last *InterfaceElemListNode
rbraceTok Token
)
// ebnf.Sequence "interface" "{" { InterfaceElem ";" } [ InterfaceElem ] "}" ctx [INTERFACE]
{
if p.peek(1) != LBRACE {
return nil
}
ix := p.ix
// *ebnf.Token "interface" ctx [INTERFACE]
interfaceTok = p.expect(INTERFACE)
// *ebnf.Token "{" ctx [LBRACE]
lbraceTok = p.expect(LBRACE)
// *ebnf.Repetition { InterfaceElem ";" } ctx []
_0:
{
var interfaceElem *InterfaceElemNode
var semicolonTok Token
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE:
// ebnf.Sequence InterfaceElem ";" ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
ix := p.ix
// *ebnf.Name InterfaceElem ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
if interfaceElem = p.interfaceElem(); interfaceElem == nil {
p.back(ix)
goto _1
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
next := &InterfaceElemListNode{
InterfaceElem: interfaceElem,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _1
}
next := &InterfaceElemListNode{
InterfaceElem: interfaceElem,
SEMICOLON: semicolonTok,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _0
}
_1:
}
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
return nil
}
}
return &InterfaceTypeNode{
INTERFACE: interfaceTok,
LBRACE: lbraceTok,
InterfaceElemList: list,
RBRACE: rbraceTok,
}
}
// KeyedElementNode represents the production
//
// KeyedElement = Element [ ":" Element ] .
type KeyedElementNode struct {
Element Expression
COLON Token
Element2 Expression
}
// Source implements Node.
func (n *KeyedElementNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *KeyedElementNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.Element.Position()
}
func (p *parser) keyedElement() Expression {
var (
element Expression
colonTok Token
element2 Expression
)
// ebnf.Sequence Element [ ":" Element ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name Element ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if element = p.element(); element == nil {
p.back(ix)
return nil
}
// *ebnf.Option [ ":" Element ] ctx []
switch p.c() {
case COLON:
// ebnf.Sequence ":" Element ctx [COLON]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _0
}
ix := p.ix
// *ebnf.Token ":" ctx [COLON]
colonTok = p.expect(COLON)
// *ebnf.Name Element ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if element2 = p.element(); element2 == nil {
p.back(ix)
goto _0
}
}
}
goto _1
_0:
colonTok = Token{}
element2 = nil
_1:
}
if !colonTok.IsValid() {
return element
}
return &KeyedElementNode{
Element: element,
COLON: colonTok,
Element2: element2,
}
}
// LabelNode represents the production
//
// Label = identifier .
type LabelNode struct {
IDENT Token
}
// Source implements Node.
func (n *LabelNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *LabelNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IDENT.Position()
}
func (p *parser) label() *LabelNode {
var (
identTok Token
)
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
return &LabelNode{
IDENT: identTok,
}
}
// LabeledStmtNode represents the production
//
// LabeledStmt = Label ":" Statement .
type LabeledStmtNode struct {
Label *LabelNode
COLON Token
Statement Node
}
// Source implements Node.
func (n *LabeledStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *LabeledStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.Label.Position()
}
func (p *parser) labeledStmt() *LabeledStmtNode {
var (
label *LabelNode
colonTok Token
statement Node
)
// ebnf.Sequence Label ":" Statement ctx [IDENT]
{
if p.peek(1) != COLON {
return nil
}
ix := p.ix
// *ebnf.Name Label ctx [IDENT]
if label = p.label(); label == nil {
p.back(ix)
return nil
}
// *ebnf.Token ":" ctx [COLON]
colonTok = p.expect(COLON)
// *ebnf.Name Statement ctx []
switch p.c() {
case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ :
if statement = p.statement(); statement == nil {
p.back(ix)
return nil
}
}
}
return &LabeledStmtNode{
Label: label,
COLON: colonTok,
Statement: statement,
}
}
func (p *parser) literal() Expression {
var (
basicLit Expression
compositeLit *CompositeLitNode
functionLit *FunctionLitNode
)
// ebnf.Alternative BasicLit | CompositeLit | FunctionLit ctx [CHAR, FLOAT, FUNC, IMAG, INT, LBRACK, MAP, STRING, STRUCT]
switch p.c() {
case CHAR, FLOAT, IMAG, INT, STRING: // 0
// *ebnf.Name BasicLit ctx [CHAR, FLOAT, IMAG, INT, STRING]
if basicLit = p.basicLit(); basicLit == nil {
return nil
}
return basicLit
case LBRACK, MAP, STRUCT: // 1
// *ebnf.Name CompositeLit ctx [LBRACK, MAP, STRUCT]
if compositeLit = p.compositeLit(); compositeLit == nil {
return nil
}
return compositeLit
case FUNC: // 2
// *ebnf.Name FunctionLit ctx [FUNC]
if functionLit = p.functionLit(); functionLit == nil {
return nil
}
return functionLit
default:
return nil
}
}
// ArrayLiteralTypeNode represents the production
//
// ArrayLiteralType = StructType | ArrayType | "[" "..." "]" ElementType | SliceType | MapType .
type ArrayLiteralTypeNode struct {
LBRACK Token
ELLIPSIS Token
RBRACK Token
ElementType Node
}
// Source implements Node.
func (n *ArrayLiteralTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ArrayLiteralTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACK.Position()
}
func (p *parser) literalType() Node {
var (
ok bool
structType *StructTypeNode
arrayType *ArrayTypeNode
lbrackTok Token
ellipsisTok Token
rbrackTok Token
elementType Node
sliceType *SliceTypeNode
mapType *MapTypeNode
)
// ebnf.Alternative StructType | ArrayType | "[" "..." "]" ElementType | SliceType | MapType ctx [LBRACK, MAP, STRUCT]
switch p.c() {
case STRUCT: // 0
// *ebnf.Name StructType ctx [STRUCT]
if structType = p.structType(); structType != nil {
return structType
}
case LBRACK: // 1 2 3
// *ebnf.Name ArrayType ctx [LBRACK]
if arrayType = p.arrayType(); arrayType != nil {
return arrayType
}
// ebnf.Sequence "[" "..." "]" ElementType ctx [LBRACK]
{
if p.peek(1) != ELLIPSIS {
goto _3
}
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Token "..." ctx [ELLIPSIS]
ellipsisTok = p.expect(ELLIPSIS)
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
goto _3
}
// *ebnf.Name ElementType ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if elementType = p.type1(); elementType == nil {
p.back(ix)
goto _3
}
default:
p.back(ix)
goto _3
}
}
return &ArrayLiteralTypeNode{
LBRACK: lbrackTok,
ELLIPSIS: ellipsisTok,
RBRACK: rbrackTok,
ElementType: elementType,
}
_3:
elementType = nil
ellipsisTok = Token{}
lbrackTok = Token{}
rbrackTok = Token{}
// *ebnf.Name SliceType ctx [LBRACK]
if sliceType = p.sliceType(); sliceType != nil {
return sliceType
}
return nil
case MAP: // 4
// *ebnf.Name MapType ctx [MAP]
if mapType = p.mapType(); mapType != nil {
return mapType
}
}
return nil
}
// KeyedElementListNode represents the production
//
// KeyedElementListNode = { KeyedElement "," } .
type KeyedElementListNode struct {
KeyedElement Expression
COMMA Token
List *KeyedElementListNode
}
// Source implements Node.
func (n *KeyedElementListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *KeyedElementListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.KeyedElement.Position()
}
// LiteralValueNode represents the production
//
// LiteralValue = "{" { KeyedElement "," } "}" .
type LiteralValueNode struct {
LBRACE Token
KeyedElementList *KeyedElementListNode
RBRACE Token
}
// Source implements Node.
func (n *LiteralValueNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *LiteralValueNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACE.Position()
}
func (p *parser) literalValue() *LiteralValueNode {
var (
ok bool
lbraceTok Token
list, last *KeyedElementListNode
keyedElement Expression
rbraceTok Token
)
// ebnf.Sequence "{" [ ElementList [ "," ] ] "}" ctx [LBRACE]
ix := p.ix
// *ebnf.Token "{" ctx [LBRACE]
lbraceTok = p.expect(LBRACE)
for {
// *ebnf.Option [ ElementList [ "," ] ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
{
ix := p.ix
if keyedElement = p.keyedElement(); keyedElement == nil {
p.back(ix)
goto _1
}
switch p.c() {
case COMMA:
// *ebnf.Token "," ctx [COMMA]
next := &KeyedElementListNode{
KeyedElement: keyedElement,
COMMA: p.consume(),
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
continue
case RBRACE:
next := &KeyedElementListNode{
KeyedElement: keyedElement,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
}
}
}
goto _1
}
_1:
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
return nil
}
return &LiteralValueNode{
LBRACE: lbraceTok,
KeyedElementList: list,
RBRACE: rbraceTok,
}
}
func (p *parser) logicalAndExpression(preBlock bool) (r Expression) {
var relationalExpression Expression
// ebnf.Sequence RelationalExpression { "&&" RelationalExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name RelationalExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if relationalExpression = p.relationalExpression(preBlock); relationalExpression == nil {
p.back(ix)
return nil
}
r = relationalExpression
// *ebnf.Repetition { "&&" RelationalExpression } ctx []
_0:
{
var landTok Token
var relationalExpression Expression
switch p.c() {
case LAND:
// ebnf.Sequence "&&" RelationalExpression ctx [LAND]
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _1
}
ix := p.ix
// *ebnf.Token "&&" ctx [LAND]
landTok = p.expect(LAND)
// *ebnf.Name RelationalExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if relationalExpression = p.relationalExpression(preBlock); relationalExpression == nil {
p.back(ix)
goto _1
}
r = &BinaryExpressionNode{LHS: r, Op: landTok, RHS: relationalExpression}
goto _0
}
_1:
}
}
return r
}
// MapTypeNode represents the production
//
// MapType = "map" "[" KeyType "]" ElementType .
type MapTypeNode struct {
MAP Token
LBRACK Token
KeyType Node
RBRACK Token
ElementType Node
}
// Source implements Node.
func (n *MapTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *MapTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.MAP.Position()
}
func (p *parser) mapType() *MapTypeNode {
var (
ok bool
mapTok Token
lbrackTok Token
keyType Node
rbrackTok Token
elementType Node
)
// ebnf.Sequence "map" "[" KeyType "]" ElementType ctx [MAP]
{
if p.peek(1) != LBRACK {
return nil
}
ix := p.ix
// *ebnf.Token "map" ctx [MAP]
mapTok = p.expect(MAP)
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Name KeyType ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if keyType = p.type1(); keyType == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
return nil
}
// *ebnf.Name ElementType ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if elementType = p.type1(); elementType == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &MapTypeNode{
MAP: mapTok,
LBRACK: lbrackTok,
KeyType: keyType,
RBRACK: rbrackTok,
ElementType: elementType,
}
}
// MethodDeclNode represents the production
//
// MethodDecl = "func" Receiver MethodName Signature [ FunctionBody ] .
type MethodDeclNode struct {
FUNC Token
Receiver *ParametersNode
MethodName Token
Signature *SignatureNode
FunctionBody *FunctionBodyNode
}
// Source implements Node.
func (n *MethodDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *MethodDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.FUNC.Position()
}
func (p *parser) methodDecl() *MethodDeclNode {
var (
funcTok Token
receiver *ParametersNode
methodName Token
signature *SignatureNode
functionBody *FunctionBodyNode
)
// ebnf.Sequence "func" Receiver MethodName Signature [ FunctionBody ] ctx [FUNC]
{
switch p.peek(1) {
case LPAREN:
default:
return nil
}
ix := p.ix
// *ebnf.Token "func" ctx [FUNC]
funcTok = p.expect(FUNC)
// *ebnf.Name Receiver ctx [LPAREN]
if receiver = p.receiver(); receiver == nil {
p.back(ix)
return nil
}
// *ebnf.Name MethodName ctx []
switch p.c() {
case IDENT:
if methodName = p.methodName(); !methodName.IsValid() {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Name Signature ctx []
switch p.c() {
case LPAREN:
if signature = p.signature(); signature == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Option [ FunctionBody ] ctx []
switch p.c() {
case LBRACE:
// *ebnf.Name FunctionBody ctx [LBRACE]
if functionBody = p.functionBody(receiver, signature); functionBody == nil {
goto _0
}
}
goto _1
_0:
functionBody = nil
_1:
}
return &MethodDeclNode{
FUNC: funcTok,
Receiver: receiver,
MethodName: methodName,
Signature: signature,
FunctionBody: functionBody,
}
}
// MethodElemNode represents the production
//
// MethodElem = MethodName Signature .
type MethodElemNode struct {
MethodName Token
Signature *SignatureNode
typ Type
}
// Source implements Node.
func (n *MethodElemNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *MethodElemNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.MethodName.Position()
}
func (p *parser) methodElem() *MethodElemNode {
var (
methodName Token
signature *SignatureNode
)
// ebnf.Sequence MethodName Signature ctx [IDENT]
{
switch p.peek(1) {
case LPAREN:
default:
return nil
}
ix := p.ix
// *ebnf.Name MethodName ctx [IDENT]
if methodName = p.methodName(); !methodName.IsValid() {
p.back(ix)
return nil
}
// *ebnf.Name Signature ctx [LPAREN]
if signature = p.signature(); signature == nil {
p.back(ix)
return nil
}
}
return &MethodElemNode{
MethodName: methodName,
Signature: signature,
}
}
// MethodExprNode represents the production
//
// MethodExpr = ReceiverType "." MethodName .
type MethodExprNode struct {
ReceiverType Node
PERIOD Token
MethodName Token
}
// Source implements Node.
func (n *MethodExprNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *MethodExprNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.ReceiverType.Position()
}
func (p *parser) methodExpr() *MethodExprNode {
var (
ok bool
receiverType Node
periodTok Token
methodName Token
)
// ebnf.Sequence ReceiverType "." MethodName ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
{
ix := p.ix
// *ebnf.Name ReceiverType ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if receiverType = p.type1(); receiverType == nil {
p.back(ix)
return nil
}
// *ebnf.Token "." ctx []
if periodTok, ok = p.accept(PERIOD); !ok {
p.back(ix)
return nil
}
// *ebnf.Name MethodName ctx []
switch p.c() {
case IDENT:
if methodName = p.methodName(); !methodName.IsValid() {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &MethodExprNode{
ReceiverType: receiverType,
PERIOD: periodTok,
MethodName: methodName,
}
}
func (p *parser) methodName() Token {
// *ebnf.Name identifier ctx [IDENT]
return p.expect(IDENT)
}
func (p *parser) multiplicativeExpression(preBlock bool) (r Expression) {
var unaryExpr Expression
// ebnf.Sequence UnaryExpr { ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) UnaryExpr } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name UnaryExpr ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil {
p.back(ix)
return nil
}
r = unaryExpr
// *ebnf.Repetition { ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) UnaryExpr } ctx []
_0:
{
var op Token
var unaryExpr Expression
switch p.c() {
case AND, AND_NOT, MUL, QUO, REM, SHL, SHR:
// ebnf.Sequence ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) UnaryExpr ctx [AND, AND_NOT, MUL, QUO, REM, SHL, SHR]
// *ebnf.Group ( "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ) ctx [AND, AND_NOT, MUL, QUO, REM, SHL, SHR]
// ebnf.Alternative "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" ctx [AND, AND_NOT, MUL, QUO, REM, SHL, SHR]
op = p.consume()
// *ebnf.Name UnaryExpr ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil {
p.back(ix)
goto _1
}
default:
p.back(ix)
goto _1
}
r = &BinaryExpressionNode{LHS: r, Op: op, RHS: unaryExpr}
goto _0
}
_1:
}
}
return r
}
// OperandNode represents the production
//
// Operand = Literal | OperandName [ TypeArgs ] [ LiteralValue ] .
type OperandNode struct {
OperandName Expression
TypeArgs *TypeArgsNode
LiteralValue *LiteralValueNode
}
// Source implements Node.
func (n *OperandNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *OperandNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.OperandName.Position()
}
type ParenthesizedExpressionNode struct {
LPAREN Token
Expression Expression
RPAREN Token
}
// Source implements Node.
func (n *ParenthesizedExpressionNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ParenthesizedExpressionNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LPAREN.Position()
}
func (p *parser) operand(preBlock bool) Expression {
var (
ok bool
literal Expression
operandName Expression
typeArgs *TypeArgsNode
literalValue *LiteralValueNode
lparenTok Token
expression Expression
rparenTok Token
)
// ebnf.Alternative Literal | OperandName [ TypeArgs ] [ LiteralValue ] | "(" Expression ")" ctx [CHAR, FLOAT, FUNC, IDENT, IMAG, INT, LBRACK, LPAREN, MAP, STRING, STRUCT]
switch p.c() {
case CHAR, FLOAT, FUNC, IMAG, INT, LBRACK, MAP, STRING, STRUCT: // 0
// *ebnf.Name Literal ctx [CHAR, FLOAT, FUNC, IMAG, INT, LBRACK, MAP, STRING, STRUCT]
if literal = p.literal(); literal == nil {
return nil
}
return literal
case IDENT: // 1
// ebnf.Sequence OperandName [ TypeArgs ] [ LiteralValue ] ctx [IDENT]
{
ix := p.ix
// *ebnf.Name OperandName ctx [IDENT]
if operandName = p.operandName(); operandName == nil {
p.back(ix)
goto _2
}
// *ebnf.Option [ TypeArgs ] ctx []
switch p.c() {
case LBRACK:
// *ebnf.Name TypeArgs ctx [LBRACK]
if typeArgs = p.typeArgs(); typeArgs == nil {
goto _4
}
}
goto _5
_4:
typeArgs = nil
_5:
if !preBlock {
// *ebnf.Option [ LiteralValue ] ctx []
switch p.c() {
case LBRACE:
// *ebnf.Name LiteralValue ctx [LBRACE]
if literalValue = p.literalValue(); literalValue == nil {
goto _6
}
}
goto _7
_6:
literalValue = nil
_7:
}
}
break
_2:
literalValue = nil
operandName = nil
typeArgs = nil
return nil
case LPAREN: // 2
// ebnf.Sequence "(" Expression ")" ctx [LPAREN]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _8
}
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(false); expression == nil {
p.back(ix)
goto _8
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
goto _8
}
}
return &ParenthesizedExpressionNode{LPAREN: lparenTok, Expression: expression, RPAREN: rparenTok}
_8:
expression = nil
lparenTok = Token{}
rparenTok = Token{}
return nil
default:
return nil
}
if operandName != nil && typeArgs == nil && literalValue == nil {
return operandName
}
return &OperandNode{
OperandName: operandName,
TypeArgs: typeArgs,
LiteralValue: literalValue,
}
}
// IotaNode represents the production
//
// IotaNode = identifier .
type IotaNode struct {
Iota Token
lexicalScoper
}
// Source implements Node.
func (n *IotaNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *IotaNode) Position() (r token.Position) {
if n == nil || !n.Iota.IsValid() {
return r
}
return n.Iota.Position()
}
// OperandNameNode represents the production
//
// OperandName = identifier .
type OperandNameNode struct {
Name Token
lexicalScoper
}
// Source implements Node.
func (n *OperandNameNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *OperandNameNode) Position() (r token.Position) {
if n == nil || !n.Name.IsValid() {
return r
}
return n.Name.Position()
}
// OperandQualifiedNameNode represents the production
//
// OperandQualifiedName = QualifiedIdent .
type OperandQualifiedNameNode struct {
Name *QualifiedIdentNode
lexicalScoper
}
// Source implements Node.
func (n *OperandQualifiedNameNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *OperandQualifiedNameNode) Position() (r token.Position) {
if n == nil || n.Name == nil {
return r
}
return n.Name.Position()
}
func (p *parser) operandName() Expression {
var (
qualifiedIdent *QualifiedIdentNode
)
// ebnf.Alternative QualifiedIdent | identifier ctx [IDENT]
switch p.c() {
case IDENT: // 0 1
// *ebnf.Name QualifiedIdent ctx [IDENT]
if qualifiedIdent = p.qualifiedIdent(); qualifiedIdent != nil {
return &OperandQualifiedNameNode{
Name: qualifiedIdent,
lexicalScoper: newLexicalScoper(p.sc),
}
}
// *ebnf.Name identifier ctx [IDENT]
return &OperandNameNode{
Name: p.expect(IDENT),
lexicalScoper: newLexicalScoper(p.sc),
}
default:
return nil
}
}
// PackageClauseNode represents the production
//
// PackageClause = "package" PackageName .
type PackageClauseNode struct {
PACKAGE Token
PackageName Token
}
// Source implements Node.
func (n *PackageClauseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *PackageClauseNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.PACKAGE.Position()
}
func (p *parser) packageClause() *PackageClauseNode {
var (
packageTok Token
packageName Token
)
// ebnf.Sequence "package" PackageName ctx [PACKAGE]
{
if p.peek(1) != IDENT {
return nil
}
ix := p.ix
// *ebnf.Token "package" ctx [PACKAGE]
packageTok = p.expect(PACKAGE)
// *ebnf.Name PackageName ctx [IDENT]
if packageName = p.packageName(); !packageName.IsValid() {
p.back(ix)
return nil
}
}
return &PackageClauseNode{
PACKAGE: packageTok,
PackageName: packageName,
}
}
func (p *parser) packageName() Token {
// *ebnf.Name identifier ctx [IDENT]
return p.expect(IDENT)
}
// ParameterDeclNode represents the production
//
// ParameterDecl = [ IdentifierList ] [ "..." ] Type .
type ParameterDeclNode struct {
IdentifierList *IdentifierListNode
ELLIPSIS Token
TypeNode Type
visible
}
// Source implements Node.
func (n *ParameterDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ParameterDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.IdentifierList != nil {
return n.IdentifierList.Position()
}
if n.ELLIPSIS.IsValid() {
return n.ELLIPSIS.Position()
}
return n.TypeNode.Position()
}
func (p *parser) parameterDecl() *ParameterDeclNode {
var (
identTok Token
ellipsisTok Token
typeNode Type
)
// ebnf.Alternative identifier "..." Type | identifier Type | "..." Type | Type ctx [ARROW, CHAN, ELLIPSIS, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
switch p.c() {
case IDENT: // 0 1 3
// ebnf.Sequence identifier "..." Type ctx [IDENT]
{
if p.peek(1) != ELLIPSIS {
goto _0
}
ix := p.ix
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
// *ebnf.Token "..." ctx [ELLIPSIS]
ellipsisTok = p.expect(ELLIPSIS)
// *ebnf.Name Type ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _0
}
default:
p.back(ix)
goto _0
}
}
break
_0:
ellipsisTok = Token{}
identTok = Token{}
typeNode = nil
// ebnf.Sequence identifier Type ctx [IDENT]
{
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
goto _1
}
ix := p.ix
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _1
}
}
break
_1:
identTok = Token{}
typeNode = nil
// *ebnf.Name Type ctx [IDENT]
if typeNode = p.type1(); typeNode == nil {
goto _2
}
break
_2:
typeNode = nil
return nil
case ELLIPSIS: // 2
// ebnf.Sequence "..." Type ctx [ELLIPSIS]
{
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
goto _3
}
ix := p.ix
// *ebnf.Token "..." ctx [ELLIPSIS]
ellipsisTok = p.expect(ELLIPSIS)
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _3
}
}
break
_3:
ellipsisTok = Token{}
typeNode = nil
return nil
case ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 3
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
goto _5
}
break
_5:
typeNode = nil
return nil
default:
return nil
}
var idl *IdentifierListNode
if identTok.IsValid() {
idl = &IdentifierListNode{IDENT: identTok}
}
return &ParameterDeclNode{
IdentifierList: idl,
ELLIPSIS: ellipsisTok,
TypeNode: typeNode,
}
}
// ParameterDeclListNode represents the production
//
// ParameterDeclListNode = { ParameterDecl "," } .
type ParameterDeclListNode struct {
ParameterDecl *ParameterDeclNode
COMMA Token
List *ParameterDeclListNode
}
// Source implements Node.
func (n *ParameterDeclListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ParameterDeclListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.ParameterDecl.Position()
}
// ParametersNode represents the production
//
// Parameters = "(" { ParameterDecl "," } ")" .
type ParametersNode struct {
LPAREN Token
ParameterDeclList *ParameterDeclListNode
RPAREN Token
}
// Source implements Node.
func (n *ParametersNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ParametersNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LPAREN.Position()
}
func (p *parser) parameters() (r *ParametersNode) {
var (
ok bool
lparenTok Token
parameterDecl *ParameterDeclNode
list0 []*ParameterDeclListNode
list, last *ParameterDeclListNode
rparenTok Token
)
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
for {
// *ebnf.Option [ ParameterList [ "," ] ] ctx []
switch p.c() {
case ARROW, CHAN, ELLIPSIS, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
// ebnf.Sequence ParameterList [ "," ] ctx [ARROW, CHAN, ELLIPSIS, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
{
ix := p.ix
if parameterDecl = p.parameterDecl(); parameterDecl == nil {
p.back(ix)
goto _1
}
// *ebnf.Option [ "," ] ctx []
switch p.c() {
case COMMA:
// *ebnf.Token "," ctx [COMMA]
next := &ParameterDeclListNode{
ParameterDecl: parameterDecl,
COMMA: p.consume(),
}
list0 = append(list0, next)
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
continue
case RPAREN:
next := &ParameterDeclListNode{
ParameterDecl: parameterDecl,
}
list0 = append(list0, next)
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
}
}
}
goto _1
}
_1:
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
return nil
}
var ids []int
for i, v := range list0 {
if v.ParameterDecl.IdentifierList != nil {
ids = append(ids, i)
}
}
r = &ParametersNode{
LPAREN: lparenTok,
ParameterDeclList: list,
RPAREN: rparenTok,
}
if len(ids) != 0 && len(ids) != len(list0) {
// len(ids)
// | ids
// | | len(list0)
// TODO gc.go:74:20 (rel, importPath, version string) 1 [2] 3
last = nil
for _, v := range list0 {
x := *v
x.List = nil
}
for firstX := 0; len(ids) != 0; {
lastX := ids[0]
ids = ids[1:]
grp := list0[lastX]
grp.List = nil
idl := grp.ParameterDecl.IdentifierList
for i := lastX - 1; i >= firstX; i-- {
item := list0[i]
decl := item.ParameterDecl
typ := decl.TypeNode
switch x := typ.(type) {
case *TypeNode:
if x.TypeArgs != nil {
panic(todo("%v: %s", decl.Position(), decl.Source(false)))
}
if x.TypeName == nil {
p.err(x.Position(), "syntax error: mixed named and unnamed parameters")
continue
}
switch y := x.TypeName.Name.(type) {
case Token:
// { param , } vs { , ident }
idl.COMMA = item.COMMA
li := &IdentifierListNode{IDENT: y}
li.List = idl
idl = li
default:
p.err(y.Position(), "syntax error: mixed named and unnamed parameters")
}
case *TypeNameNode:
switch y := x.Name.(type) {
case Token:
// { param , } vs { , ident }
idl.COMMA = item.COMMA
li := &IdentifierListNode{IDENT: y}
li.List = idl
idl = li
default:
p.err(y.Position(), "syntax error: mixed named and unnamed parameters")
}
default:
p.err(x.Position(), "syntax error: mixed named and unnamed parameters")
}
}
grp.ParameterDecl.IdentifierList = idl
firstX = lastX + 1
if last == nil {
r.ParameterDeclList = grp
last = grp
continue
}
last.List = grp
last = grp
}
}
return r
}
func (n *ParametersNode) declare(p *parser, s *Scope) {
if n == nil {
return
}
for l := n.ParameterDeclList; l != nil; l = l.List {
pd := l.ParameterDecl
for l := pd.IdentifierList; l != nil; l = l.List {
p.declare(s, l.IDENT, pd, 0, true)
}
}
}
// PointerTypeNode represents the production
//
// PointerType = "*" BaseType .
type PointerTypeNode struct {
MUL Token
BaseType Type
guard
}
// Source implements Node.
func (n *PointerTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *PointerTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.MUL.Position()
}
func (p *parser) pointerType() *PointerTypeNode {
var (
mulTok Token
baseType Type
)
// ebnf.Sequence "*" BaseType ctx [MUL]
{
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
return nil
}
ix := p.ix
// *ebnf.Token "*" ctx [MUL]
mulTok = p.expect(MUL)
// *ebnf.Name BaseType ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if baseType = p.type1(); baseType == nil {
p.back(ix)
return nil
}
}
return &PointerTypeNode{
MUL: mulTok,
BaseType: baseType,
}
}
func (p *parser) postStmt() Node {
// *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */]
return p.simpleStmt(true)
}
// PrimaryExprNode represents the production
//
// PrimaryExpr = Operand | Conversion | MethodExpr { Selector | Index | Slice | TypeAssertion | Arguments } .
type PrimaryExprNode struct {
PrimaryExpr Expression
Postfix Node
}
// Source implements Node.
func (n *PrimaryExprNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *PrimaryExprNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.PrimaryExpr.Position()
}
func (p *parser) primaryExpr(preBlock bool) (r Expression) {
var (
item0 Expression
operand Expression
conversion *ConversionNode
methodExpr *MethodExprNode
list []Node
)
// ebnf.Sequence ( Operand | Conversion | MethodExpr ) { Selector | Index | Slice | TypeAssertion | Arguments } ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT]
{
ix := p.ix
// *ebnf.Group ( Operand | Conversion | MethodExpr ) ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT]
// ebnf.Alternative Operand | Conversion | MethodExpr ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT]
switch p.c() {
case CHAR, FLOAT, IMAG, INT, STRING: // 0
// *ebnf.Name Operand ctx [CHAR, FLOAT, IMAG, INT, STRING]
if operand = p.operand(preBlock); operand == nil {
goto _0
}
item0 = operand
break
_0:
operand = nil
p.back(ix)
return nil
case FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT: // 0 1 2
// *ebnf.Name Operand ctx [FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT]
if operand = p.operand(preBlock); operand == nil {
goto _2
}
item0 = operand
break
_2:
operand = nil
// *ebnf.Name Conversion ctx [FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT]
if conversion = p.conversion(); conversion == nil {
goto _3
}
item0 = conversion
break
_3:
conversion = nil
// *ebnf.Name MethodExpr ctx [FUNC, IDENT, LBRACK, LPAREN, MAP, STRUCT]
if methodExpr = p.methodExpr(); methodExpr == nil {
goto _4
}
item0 = methodExpr
break
_4:
methodExpr = nil
p.back(ix)
return nil
case ARROW, CHAN, INTERFACE, MUL: // 1 2
// *ebnf.Name Conversion ctx [ARROW, CHAN, INTERFACE, MUL]
if conversion = p.conversion(); conversion == nil {
goto _5
}
item0 = conversion
break
_5:
conversion = nil
// *ebnf.Name MethodExpr ctx [ARROW, CHAN, INTERFACE, MUL]
if methodExpr = p.methodExpr(); methodExpr == nil {
goto _6
}
item0 = methodExpr
break
_6:
methodExpr = nil
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
r = item0
// *ebnf.Repetition { Selector | Index | Slice | TypeAssertion | Arguments } ctx []
_7:
{
var item Node
var selector *SelectorNode
var index *IndexNode
var slice *SliceNode
var typeAssertion *TypeAssertionNode
var arguments Node
switch p.c() {
case LBRACK, LPAREN, PERIOD:
// ebnf.Alternative Selector | Index | Slice | TypeAssertion | Arguments ctx [LBRACK, LPAREN, PERIOD]
switch p.c() {
case PERIOD: // 0 3
// *ebnf.Name Selector ctx [PERIOD]
if selector = p.selector(); selector == nil {
goto _9
}
item = selector
break
_9:
// *ebnf.Name TypeAssertion ctx [PERIOD]
if typeAssertion = p.typeAssertion(); typeAssertion == nil {
goto _10
}
item = typeAssertion
break
_10:
goto _8
case LBRACK: // 1 2
// *ebnf.Name Index ctx [LBRACK]
if index = p.index(); index == nil {
goto _11
}
item = index
break
_11:
// *ebnf.Name Slice ctx [LBRACK]
if slice = p.slice(); slice == nil {
goto _12
}
item = slice
break
_12:
goto _8
case LPAREN: // 4
// *ebnf.Name Arguments ctx [LPAREN]
if arguments = p.arguments(); arguments == nil {
goto _13
}
item = arguments
break
_13:
goto _8
default:
goto _8
}
list = append(list, item)
r = &PrimaryExprNode{PrimaryExpr: r, Postfix: item}
goto _7
}
_8:
}
}
return r
}
// QualifiedIdentNode represents the production
//
// QualifiedIdent = PackageName "." identifier .
type QualifiedIdentNode struct {
PackageName Token
PERIOD Token
IDENT Token
}
// Source implements Node.
func (n *QualifiedIdentNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *QualifiedIdentNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.PackageName.Position()
}
func (p *parser) qualifiedIdent() *QualifiedIdentNode {
var (
ok bool
packageName Token
periodTok Token
identTok Token
)
// ebnf.Sequence PackageName "." identifier ctx [IDENT]
{
if p.peek(1) != PERIOD {
return nil
}
ix := p.ix
// *ebnf.Name PackageName ctx [IDENT]
if packageName = p.packageName(); !packageName.IsValid() {
p.back(ix)
return nil
}
// *ebnf.Token "." ctx [PERIOD]
periodTok = p.expect(PERIOD)
// *ebnf.Name identifier ctx []
if identTok, ok = p.accept(IDENT); !ok {
p.back(ix)
return nil
}
}
return &QualifiedIdentNode{
PackageName: packageName,
PERIOD: periodTok,
IDENT: identTok,
}
}
// RangeClauseNode represents the production
//
// RangeClause = "range" Expression | ExpressionList "=" "range" Expression | IdentifierList ":=" "range" Expression .
type RangeClauseNode struct {
RANGE Token
Expression Expression
ExpressionList *ExpressionListNode
ASSIGN Token
IdentifierList *IdentifierListNode
DEFINE Token
}
// Source implements Node.
func (n *RangeClauseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *RangeClauseNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) rangeClause() *RangeClauseNode {
var (
ok bool
rangeTok Token
expression Expression
expressionList *ExpressionListNode
assignTok Token
identifierList *IdentifierListNode
defineTok Token
)
// ebnf.Alternative "range" Expression | ExpressionList "=" "range" Expression | IdentifierList ":=" "range" Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, RANGE, STRING, STRUCT, SUB, XOR]
switch p.c() {
case RANGE: // 0
// ebnf.Sequence "range" Expression ctx [RANGE]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _0
}
ix := p.ix
// *ebnf.Token "range" ctx [RANGE]
rangeTok = p.expect(RANGE)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(true); expression == nil {
p.back(ix)
goto _0
}
}
break
_0:
expression = nil
rangeTok = Token{}
return nil
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 1
// ebnf.Sequence ExpressionList "=" "range" Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _2
}
// *ebnf.Token "=" ctx []
if assignTok, ok = p.accept(ASSIGN); !ok {
p.back(ix)
goto _2
}
// *ebnf.Token "range" ctx []
if rangeTok, ok = p.accept(RANGE); !ok {
p.back(ix)
goto _2
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression = p.expression(true); expression == nil {
p.back(ix)
goto _2
}
default:
p.back(ix)
goto _2
}
}
break
_2:
assignTok = Token{}
expressionList = nil
expression = nil
rangeTok = Token{}
return nil
case IDENT: // 1 2
// ebnf.Sequence ExpressionList "=" "range" Expression ctx [IDENT]
{
ix := p.ix
// *ebnf.Name ExpressionList ctx [IDENT]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _4
}
// *ebnf.Token "=" ctx []
if assignTok, ok = p.accept(ASSIGN); !ok {
p.back(ix)
goto _4
}
// *ebnf.Token "range" ctx []
if rangeTok, ok = p.accept(RANGE); !ok {
p.back(ix)
goto _4
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression = p.expression(true); expression == nil {
p.back(ix)
goto _4
}
default:
p.back(ix)
goto _4
}
}
break
_4:
assignTok = Token{}
expressionList = nil
expression = nil
rangeTok = Token{}
// ebnf.Sequence IdentifierList ":=" "range" Expression ctx [IDENT]
{
ix := p.ix
// *ebnf.Name IdentifierList ctx [IDENT]
if identifierList = p.identifierList(); identifierList == nil {
p.back(ix)
goto _5
}
// *ebnf.Token ":=" ctx []
if defineTok, ok = p.accept(DEFINE); !ok {
p.back(ix)
goto _5
}
// *ebnf.Token "range" ctx []
if rangeTok, ok = p.accept(RANGE); !ok {
p.back(ix)
goto _5
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression = p.expression(true); expression == nil {
p.back(ix)
goto _5
}
default:
p.back(ix)
goto _5
}
}
break
_5:
defineTok = Token{}
expression = nil
identifierList = nil
rangeTok = Token{}
return nil
default:
return nil
}
return &RangeClauseNode{
RANGE: rangeTok,
Expression: expression,
ExpressionList: expressionList,
ASSIGN: assignTok,
IdentifierList: identifierList,
DEFINE: defineTok,
}
}
func (p *parser) receiver() *ParametersNode {
// *ebnf.Name Parameters ctx [LPAREN]
return p.parameters()
}
func (p *parser) recvExpr() Expression {
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
return p.expression(false)
}
// RecvStmtNode represents the production
//
// RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
type RecvStmtNode struct {
ExpressionList *ExpressionListNode
Token Token
IdentifierList *IdentifierListNode
RecvExpr Expression
}
// Source implements Node.
func (n *RecvStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *RecvStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) recvStmt() *RecvStmtNode {
var (
ok bool
expressionList *ExpressionListNode
tok Token
identifierList *IdentifierListNode
recvExpr Expression
)
// ebnf.Sequence [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Option [ ExpressionList "=" | IdentifierList ":=" ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
// ebnf.Alternative ExpressionList "=" | IdentifierList ":=" ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0
// ebnf.Sequence ExpressionList "=" ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _2
}
// *ebnf.Token "=" ctx []
if tok, ok = p.accept(ASSIGN); !ok {
p.back(ix)
goto _2
}
}
break
_2:
tok = Token{}
expressionList = nil
goto _0
case IDENT: // 0 1
// ebnf.Sequence ExpressionList "=" ctx [IDENT]
{
ix := p.ix
// *ebnf.Name ExpressionList ctx [IDENT]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _4
}
// *ebnf.Token "=" ctx []
if tok, ok = p.accept(ASSIGN); !ok {
p.back(ix)
goto _4
}
}
break
_4:
tok = Token{}
expressionList = nil
// ebnf.Sequence IdentifierList ":=" ctx [IDENT]
{
ix := p.ix
// *ebnf.Name IdentifierList ctx [IDENT]
if identifierList = p.identifierList(); identifierList == nil {
p.back(ix)
goto _5
}
// *ebnf.Token ":=" ctx []
if tok, ok = p.accept(DEFINE); !ok {
p.back(ix)
goto _5
}
}
break
_5:
tok = Token{}
identifierList = nil
goto _0
default:
goto _0
}
goto _1
_0:
tok = Token{}
expressionList = nil
_1:
// *ebnf.Name RecvExpr ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if recvExpr = p.recvExpr(); recvExpr == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &RecvStmtNode{
ExpressionList: expressionList,
Token: tok,
IdentifierList: identifierList,
RecvExpr: recvExpr,
}
}
func (p *parser) relationalExpression(preBlock bool) (r Expression) {
var additiveExpression Expression
// ebnf.Sequence AdditiveExpression { ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) AdditiveExpression } ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name AdditiveExpression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if additiveExpression = p.additiveExpression(preBlock); additiveExpression == nil {
p.back(ix)
return nil
}
r = additiveExpression
// *ebnf.Repetition { ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) AdditiveExpression } ctx []
_0:
{
var op Token
var additiveExpression Expression
switch p.c() {
case EQL, GEQ, GTR, LEQ, LSS, NEQ:
// ebnf.Sequence ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) AdditiveExpression ctx [EQL, GEQ, GTR, LEQ, LSS, NEQ]
// *ebnf.Group ( "==" | "!=" | "<" | "<=" | ">" | ">=" ) ctx [EQL, GEQ, GTR, LEQ, LSS, NEQ]
// ebnf.Alternative "==" | "!=" | "<" | "<=" | ">" | ">=" ctx [EQL, GEQ, GTR, LEQ, LSS, NEQ]
op = p.consume()
// *ebnf.Name AdditiveExpression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if additiveExpression = p.additiveExpression(preBlock); additiveExpression == nil {
p.back(ix)
goto _1
}
default:
p.back(ix)
goto _1
}
r = &BinaryExpressionNode{LHS: r, Op: op, RHS: additiveExpression}
goto _0
}
_1:
}
}
return r
}
// ResultNode represents the production
//
// Result = Parameters | Type .
type ResultNode struct {
Parameters *ParametersNode
TypeNode Type
}
// Source implements Node.
func (n *ResultNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ResultNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.Parameters != nil {
return n.Parameters.Position()
}
return n.TypeNode.Position()
}
func (p *parser) result() *ResultNode {
var (
parameters *ParametersNode
typeNode Type
)
// ebnf.Alternative Parameters | Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
switch p.c() {
case LPAREN: // 0 1
// *ebnf.Name Parameters ctx [LPAREN]
if parameters = p.parameters(); parameters == nil {
goto _0
}
break
_0:
parameters = nil
// *ebnf.Name Type ctx [LPAREN]
if typeNode = p.type1(); typeNode == nil {
goto _1
}
break
_1:
typeNode = nil
return nil
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, MAP, MUL, STRUCT: // 1
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
goto _2
}
break
_2:
typeNode = nil
return nil
default:
return nil
}
return &ResultNode{
Parameters: parameters,
TypeNode: typeNode,
}
}
// ReturnStmtNode represents the production
//
// ReturnStmt = "return" [ ExpressionList ] .
type ReturnStmtNode struct {
RETURN Token
ExpressionList *ExpressionListNode
}
// Source implements Node.
func (n *ReturnStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ReturnStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.RETURN.Position()
}
func (p *parser) returnStmt() *ReturnStmtNode {
var (
returnTok Token
expressionList *ExpressionListNode
)
// ebnf.Sequence "return" [ ExpressionList ] ctx [RETURN]
{
// *ebnf.Token "return" ctx [RETURN]
returnTok = p.expect(RETURN)
// *ebnf.Option [ ExpressionList ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
goto _0
}
}
goto _1
_0:
expressionList = nil
_1:
}
return &ReturnStmtNode{
RETURN: returnTok,
ExpressionList: expressionList,
}
}
// CommClauseListNode represents the production
//
// CommClauseListNode = { CommClause } .
type CommClauseListNode struct {
CommClause *CommClauseNode
List *CommClauseListNode
}
// Source implements Node.
func (n *CommClauseListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *CommClauseListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.CommClause.Position()
}
// SelectStmtNode represents the production
//
// SelectStmt = "select" "{" { CommClause } "}" .
type SelectStmtNode struct {
SELECT Token
LBRACE Token
CommClauseList *CommClauseListNode
RBRACE Token
}
// Source implements Node.
func (n *SelectStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SelectStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.SELECT.Position()
}
func (p *parser) selectStmt() *SelectStmtNode {
var (
ok bool
selectTok Token
lbraceTok Token
list, last *CommClauseListNode
rbraceTok Token
)
// ebnf.Sequence "select" "{" { CommClause } "}" ctx [SELECT]
{
if p.peek(1) != LBRACE {
return nil
}
ix := p.ix
// *ebnf.Token "select" ctx [SELECT]
selectTok = p.expect(SELECT)
// *ebnf.Token "{" ctx [LBRACE]
lbraceTok = p.expect(LBRACE)
// *ebnf.Repetition { CommClause } ctx []
_0:
{
var commClause *CommClauseNode
switch p.c() {
case CASE, DEFAULT:
// *ebnf.Name CommClause ctx [CASE, DEFAULT]
if commClause = p.commClause(); commClause == nil {
goto _1
}
next := &CommClauseListNode{
CommClause: commClause,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _0
}
_1:
}
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
return nil
}
}
return &SelectStmtNode{
SELECT: selectTok,
LBRACE: lbraceTok,
CommClauseList: list,
RBRACE: rbraceTok,
}
}
// SelectorNode represents the production
//
// Selector = "." identifier .
type SelectorNode struct {
PERIOD Token
IDENT Token
}
// Source implements Node.
func (n *SelectorNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SelectorNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.PERIOD.Position()
}
func (p *parser) selector() *SelectorNode {
var (
periodTok Token
identTok Token
)
// ebnf.Sequence "." identifier ctx [PERIOD]
{
if p.peek(1) != IDENT {
return nil
}
// *ebnf.Token "." ctx [PERIOD]
periodTok = p.expect(PERIOD)
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
}
return &SelectorNode{
PERIOD: periodTok,
IDENT: identTok,
}
}
// SendStmtNode represents the production
//
// SendStmt = Channel "<-" Expression .
type SendStmtNode struct {
Channel Expression
ARROW Token
Expression Expression
}
// Source implements Node.
func (n *SendStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SendStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.Channel.Position()
}
func (p *parser) sendStmt() *SendStmtNode {
var (
ok bool
channel Expression
arrowTok Token
expression Expression
)
// ebnf.Sequence Channel "<-" Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name Channel ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if channel = p.channel(); channel == nil {
p.back(ix)
return nil
}
// *ebnf.Token "<-" ctx []
if arrowTok, ok = p.accept(ARROW); !ok {
p.back(ix)
return nil
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression = p.expression(false); expression == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &SendStmtNode{
Channel: channel,
ARROW: arrowTok,
Expression: expression,
}
}
// ShortVarDeclNode represents the production
//
// ShortVarDecl = IdentifierList ":=" ExpressionList .
type ShortVarDeclNode struct {
IdentifierList *IdentifierListNode
DEFINE Token
ExpressionList *ExpressionListNode
visible
}
// Source implements Node.
func (n *ShortVarDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ShortVarDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IdentifierList.Position()
}
func (p *parser) shortVarDecl(lhs *ExpressionListNode, preBlock bool) (r *ShortVarDeclNode) {
var (
defineTok Token
expressionList *ExpressionListNode
)
// ebnf.Sequence ":=" ExpressionList ctx [DEFINE]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
return nil
}
ix := p.ix
// *ebnf.Token ":=" ctx [DEFINE]
defineTok = p.expect(DEFINE)
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(preBlock); expressionList == nil {
p.back(ix)
return nil
}
}
list := p.exprList2identList(lhs)
sc := p.sc
r = &ShortVarDeclNode{
IdentifierList: list,
DEFINE: defineTok,
ExpressionList: expressionList,
}
visible := int32(p.ix)
hasNew := false
for n := r.IdentifierList; n != nil; n = n.List {
id := n.IDENT
ex := sc.declare(id, r, visible, p, false)
if !ex.declTok.IsValid() {
hasNew = true
}
}
if !hasNew {
for n := r.IdentifierList; n != nil; n = n.List {
id := n.IDENT
nm := id.Src()
ex := sc.nodes[nm]
if ex.declTok.IsValid() {
p.err(id.Position(), "%s redeclared, previous declaration at %v: (%p)", nm, ex.declTok.Position(), sc)
}
}
}
return r
}
func (p *parser) exprList2identList(list *ExpressionListNode) (r *IdentifierListNode) {
var last *IdentifierListNode
for n := list; n != nil; n = n.List {
next := &IdentifierListNode{
COMMA: n.COMMA,
IDENT: p.expr2ident(n.Expression),
}
if !next.IDENT.IsValid() {
continue
}
if r == nil {
r = next
}
if last != nil {
last.List = next
}
last = next
}
return r
}
func (p *parser) expr2ident(e Expression) (r Token) {
switch x := e.(type) {
case *OperandNode:
if (x.TypeArgs != nil || x.LiteralValue != nil) && p.reportDeclarationErrors {
p.err(x.Position(), "expected identifier")
break
}
return p.expr2ident(x.OperandName)
case *OperandNameNode:
return x.Name
p.err(x.Position(), "expected identifier")
default:
if p.reportDeclarationErrors {
p.err(x.Position(), "expected identifier")
}
}
return r
}
// SignatureNode represents the production
//
// Signature = Parameters [ Result ] .
type SignatureNode struct {
Parameters *ParametersNode
Result *ResultNode
typeCache
}
// Source implements Node.
func (n *SignatureNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SignatureNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.Parameters.Position()
}
func (p *parser) signature() *SignatureNode {
var (
parameters *ParametersNode
result *ResultNode
)
// ebnf.Sequence Parameters [ Result ] ctx [LPAREN]
{
ix := p.ix
// *ebnf.Name Parameters ctx [LPAREN]
if parameters = p.parameters(); parameters == nil {
p.back(ix)
return nil
}
// *ebnf.Option [ Result ] ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
// *ebnf.Name Result ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if result = p.result(); result == nil {
goto _0
}
}
goto _1
_0:
result = nil
_1:
}
return &SignatureNode{
Parameters: parameters,
Result: result,
}
}
// IncDecStmtNode represents the production
//
// IncDecStmt = Expression ( "++" | "--" ) .
type IncDecStmtNode struct {
Expression Expression
Token Token
}
// Source implements Node.
func (n *IncDecStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *IncDecStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.Expression.Position()
}
func (p *parser) simpleStmt(preBlock bool) Node {
var (
expressionList *ExpressionListNode
assignment *AssignmentNode
shortVarDecl *ShortVarDeclNode
arrowTok Token
expression Expression
emptyStmt *EmptyStmtNode
)
// ebnf.Alternative ExpressionList [ Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ] | EmptyStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */]
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR: // 0
// ebnf.Sequence ExpressionList [ Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ] ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(preBlock); expressionList == nil {
p.back(ix)
goto _0
}
// *ebnf.Option [ Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ] ctx []
switch p.c() {
case ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ARROW, ASSIGN, DEC, DEFINE, INC, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN:
// ebnf.Alternative Assignment | ShortVarDecl | "<-" Expression | "++" | "--" ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ARROW, ASSIGN, DEC, DEFINE, INC, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN]
switch p.c() {
case ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN: // 0
// *ebnf.Name Assignment ctx [ADD_ASSIGN, AND_ASSIGN, AND_NOT_ASSIGN, ASSIGN, MUL_ASSIGN, OR_ASSIGN, QUO_ASSIGN, REM_ASSIGN, SHL_ASSIGN, SHR_ASSIGN, SUB_ASSIGN, XOR_ASSIGN]
if assignment = p.assignment(expressionList, preBlock); assignment == nil {
goto _4
}
return assignment
_4:
assignment = nil
goto _2
case DEFINE: // 1
// *ebnf.Name ShortVarDecl ctx [DEFINE]
if shortVarDecl = p.shortVarDecl(expressionList, preBlock); shortVarDecl == nil {
goto _6
}
return shortVarDecl
_6:
shortVarDecl = nil
goto _2
case ARROW: // 2
// ebnf.Sequence "<-" Expression ctx [ARROW]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _8
}
ix := p.ix
// *ebnf.Token "<-" ctx [ARROW]
arrowTok = p.expect(ARROW)
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(preBlock); expression == nil {
p.back(ix)
goto _8
}
}
if expressionList.Len() > 1 {
p.err(expressionList.Position(), "expected one expression: %s", expressionList.Source(false))
}
return &SendStmtNode{
Channel: expressionList.first(),
ARROW: arrowTok,
Expression: expression,
}
_8:
arrowTok = Token{}
expression = nil
goto _2
case INC: // 3
// *ebnf.Token "++" ctx [INC]
if expressionList.Len() > 1 {
p.err(expressionList.Position(), "expected one expression: %s", expressionList.Source(false))
}
return &IncDecStmtNode{
Expression: expressionList.first(),
Token: p.expect(INC),
}
case DEC: // 4
// *ebnf.Token "--" ctx [DEC]
if expressionList.Len() > 1 {
p.err(expressionList.Position(), "expected one expression: %s", expressionList.Source(false))
}
return &IncDecStmtNode{
Expression: expressionList.first(),
Token: p.expect(DEC),
}
default:
goto _2
}
}
goto _3
_2:
arrowTok = Token{}
assignment = nil
expression = nil
shortVarDecl = nil
_3:
}
break
_0:
arrowTok = Token{}
assignment = nil
expression = nil
expressionList = nil
shortVarDecl = nil
return nil
default: // /* ε */ 1
// *ebnf.Name EmptyStmt ctx [ /* ε */]
if emptyStmt = p.emptyStmt(); emptyStmt == nil {
goto _14
}
return emptyStmt
_14:
emptyStmt = nil
return nil
}
if expressionList == nil || expressionList.Len() > 1 {
return nil
}
return expressionList.first()
}
// SliceNode represents the production
//
// Slice = "[" [ Expression ] ":" [ Expression ] "]" | "[" [ Expression ] ":" Expression ":" Expression "]" .
type SliceNode struct {
LBRACK Token
Expression Expression
COLON Token
Expression2 Expression
RBRACK Token
COLON2 Token
Expression3 Expression
}
// Source implements Node.
func (n *SliceNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SliceNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) slice() *SliceNode {
var (
ok bool
lbrackTok Token
expression Expression
colonTok Token
expression2 Expression
rbrackTok Token
colon2Tok Token
expression3 Expression
)
// ebnf.Alternative "[" [ Expression ] ":" [ Expression ] "]" | "[" [ Expression ] ":" Expression ":" Expression "]" ctx [LBRACK]
switch p.c() {
case LBRACK: // 0 1
// ebnf.Sequence "[" [ Expression ] ":" [ Expression ] "]" ctx [LBRACK]
{
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Option [ Expression ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(false); expression == nil {
goto _1
}
}
goto _2
_1:
expression = nil
_2:
// *ebnf.Token ":" ctx []
if colonTok, ok = p.accept(COLON); !ok {
p.back(ix)
goto _0
}
// *ebnf.Option [ Expression ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression2 = p.expression(false); expression2 == nil {
goto _3
}
}
goto _4
_3:
expression2 = nil
_4:
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
goto _0
}
}
break
_0:
colonTok = Token{}
expression = nil
expression2 = nil
lbrackTok = Token{}
rbrackTok = Token{}
// ebnf.Sequence "[" [ Expression ] ":" Expression ":" Expression "]" ctx [LBRACK]
{
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Option [ Expression ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
// *ebnf.Name Expression ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expression = p.expression(false); expression == nil {
goto _6
}
}
goto _7
_6:
expression = nil
_7:
// *ebnf.Token ":" ctx []
if colonTok, ok = p.accept(COLON); !ok {
p.back(ix)
goto _5
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression2 = p.expression(false); expression2 == nil {
p.back(ix)
goto _5
}
default:
p.back(ix)
goto _5
}
// *ebnf.Token ":" ctx []
if colon2Tok, ok = p.accept(COLON); !ok {
p.back(ix)
goto _5
}
// *ebnf.Name Expression ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if expression3 = p.expression(false); expression3 == nil {
p.back(ix)
goto _5
}
default:
p.back(ix)
goto _5
}
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
goto _5
}
}
break
_5:
colon2Tok = Token{}
colonTok = Token{}
expression = nil
expression2 = nil
expression3 = nil
lbrackTok = Token{}
rbrackTok = Token{}
return nil
default:
return nil
}
return &SliceNode{
LBRACK: lbrackTok,
Expression: expression,
COLON: colonTok,
Expression2: expression2,
RBRACK: rbrackTok,
COLON2: colon2Tok,
Expression3: expression3,
}
}
// SliceTypeNode represents the production
//
// SliceType = "[" "]" ElementType .
type SliceTypeNode struct {
LBRACK Token
RBRACK Token
ElementType Node
guard
}
// Source implements Node.
func (n *SliceTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SliceTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACK.Position()
}
func (p *parser) sliceType() *SliceTypeNode {
var (
lbrackTok Token
rbrackTok Token
elementType Node
)
// ebnf.Sequence "[" "]" ElementType ctx [LBRACK]
{
if p.peek(1) != RBRACK {
return nil
}
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Token "]" ctx [RBRACK]
rbrackTok = p.expect(RBRACK)
// *ebnf.Name ElementType ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if elementType = p.type1(); elementType == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &SliceTypeNode{
LBRACK: lbrackTok,
RBRACK: rbrackTok,
ElementType: elementType,
}
}
// ImportDeclListNode represents the production
//
// ImportDeclListNode = { ImportDecl ";" } .
type ImportDeclListNode struct {
ImportDecl *ImportDeclNode
SEMICOLON Token
List *ImportDeclListNode
}
// Source implements Node.
func (n *ImportDeclListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ImportDeclListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.ImportDecl.Position()
}
// TopLevelDeclListNode represents the production
//
// TopLevelDeclListNode = { TopLevelDecl ";" .
type TopLevelDeclListNode struct {
TopLevelDecl Node
SEMICOLON Token
List *TopLevelDeclListNode
}
// Source implements Node.
func (n *TopLevelDeclListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TopLevelDeclListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TopLevelDecl.Position()
}
// SourceFileNode represents the production
//
// SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
type SourceFileNode struct {
PackageClause *PackageClauseNode
SEMICOLON Token
ImportDeclList *ImportDeclListNode
TopLevelDeclList *TopLevelDeclListNode
}
// Source implements Node.
func (n *SourceFileNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SourceFileNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.PackageClause.Position()
}
func (p *parser) sourceFile() *SourceFileNode {
var (
ok bool
packageClause *PackageClauseNode
semicolonTok Token
list, last *ImportDeclListNode
list2, last2 *TopLevelDeclListNode
)
// ebnf.Sequence PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } ctx [PACKAGE]
{
ix := p.ix
// *ebnf.Name PackageClause ctx [PACKAGE]
if packageClause = p.packageClause(); packageClause == nil {
p.back(ix)
return nil
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
return nil
}
// *ebnf.Repetition { ImportDecl ";" } ctx []
_0:
{
var importDecl *ImportDeclNode
var semicolonTok Token
switch p.c() {
case IMPORT:
// ebnf.Sequence ImportDecl ";" ctx [IMPORT]
ix := p.ix
// *ebnf.Name ImportDecl ctx [IMPORT]
if importDecl = p.importDecl(); importDecl == nil {
p.back(ix)
goto _1
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _1
}
next := &ImportDeclListNode{
ImportDecl: importDecl,
SEMICOLON: semicolonTok,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _0
}
_1:
}
// *ebnf.Repetition { TopLevelDecl ";" } ctx []
_2:
{
var topLevelDecl Node
var semicolonTok Token
switch p.c() {
case CONST, FUNC, TYPE, VAR:
// ebnf.Sequence TopLevelDecl ";" ctx [CONST, FUNC, TYPE, VAR]
ix := p.ix
// *ebnf.Name TopLevelDecl ctx [CONST, FUNC, TYPE, VAR]
if topLevelDecl = p.topLevelDecl(); topLevelDecl == nil {
p.back(ix)
goto _3
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _3
}
next := &TopLevelDeclListNode{
TopLevelDecl: topLevelDecl,
SEMICOLON: semicolonTok,
}
if last2 != nil {
last2.List = next
}
if list2 == nil {
list2 = next
}
last2 = next
goto _2
}
_3:
}
}
return &SourceFileNode{
PackageClause: packageClause,
SEMICOLON: semicolonTok,
ImportDeclList: list,
TopLevelDeclList: list2,
}
}
func (p *parser) statement() Node {
var (
declaration Node
labeledStmt *LabeledStmtNode
goStmt *GoStmtNode
returnStmt *ReturnStmtNode
breakStmt *BreakStmtNode
continueStmt *ContinueStmtNode
gotoStmt *GotoStmtNode
fallthroughStmt *FallthroughStmtNode
block *BlockNode
ifStmt Node
switchStmt *SwitchStmtNode
selectStmt *SelectStmtNode
forStmt *ForStmtNode
deferStmt *DeferStmtNode
simpleStmt Node
)
// ebnf.Alternative Declaration | LabeledStmt | GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | DeferStmt | SimpleStmt ctx [ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */]
switch p.c() {
case CONST, TYPE, VAR: // 0
// *ebnf.Name Declaration ctx [CONST, TYPE, VAR]
if declaration = p.declaration(); declaration == nil {
return nil
}
return declaration
case IDENT: // 1 14
// *ebnf.Name LabeledStmt ctx [IDENT]
if labeledStmt = p.labeledStmt(); labeledStmt == nil {
goto _2
}
return labeledStmt
_2:
labeledStmt = nil
// *ebnf.Name SimpleStmt ctx [IDENT]
if simpleStmt = p.simpleStmt(false); simpleStmt == nil {
return nil
}
return simpleStmt
case GO: // 2
// *ebnf.Name GoStmt ctx [GO]
if goStmt = p.goStmt(); goStmt == nil {
return nil
}
return goStmt
case RETURN: // 3
// *ebnf.Name ReturnStmt ctx [RETURN]
if returnStmt = p.returnStmt(); returnStmt == nil {
return nil
}
return returnStmt
case BREAK: // 4
// *ebnf.Name BreakStmt ctx [BREAK]
if breakStmt = p.breakStmt(); breakStmt == nil {
return nil
}
return breakStmt
case CONTINUE: // 5
// *ebnf.Name ContinueStmt ctx [CONTINUE]
if continueStmt = p.continueStmt(); continueStmt == nil {
return nil
}
return continueStmt
case GOTO: // 6
// *ebnf.Name GotoStmt ctx [GOTO]
if gotoStmt = p.gotoStmt(); gotoStmt == nil {
return nil
}
return gotoStmt
case FALLTHROUGH: // 7
// *ebnf.Name FallthroughStmt ctx [FALLTHROUGH]
if fallthroughStmt = p.fallthroughStmt(); fallthroughStmt == nil {
return nil
}
return fallthroughStmt
case LBRACE: // 8
// *ebnf.Name Block ctx [LBRACE]
if block = p.block(nil, nil); block == nil {
return nil
}
return block
return nil
case IF: // 9
// *ebnf.Name IfStmt ctx [IF]
if ifStmt = p.ifStmt(); ifStmt == nil {
return nil
}
return ifStmt
case SWITCH: // 10
// *ebnf.Name SwitchStmt ctx [SWITCH]
if switchStmt = p.switchStmt(); switchStmt == nil {
return nil
}
return switchStmt
case SELECT: // 11
// *ebnf.Name SelectStmt ctx [SELECT]
if selectStmt = p.selectStmt(); selectStmt == nil {
return nil
}
return selectStmt
case FOR: // 12
// *ebnf.Name ForStmt ctx [FOR]
if forStmt = p.forStmt(); forStmt == nil {
return nil
}
return forStmt
case DEFER: // 13
// *ebnf.Name DeferStmt ctx [DEFER]
if deferStmt = p.deferStmt(); deferStmt == nil {
return nil
}
return deferStmt
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */ : // 14
// *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR /* ε */]
if simpleStmt = p.simpleStmt(false); simpleStmt == nil {
return nil
}
return simpleStmt
}
return nil
}
// StatementListNode represents the production
//
// StatementList = { Statement ";" } .
type StatementListNode struct {
Statement Node
SEMICOLON Token
List *StatementListNode
}
// Source implements Node.
func (n *StatementListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *StatementListNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) statementList() *StatementListNode {
var (
statement Node
list, last *StatementListNode
)
for {
ix := p.ix
switch p.c() {
case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ :
if statement = p.statement(); statement == nil {
p.back(ix)
goto _1
}
case SEMICOLON:
next := &StatementListNode{
SEMICOLON: p.consume(),
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
continue
default:
goto _1
}
if p.c() != SEMICOLON {
next := &StatementListNode{
Statement: statement,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _1
}
next := &StatementListNode{
Statement: statement,
SEMICOLON: p.consume(),
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
}
_1:
return list
}
// FieldDeclListNode represents the production
//
// FieldDeclListNode = { FieldDecl ";" } .
type FieldDeclListNode struct {
FieldDecl *FieldDeclNode
SEMICOLON Token
List *FieldDeclListNode
}
// Source implements Node.
func (n *FieldDeclListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *FieldDeclListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.FieldDecl.Position()
}
// StructTypeNode represents the production
//
// StructType = "struct" "{" { FieldDecl ";" } "}" .
type StructTypeNode struct {
STRUCT Token
LBRACE Token
FieldDeclList *FieldDeclListNode
RBRACE Token
fields []Field
guard
}
// Source implements Node.
func (n *StructTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *StructTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.STRUCT.Position()
}
func (p *parser) structType() *StructTypeNode {
var (
ok bool
structTok Token
lbraceTok Token
list, last *FieldDeclListNode
rbraceTok Token
)
// ebnf.Sequence "struct" "{" { FieldDecl ";" } [ FieldDecl ] "}" ctx [STRUCT]
{
if p.peek(1) != LBRACE {
return nil
}
ix := p.ix
// *ebnf.Token "struct" ctx [STRUCT]
structTok = p.expect(STRUCT)
// *ebnf.Token "{" ctx [LBRACE]
lbraceTok = p.expect(LBRACE)
// *ebnf.Repetition { FieldDecl ";" } ctx []
_0:
{
var fieldDecl *FieldDeclNode
var semicolonTok Token
switch p.c() {
case IDENT, MUL:
// ebnf.Sequence FieldDecl ";" ctx [IDENT, MUL]
ix := p.ix
// *ebnf.Name FieldDecl ctx [IDENT, MUL]
if fieldDecl = p.fieldDecl(); fieldDecl == nil {
p.back(ix)
goto _1
}
if p.c() == RBRACE {
next := &FieldDeclListNode{
FieldDecl: fieldDecl,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _1
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _1
}
next := &FieldDeclListNode{
FieldDecl: fieldDecl,
SEMICOLON: semicolonTok,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _0
}
_1:
}
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
return nil
}
}
return &StructTypeNode{
STRUCT: structTok,
LBRACE: lbraceTok,
FieldDeclList: list,
RBRACE: rbraceTok,
}
}
// SwitchStmtNode represents the production
//
// SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
type SwitchStmtNode struct {
ExprSwitchStmt *ExprSwitchStmtNode
TypeSwitchStmt *TypeSwitchStmtNode
}
// Source implements Node.
func (n *SwitchStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *SwitchStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) switchStmt() *SwitchStmtNode {
var (
exprSwitchStmt *ExprSwitchStmtNode
typeSwitchStmt *TypeSwitchStmtNode
)
p.openScope()
defer p.closeScope()
// ebnf.Alternative ExprSwitchStmt | TypeSwitchStmt ctx [SWITCH]
switch p.c() {
case SWITCH: // 0 1
// *ebnf.Name ExprSwitchStmt ctx [SWITCH]
if exprSwitchStmt = p.exprSwitchStmt(); exprSwitchStmt == nil {
goto _0
}
break
_0:
exprSwitchStmt = nil
p.closeScope()
p.openScope()
// *ebnf.Name TypeSwitchStmt ctx [SWITCH]
if typeSwitchStmt = p.typeSwitchStmt(); typeSwitchStmt == nil {
goto _1
}
break
_1:
typeSwitchStmt = nil
return nil
default:
return nil
}
return &SwitchStmtNode{
ExprSwitchStmt: exprSwitchStmt,
TypeSwitchStmt: typeSwitchStmt,
}
}
// TagNode represents the production
//
// Tag = string_lit .
type TagNode struct {
STRING Token
}
// Source implements Node.
func (n *TagNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TagNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.STRING.Position()
}
func (p *parser) tag() *TagNode {
var (
stringTok Token
)
// *ebnf.Name string_lit ctx [STRING]
stringTok = p.expect(STRING)
return &TagNode{
STRING: stringTok,
}
}
func (p *parser) topLevelDecl() (r Node) {
// ebnf.Alternative Declaration | FunctionDecl | MethodDecl ctx [CONST, FUNC, TYPE, VAR]
switch p.c() {
case CONST, TYPE, VAR: // 0
// *ebnf.Name Declaration ctx [CONST, TYPE, VAR]
return p.declaration()
case FUNC: // 1 2
// *ebnf.Name FunctionDecl ctx [FUNC]
if functionDecl := p.functionDecl(); functionDecl != nil {
return functionDecl
}
// *ebnf.Name MethodDecl ctx [FUNC]
return p.methodDecl()
}
return nil
}
// TypeNode represents the production
//
// Type = TypeName TypeArgs .
type TypeNode struct {
TypeName *TypeNameNode
TypeArgs *TypeArgsNode
}
// Source implements Node.
func (n *TypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.TypeName != nil {
return n.TypeName.Position()
}
return r
}
// ParenthesizedTypeNode represents the production
//
// ParenthesizedType = "(" Type ")" .
type ParenthesizedTypeNode struct {
LPAREN Token
TypeNode Type
RPAREN Token
}
// Source implements Node.
func (n *ParenthesizedTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *ParenthesizedTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.LPAREN.IsValid() {
return n.LPAREN.Position()
}
return r
}
func (p *parser) type1() Type {
var (
ok bool
typeName *TypeNameNode
typeArgs *TypeArgsNode
typeLit Type
lparenTok Token
typeNode Type
rparenTok Token
)
// ebnf.Alternative TypeName [ TypeArgs ] | TypeLit | "(" Type ")" ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
switch p.c() {
case IDENT: // 0
// ebnf.Sequence TypeName [ TypeArgs ] ctx [IDENT]
{
ix := p.ix
// *ebnf.Name TypeName ctx [IDENT]
if typeName = p.typeName(); typeName == nil {
p.back(ix)
goto _0
}
// *ebnf.Option [ TypeArgs ] ctx []
switch p.c() {
case LBRACK:
// *ebnf.Name TypeArgs ctx [LBRACK]
if typeArgs = p.typeArgs(); typeArgs == nil {
goto _2
}
}
goto _3
_2:
typeArgs = nil
_3:
}
if typeArgs == nil {
return typeName
}
break
_0:
typeArgs = nil
typeName = nil
return nil
case ARROW, CHAN, FUNC, INTERFACE, LBRACK, MAP, MUL, STRUCT: // 1
// *ebnf.Name TypeLit ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, MAP, MUL, STRUCT]
if typeLit = p.typeLit(); typeLit == nil {
goto _4
}
return typeLit
_4:
typeLit = nil
return nil
case LPAREN: // 2
// ebnf.Sequence "(" Type ")" ctx [LPAREN]
{
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
goto _6
}
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _6
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
goto _6
}
}
return &ParenthesizedTypeNode{LPAREN: lparenTok, TypeNode: typeNode, RPAREN: rparenTok}
_6:
lparenTok = Token{}
rparenTok = Token{}
typeNode = nil
return nil
default:
return nil
}
return &TypeNode{
TypeName: typeName,
TypeArgs: typeArgs,
}
}
// TypeArgsNode represents the production
//
// TypeArgs = "[" TypeList [ "," ] "]" .
type TypeArgsNode struct {
LBRACK Token
TypeList *TypeListNode
COMMA Token
RBRACK Token
}
// Source implements Node.
func (n *TypeArgsNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeArgsNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACK.Position()
}
func (p *parser) typeArgs() *TypeArgsNode {
var (
ok bool
lbrackTok Token
typeList *TypeListNode
commaTok Token
rbrackTok Token
)
// ebnf.Sequence "[" TypeList [ "," ] "]" ctx [LBRACK]
{
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
return nil
}
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Name TypeList ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeList = p.typeList(); typeList == nil {
p.back(ix)
return nil
}
// *ebnf.Option [ "," ] ctx []
switch p.c() {
case COMMA:
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
}
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
return nil
}
}
return &TypeArgsNode{
LBRACK: lbrackTok,
TypeList: typeList,
COMMA: commaTok,
RBRACK: rbrackTok,
}
}
// TypeAssertionNode represents the production
//
// TypeAssertion = "." "(" Type ")" .
type TypeAssertionNode struct {
PERIOD Token
LPAREN Token
TypeNode Type
RPAREN Token
}
// Source implements Node.
func (n *TypeAssertionNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeAssertionNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.PERIOD.Position()
}
func (p *parser) typeAssertion() *TypeAssertionNode {
var (
ok bool
periodTok Token
lparenTok Token
typeNode Type
rparenTok Token
)
// ebnf.Sequence "." "(" Type ")" ctx [PERIOD]
{
if p.peek(1) != LPAREN {
return nil
}
ix := p.ix
// *ebnf.Token "." ctx [PERIOD]
periodTok = p.expect(PERIOD)
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Name Type ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
return nil
}
}
return &TypeAssertionNode{
PERIOD: periodTok,
LPAREN: lparenTok,
TypeNode: typeNode,
RPAREN: rparenTok,
}
}
// TypeCaseClauseNode represents the production
//
// TypeCaseClause = TypeSwitchCase ":" StatementList .
type TypeCaseClauseNode struct {
TypeSwitchCase *TypeSwitchCaseNode
COLON Token
StatementList *StatementListNode
}
// Source implements Node.
func (n *TypeCaseClauseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeCaseClauseNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TypeSwitchCase.Position()
}
func (p *parser) typeCaseClause() *TypeCaseClauseNode {
var (
ok bool
typeSwitchCase *TypeSwitchCaseNode
colonTok Token
statementList *StatementListNode
)
// ebnf.Sequence TypeSwitchCase ":" StatementList ctx [CASE, DEFAULT]
{
p.openScope()
defer p.closeScope()
ix := p.ix
// *ebnf.Name TypeSwitchCase ctx [CASE, DEFAULT]
if typeSwitchCase = p.typeSwitchCase(); typeSwitchCase == nil {
p.back(ix)
return nil
}
// *ebnf.Token ":" ctx []
if colonTok, ok = p.accept(COLON); !ok {
p.back(ix)
return nil
}
// *ebnf.Name StatementList ctx []
switch p.c() {
case ADD, AND, ARROW, BREAK, CHAN, CHAR, CONST, CONTINUE, DEFER, FALLTHROUGH, FLOAT, FOR, FUNC, GO, GOTO, IDENT, IF, IMAG, INT, INTERFACE, LBRACE, LBRACK, LPAREN, MAP, MUL, NOT, RETURN, SELECT, SEMICOLON, STRING, STRUCT, SUB, SWITCH, TYPE, VAR, XOR /* ε */ :
if statementList = p.statementList(); statementList == nil {
p.back(ix)
return nil
}
}
}
return &TypeCaseClauseNode{
TypeSwitchCase: typeSwitchCase,
COLON: colonTok,
StatementList: statementList,
}
}
// TypeConstraintNode represents the production
//
// TypeConstraint = TypeElem .
type TypeConstraintNode struct {
TypeElem *TypeElemListNode
}
// Source implements Node.
func (n *TypeConstraintNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeConstraintNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TypeElem.Position()
}
func (p *parser) typeConstraint() *TypeConstraintNode {
var (
typeElem *TypeElemListNode
)
// *ebnf.Name TypeElem ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
if typeElem = p.typeElem(); typeElem == nil {
return nil
}
return &TypeConstraintNode{
TypeElem: typeElem,
}
}
// TypeSpecListNode represents the production
//
// TypeSpecListNode = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
type TypeSpecListNode struct {
TypeSpec Node
SEMICOLON Token
List *TypeSpecListNode
}
// Source implements Node.
func (n *TypeSpecListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeSpecListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TypeSpec.Position()
}
// TypeDeclNode represents the production
//
// TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
type TypeDeclNode struct {
TYPE Token
LPAREN Token
TypeSpecList *TypeSpecListNode
RPAREN Token
}
// Source implements Node.
func (n *TypeDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TYPE.Position()
}
func (p *parser) typeDecl() *TypeDeclNode {
var (
ok bool
typeTok Token
typeSpec Node
lparenTok Token
list, last *TypeSpecListNode
rparenTok Token
)
// ebnf.Sequence "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) ctx [TYPE]
{
switch p.peek(1) {
case IDENT, LPAREN:
default:
return nil
}
ix := p.ix
// *ebnf.Token "type" ctx [TYPE]
typeTok = p.expect(TYPE)
// *ebnf.Group ( TypeSpec | "(" { TypeSpec ";" } ")" ) ctx [IDENT, LPAREN]
// ebnf.Alternative TypeSpec | "(" { TypeSpec ";" } ")" ctx [IDENT, LPAREN]
switch p.c() {
case IDENT: // 0
// *ebnf.Name TypeSpec ctx [IDENT]
if typeSpec = p.typeSpec(); typeSpec == nil {
goto _0
}
list = &TypeSpecListNode{
TypeSpec: typeSpec,
}
break
_0:
typeSpec = nil
p.back(ix)
return nil
case LPAREN: // 1
// ebnf.Sequence "(" { TypeSpec ";" } ")" ctx [LPAREN]
{
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Repetition { TypeSpec ";" } ctx []
_4:
{
var typeSpec Node
var semicolonTok Token
switch p.c() {
case IDENT:
// ebnf.Sequence TypeSpec ";" ctx [IDENT]
ix := p.ix
// *ebnf.Name TypeSpec ctx [IDENT]
if typeSpec = p.typeSpec(); typeSpec == nil {
p.back(ix)
goto _5
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _5
}
next := &TypeSpecListNode{
TypeSpec: typeSpec,
SEMICOLON: semicolonTok,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _4
}
_5:
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
goto _2
}
}
break
_2:
lparenTok = Token{}
rparenTok = Token{}
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
}
return &TypeDeclNode{
TYPE: typeTok,
LPAREN: lparenTok,
TypeSpecList: list,
RPAREN: rparenTok,
}
}
// TypeDefNode represents the production
//
// TypeDef = identifier [ TypeParameters ] Type .
type TypeDefNode struct {
IDENT Token
TypeParameters *TypeParametersNode
TypeNode Type
pkg *Package
visible
}
// Source implements Node.
func (n *TypeDefNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeDefNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IDENT.Position()
}
func (p *parser) typeDef() (r *TypeDefNode) {
var (
identTok Token
typeParameters *TypeParametersNode
typeNode Type
)
// ebnf.Sequence identifier [ TypeParameters ] Type ctx [IDENT]
{
ix := p.ix
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
// *ebnf.Option [ TypeParameters ] ctx []
switch p.c() {
case LBRACK:
// *ebnf.Name TypeParameters ctx [LBRACK]
if typeParameters = p.typeParameters(); typeParameters == nil {
goto _0
}
}
goto _1
_0:
typeParameters = nil
_1:
// *ebnf.Name Type ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
r = &TypeDefNode{
IDENT: identTok,
TypeParameters: typeParameters,
TypeNode: typeNode,
}
p.declare(p.sc, identTok, r, int32(p.ix), false)
return r
}
// TypeElemListNode represents the production
//
// TypeElem = TypeTerm { "|" TypeTerm } .
type TypeElemListNode struct {
OR Token
TypeTerm *TypeTermNode
List *TypeElemListNode
}
// Source implements Node.
func (n *TypeElemListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeElemListNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.OR.IsValid() {
return n.OR.Position()
}
return n.TypeTerm.Position()
}
func (p *parser) typeElem() *TypeElemListNode {
var (
typeTerm *TypeTermNode
list, last *TypeElemListNode
)
// ebnf.Sequence TypeTerm { "|" TypeTerm } ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
{
ix := p.ix
// *ebnf.Name TypeTerm ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
if typeTerm = p.typeTerm(); typeTerm == nil {
p.back(ix)
return nil
}
list = &TypeElemListNode{
TypeTerm: typeTerm,
}
last = list
// *ebnf.Repetition { "|" TypeTerm } ctx []
_0:
{
var orTok Token
var typeTerm *TypeTermNode
switch p.c() {
case OR:
// ebnf.Sequence "|" TypeTerm ctx [OR]
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE:
default:
goto _1
}
ix := p.ix
// *ebnf.Token "|" ctx [OR]
orTok = p.expect(OR)
// *ebnf.Name TypeTerm ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
if typeTerm = p.typeTerm(); typeTerm == nil {
p.back(ix)
goto _1
}
next := &TypeElemListNode{
OR: orTok,
TypeTerm: typeTerm,
}
last.List = next
last = next
goto _0
}
_1:
}
}
return list
}
// TypeListNode represents the production
//
// TypeList = Type { "," Type } .
type TypeListNode struct {
COMMA Token
TypeNode Type
List *TypeListNode
}
// Source implements Node.
func (n *TypeListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeListNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.COMMA.IsValid() {
return n.COMMA.Position()
}
return n.TypeNode.Position()
}
func (p *parser) typeList() *TypeListNode {
var (
typeNode Type
list, last *TypeListNode
)
// ebnf.Sequence Type { "," Type } ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
{
ix := p.ix
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
return nil
}
list = &TypeListNode{
TypeNode: typeNode,
}
last = list
// *ebnf.Repetition { "," Type } ctx []
_0:
{
var commaTok Token
var typeNode Type
switch p.c() {
case COMMA:
// ebnf.Sequence "," Type ctx [COMMA]
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
goto _1
}
ix := p.ix
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _1
}
next := &TypeListNode{
COMMA: commaTok,
TypeNode: typeNode,
}
last.List = next
last = next
goto _0
}
_1:
}
}
return list
}
func (p *parser) typeLit() Type {
var (
arrayType *ArrayTypeNode
structType *StructTypeNode
pointerType *PointerTypeNode
functionType *FunctionTypeNode
interfaceType *InterfaceTypeNode
mapType *MapTypeNode
channelType *ChannelTypeNode
)
// ebnf.Alternative ArrayType | StructType | PointerType | FunctionType | InterfaceType | SliceType | MapType | ChannelType ctx [ARROW, CHAN, FUNC, INTERFACE, LBRACK, MAP, MUL, STRUCT]
switch p.c() {
case LBRACK: // 0 5
if p.peek(1) == RBRACK {
return p.sliceType()
}
// *ebnf.Name ArrayType ctx [LBRACK]
if arrayType = p.arrayType(); arrayType != nil {
return arrayType
}
case STRUCT: // 1
// *ebnf.Name StructType ctx [STRUCT]
if structType = p.structType(); structType != nil {
return structType
}
case MUL: // 2
// *ebnf.Name PointerType ctx [MUL]
if pointerType = p.pointerType(); pointerType != nil {
return pointerType
}
case FUNC: // 3
// *ebnf.Name FunctionType ctx [FUNC]
if functionType = p.functionType(); functionType != nil {
return functionType
}
case INTERFACE: // 4
// *ebnf.Name InterfaceType ctx [INTERFACE]
if interfaceType = p.interfaceType(); interfaceType != nil {
return interfaceType
}
case MAP: // 6
// *ebnf.Name MapType ctx [MAP]
if mapType = p.mapType(); mapType != nil {
return mapType
}
case ARROW, CHAN: // 7
// *ebnf.Name ChannelType ctx [ARROW, CHAN]
if channelType = p.channelType(); channelType != nil {
return channelType
}
}
return nil
}
// TypeNameNode represents the production
//
// TypeName = QualifiedIdent | identifier .
type TypeNameNode struct {
Name Node
lexicalScoper
}
// Source implements Node.
func (n *TypeNameNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeNameNode) Position() (r token.Position) {
if n == nil || n.Name == nil {
return r
}
return n.Name.Position()
}
func (p *parser) typeName() *TypeNameNode {
var (
qualifiedIdent *QualifiedIdentNode
)
// ebnf.Alternative QualifiedIdent | identifier ctx [IDENT]
switch p.c() {
case IDENT: // 0 1
// *ebnf.Name QualifiedIdent ctx [IDENT]
if qualifiedIdent = p.qualifiedIdent(); qualifiedIdent != nil {
return &TypeNameNode{
Name: qualifiedIdent,
lexicalScoper: newLexicalScoper(p.sc),
}
}
// *ebnf.Name identifier ctx [IDENT]
return &TypeNameNode{
Name: p.expect(IDENT),
lexicalScoper: newLexicalScoper(p.sc),
}
default:
return nil
}
}
// TypeParamDeclNode represents the production
//
// TypeParamDecl = IdentifierList TypeConstraint .
type TypeParamDeclNode struct {
IdentifierList *IdentifierListNode
TypeConstraint *TypeConstraintNode
}
// Source implements Node.
func (n *TypeParamDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeParamDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IdentifierList.Position()
}
func (p *parser) typeParamDecl() *TypeParamDeclNode {
var (
identifierList *IdentifierListNode
typeConstraint *TypeConstraintNode
)
// ebnf.Sequence IdentifierList TypeConstraint ctx [IDENT]
{
ix := p.ix
// *ebnf.Name IdentifierList ctx [IDENT]
if identifierList = p.identifierList(); identifierList == nil {
p.back(ix)
return nil
}
// *ebnf.Name TypeConstraint ctx []
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE:
if typeConstraint = p.typeConstraint(); typeConstraint == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
}
return &TypeParamDeclNode{
IdentifierList: identifierList,
TypeConstraint: typeConstraint,
}
}
// TypeParamListNode represents the production
//
// TypeParamList = TypeParamDecl { "," TypeParamDecl } .
type TypeParamListNode struct {
COMMA Token
TypeParamDecl *TypeParamDeclNode
List *TypeParamListNode
}
// Source implements Node.
func (n *TypeParamListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeParamListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TypeParamDecl.Position()
}
func (p *parser) typeParamList() *TypeParamListNode {
var (
typeParamDecl *TypeParamDeclNode
list, last *TypeParamListNode
)
// ebnf.Sequence TypeParamDecl { "," TypeParamDecl } ctx [IDENT]
{
ix := p.ix
// *ebnf.Name TypeParamDecl ctx [IDENT]
if typeParamDecl = p.typeParamDecl(); typeParamDecl == nil {
p.back(ix)
return nil
}
list = &TypeParamListNode{
TypeParamDecl: typeParamDecl,
}
last = list
// *ebnf.Repetition { "," TypeParamDecl } ctx []
_0:
{
var commaTok Token
var typeParamDecl *TypeParamDeclNode
switch p.c() {
case COMMA:
// ebnf.Sequence "," TypeParamDecl ctx [COMMA]
switch p.peek(1) {
case IDENT:
default:
goto _1
}
ix := p.ix
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
// *ebnf.Name TypeParamDecl ctx [IDENT]
if typeParamDecl = p.typeParamDecl(); typeParamDecl == nil {
p.back(ix)
goto _1
}
next := &TypeParamListNode{
COMMA: commaTok,
TypeParamDecl: typeParamDecl,
}
last.List = next
last = next
goto _0
}
_1:
}
}
return list
}
// TypeParametersNode represents the production
//
// TypeParameters = "[" TypeParamList [ "," ] "]" .
type TypeParametersNode struct {
LBRACK Token
TypeParamList *TypeParamListNode
COMMA Token
RBRACK Token
}
// Source implements Node.
func (n *TypeParametersNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeParametersNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.LBRACK.Position()
}
func (p *parser) typeParameters() *TypeParametersNode {
var (
ok bool
lbrackTok Token
typeParamList *TypeParamListNode
commaTok Token
rbrackTok Token
)
// ebnf.Sequence "[" TypeParamList [ "," ] "]" ctx [LBRACK]
{
switch p.peek(1) {
case IDENT:
default:
return nil
}
ix := p.ix
// *ebnf.Token "[" ctx [LBRACK]
lbrackTok = p.expect(LBRACK)
// *ebnf.Name TypeParamList ctx [IDENT]
if typeParamList = p.typeParamList(); typeParamList == nil {
p.back(ix)
return nil
}
// *ebnf.Option [ "," ] ctx []
switch p.c() {
case COMMA:
// *ebnf.Token "," ctx [COMMA]
commaTok = p.expect(COMMA)
}
// *ebnf.Token "]" ctx []
if rbrackTok, ok = p.accept(RBRACK); !ok {
p.back(ix)
return nil
}
}
return &TypeParametersNode{
LBRACK: lbrackTok,
TypeParamList: typeParamList,
COMMA: commaTok,
RBRACK: rbrackTok,
}
}
func (p *parser) typeSpec() Node {
var (
aliasDecl *AliasDeclNode
typeDef *TypeDefNode
)
// ebnf.Alternative AliasDecl | TypeDef ctx [IDENT]
switch p.c() {
case IDENT: // 0 1
// *ebnf.Name AliasDecl ctx [IDENT]
if aliasDecl = p.aliasDecl(); aliasDecl == nil {
goto _0
}
return aliasDecl
_0:
aliasDecl = nil
// *ebnf.Name TypeDef ctx [IDENT]
if typeDef = p.typeDef(); typeDef == nil {
return nil
}
return typeDef
default:
return nil
}
}
// TypeSwitchCaseNode represents the production
//
// TypeSwitchCase = "case" TypeList | "default" .
type TypeSwitchCaseNode struct {
CASE Token
TypeList *TypeListNode
DEFAULT Token
}
// Source implements Node.
func (n *TypeSwitchCaseNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeSwitchCaseNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) typeSwitchCase() *TypeSwitchCaseNode {
var (
caseTok Token
typeList *TypeListNode
defaultTok Token
)
// ebnf.Alternative "case" TypeList | "default" ctx [CASE, DEFAULT]
switch p.c() {
case CASE: // 0
// ebnf.Sequence "case" TypeList ctx [CASE]
{
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
goto _0
}
ix := p.ix
// *ebnf.Token "case" ctx [CASE]
caseTok = p.expect(CASE)
// *ebnf.Name TypeList ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeList = p.typeList(); typeList == nil {
p.back(ix)
goto _0
}
}
break
_0:
caseTok = Token{}
typeList = nil
return nil
case DEFAULT: // 1
// *ebnf.Token "default" ctx [DEFAULT]
defaultTok = p.expect(DEFAULT)
default:
return nil
}
return &TypeSwitchCaseNode{
CASE: caseTok,
TypeList: typeList,
DEFAULT: defaultTok,
}
}
// TypeSwitchGuardNode represents the production
//
// TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
type TypeSwitchGuardNode struct {
IDENT Token
DEFINE Token
PrimaryExpr Expression
PERIOD Token
LPAREN Token
TYPE Token
RPAREN Token
}
// Source implements Node.
func (n *TypeSwitchGuardNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeSwitchGuardNode) Position() (r token.Position) {
if n == nil {
return r
}
panic("TODO")
}
func (p *parser) typeSwitchGuard() *TypeSwitchGuardNode {
var (
ok bool
identTok Token
defineTok Token
primaryExpr Expression
periodTok Token
lparenTok Token
typeTok Token
rparenTok Token
)
// ebnf.Sequence [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT]
{
ix := p.ix
// *ebnf.Option [ identifier ":=" ] ctx [ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT]
switch p.c() {
case IDENT:
// ebnf.Sequence identifier ":=" ctx [IDENT]
{
if p.peek(1) != DEFINE {
goto _0
}
// *ebnf.Name identifier ctx [IDENT]
identTok = p.expect(IDENT)
// *ebnf.Token ":=" ctx [DEFINE]
defineTok = p.expect(DEFINE)
}
}
goto _1
_0:
defineTok = Token{}
identTok = Token{}
_1:
// *ebnf.Name PrimaryExpr ctx []
switch p.c() {
case ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT:
if primaryExpr = p.primaryExpr(false); primaryExpr == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Token "." ctx []
if periodTok, ok = p.accept(PERIOD); !ok {
p.back(ix)
return nil
}
// *ebnf.Token "(" ctx []
if lparenTok, ok = p.accept(LPAREN); !ok {
p.back(ix)
return nil
}
// *ebnf.Token "type" ctx []
if typeTok, ok = p.accept(TYPE); !ok {
p.back(ix)
return nil
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
return nil
}
}
return &TypeSwitchGuardNode{
IDENT: identTok,
DEFINE: defineTok,
PrimaryExpr: primaryExpr,
PERIOD: periodTok,
LPAREN: lparenTok,
TYPE: typeTok,
RPAREN: rparenTok,
}
}
// TypeCaseClauseListNode represents the production
//
// TypeCaseClauseListNode = { TypeCaseClause } .
type TypeCaseClauseListNode struct {
TypeCaseClause *TypeCaseClauseNode
List *TypeCaseClauseListNode
}
// Source implements Node.
func (n *TypeCaseClauseListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeCaseClauseListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TypeCaseClause.Position()
}
// TypeSwitchStmtNode represents the production
//
// TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
type TypeSwitchStmtNode struct {
SWITCH Token
SimpleStmt Node
SEMICOLON Token
TypeSwitchGuard *TypeSwitchGuardNode
LBRACE Token
TypeCaseClauseList *TypeCaseClauseListNode
RBRACE Token
}
// Source implements Node.
func (n *TypeSwitchStmtNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeSwitchStmtNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.SWITCH.Position()
}
func (p *parser) typeSwitchStmt() *TypeSwitchStmtNode {
var (
ok bool
switchTok Token
simpleStmt Node
semicolonTok Token
typeSwitchGuard *TypeSwitchGuardNode
lbraceTok Token
list, last *TypeCaseClauseListNode
rbraceTok Token
)
// ebnf.Sequence "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" ctx [SWITCH]
{
ix := p.ix
// *ebnf.Token "switch" ctx [SWITCH]
switchTok = p.expect(SWITCH)
// *ebnf.Option [ SimpleStmt ";" ] ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR:
// ebnf.Sequence SimpleStmt ";" ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR]
{
ix := p.ix
// *ebnf.Name SimpleStmt ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, SEMICOLON, STRING, STRUCT, SUB, XOR]
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if simpleStmt = p.simpleStmt(false); simpleStmt == nil {
p.back(ix)
goto _0
}
default:
p.back(ix)
goto _0
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _0
}
}
}
goto _1
_0:
semicolonTok = Token{}
simpleStmt = nil
_1:
// *ebnf.Name TypeSwitchGuard ctx []
switch p.c() {
case ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRING, STRUCT:
if typeSwitchGuard = p.typeSwitchGuard(); typeSwitchGuard == nil {
p.back(ix)
return nil
}
default:
p.back(ix)
return nil
}
// *ebnf.Token "{" ctx []
if lbraceTok, ok = p.accept(LBRACE); !ok {
p.back(ix)
return nil
}
// *ebnf.Repetition { TypeCaseClause } ctx []
_2:
{
var typeCaseClause *TypeCaseClauseNode
switch p.c() {
case CASE, DEFAULT:
// *ebnf.Name TypeCaseClause ctx [CASE, DEFAULT]
if typeCaseClause = p.typeCaseClause(); typeCaseClause == nil {
goto _3
}
next := &TypeCaseClauseListNode{
TypeCaseClause: typeCaseClause,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _2
}
_3:
}
// *ebnf.Token "}" ctx []
if rbraceTok, ok = p.accept(RBRACE); !ok {
p.back(ix)
return nil
}
}
return &TypeSwitchStmtNode{
SWITCH: switchTok,
SimpleStmt: simpleStmt,
SEMICOLON: semicolonTok,
TypeSwitchGuard: typeSwitchGuard,
LBRACE: lbraceTok,
TypeCaseClauseList: list,
RBRACE: rbraceTok,
}
}
// TypeTermNode represents the production
//
// TypeTerm = Type | UnderlyingType .
type TypeTermNode struct {
TypeNode Type
UnderlyingType *UnderlyingTypeNode
}
// Source implements Node.
func (n *TypeTermNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *TypeTermNode) Position() (r token.Position) {
if n == nil {
return r
}
if n.TypeNode != nil {
return n.TypeNode.Position()
}
return n.UnderlyingType.Position()
}
func (p *parser) typeTerm() *TypeTermNode {
var (
typeNode Type
underlyingType *UnderlyingTypeNode
)
// ebnf.Alternative Type | UnderlyingType ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT, TILDE]
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 0
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
goto _0
}
break
_0:
typeNode = nil
return nil
case TILDE: // 1
// *ebnf.Name UnderlyingType ctx [TILDE]
if underlyingType = p.underlyingType(); underlyingType == nil {
goto _2
}
break
_2:
underlyingType = nil
return nil
default:
return nil
}
return &TypeTermNode{
TypeNode: typeNode,
UnderlyingType: underlyingType,
}
}
// UnaryExprNode represents the production
//
// UnaryExpr = PrimaryExpr | ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr .
type UnaryExprNode struct {
Op Token
UnaryExpr Expression
typeCache
valueCache
}
// Source implements Node.
func (n *UnaryExprNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *UnaryExprNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.Op.Position()
}
func (p *parser) unaryExpr(preBlock bool) Expression {
var (
primaryExpr Expression
op Token
unaryExpr Expression
)
// ebnf.Alternative PrimaryExpr | ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
switch p.c() {
case CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, STRING, STRUCT: // 0
// *ebnf.Name PrimaryExpr ctx [CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, STRING, STRUCT]
if primaryExpr = p.primaryExpr(preBlock); primaryExpr == nil {
return nil
}
return primaryExpr
case ARROW, MUL: // 0 1
// *ebnf.Name PrimaryExpr ctx [ARROW, MUL]
if primaryExpr = p.primaryExpr(preBlock); primaryExpr == nil {
goto _2
}
return primaryExpr
_2:
primaryExpr = nil
// ebnf.Sequence ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr ctx [ARROW, MUL]
{
ix := p.ix
// *ebnf.Group ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) ctx [ARROW, MUL]
// ebnf.Alternative "+" | "-" | "!" | "^" | "*" | "&" | "<-" ctx [ARROW, MUL]
op = p.consume()
// *ebnf.Name UnaryExpr ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil {
p.back(ix)
goto _3
}
default:
p.back(ix)
goto _3
}
}
break
_3:
unaryExpr = nil
return nil
case ADD, AND, NOT, SUB, XOR: // 1
// ebnf.Sequence ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) UnaryExpr ctx [ADD, AND, NOT, SUB, XOR]
{
ix := p.ix
// *ebnf.Group ( "+" | "-" | "!" | "^" | "*" | "&" | "<-" ) ctx [ADD, AND, NOT, SUB, XOR]
// ebnf.Alternative "+" | "-" | "!" | "^" | "*" | "&" | "<-" ctx [ADD, AND, NOT, SUB, XOR]
op = p.consume()
// *ebnf.Name UnaryExpr ctx []
switch p.c() {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
if unaryExpr = p.unaryExpr(preBlock); unaryExpr == nil {
p.back(ix)
goto _8
}
default:
p.back(ix)
goto _8
}
}
break
_8:
op = Token{}
unaryExpr = nil
return nil
default:
return nil
}
return &UnaryExprNode{
Op: op,
UnaryExpr: unaryExpr,
}
}
// UnderlyingTypeNode represents the production
//
// UnderlyingType = "~" Type .
type UnderlyingTypeNode struct {
TILDE Token
TypeNode Type
}
// Source implements Node.
func (n *UnderlyingTypeNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *UnderlyingTypeNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.TILDE.Position()
}
func (p *parser) underlyingType() *UnderlyingTypeNode {
var (
tildeTok Token
typeNode Type
)
// ebnf.Sequence "~" Type ctx [TILDE]
{
switch p.peek(1) {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT:
default:
return nil
}
ix := p.ix
// *ebnf.Token "~" ctx [TILDE]
tildeTok = p.expect(TILDE)
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
return nil
}
}
return &UnderlyingTypeNode{
TILDE: tildeTok,
TypeNode: typeNode,
}
}
// VarSpecListNode represents the production
//
// VarSpecListNode = { VarSpec ";" } .
type VarSpecListNode struct {
VarSpec Node
SEMICOLON Token
List *VarSpecListNode
}
// Source implements Node.
func (n *VarSpecListNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *VarSpecListNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.VarSpec.Position()
}
// VarDeclNode represents the production
//
// VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
type VarDeclNode struct {
VAR Token
LPAREN Token
VarSpec Node
RPAREN Token
}
// Source implements Node.
func (n *VarDeclNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *VarDeclNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.VAR.Position()
}
func (p *parser) varDecl() *VarDeclNode {
var (
ok bool
varTok Token
varSpec Node
lparenTok Token
list, last *VarSpecListNode
rparenTok Token
)
// ebnf.Sequence "var" ( VarSpec | "(" { VarSpec ";" } ")" ) ctx [VAR]
{
switch p.peek(1) {
case IDENT, LPAREN:
default:
return nil
}
ix := p.ix
// *ebnf.Token "var" ctx [VAR]
varTok = p.expect(VAR)
// *ebnf.Group ( VarSpec | "(" { VarSpec ";" } ")" ) ctx [IDENT, LPAREN]
// ebnf.Alternative VarSpec | "(" { VarSpec ";" } ")" ctx [IDENT, LPAREN]
switch p.c() {
case IDENT: // 0
// *ebnf.Name VarSpec ctx [IDENT]
if varSpec = p.varSpec(); varSpec == nil {
goto _0
}
list = &VarSpecListNode{
VarSpec: varSpec,
}
break
_0:
varSpec = nil
p.back(ix)
return nil
case LPAREN: // 1
// ebnf.Sequence "(" { VarSpec ";" } ")" ctx [LPAREN]
{
ix := p.ix
// *ebnf.Token "(" ctx [LPAREN]
lparenTok = p.expect(LPAREN)
// *ebnf.Repetition { VarSpec ";" } ctx []
_4:
{
var varSpec Node
var semicolonTok Token
switch p.c() {
case IDENT:
// ebnf.Sequence VarSpec ";" ctx [IDENT]
ix := p.ix
// *ebnf.Name VarSpec ctx [IDENT]
if varSpec = p.varSpec(); varSpec == nil {
p.back(ix)
goto _5
}
// *ebnf.Token ";" ctx []
if semicolonTok, ok = p.accept(SEMICOLON); !ok {
p.back(ix)
goto _5
}
next := &VarSpecListNode{
VarSpec: varSpec,
SEMICOLON: semicolonTok,
}
if last != nil {
last.List = next
}
if list == nil {
list = next
}
last = next
goto _4
}
_5:
}
// *ebnf.Token ")" ctx []
if rparenTok, ok = p.accept(RPAREN); !ok {
p.back(ix)
goto _2
}
}
break
_2:
lparenTok = Token{}
rparenTok = Token{}
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
}
if list != nil && list.List == nil && !list.SEMICOLON.IsValid() {
return &VarDeclNode{
VAR: varTok,
LPAREN: lparenTok,
VarSpec: list.VarSpec,
RPAREN: rparenTok,
}
}
return &VarDeclNode{
VAR: varTok,
LPAREN: lparenTok,
VarSpec: list,
RPAREN: rparenTok,
}
}
// VarSpecNode represents the production
//
// VarSpec = identifier ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
type VarSpecNode struct {
IDENT Token
TypeNode Type
ASSIGN Token
ExpressionList *ExpressionListNode
lexicalScoper
visible
}
// Source implements Node.
func (n *VarSpecNode) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *VarSpecNode) Position() (r token.Position) {
if n == nil {
return r
}
return n.IDENT.Position()
}
// VarSpec2Node represents the production
//
// VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
type VarSpec2Node struct {
IdentifierList *IdentifierListNode
TypeNode Type
ASSIGN Token
ExpressionList *ExpressionListNode
lexicalScoper
visible
}
// Source implements Node.
func (n *VarSpec2Node) Source(full bool) string { return nodeSource(n, full) }
// Position implements Node.
func (n *VarSpec2Node) Position() (r token.Position) {
if n == nil {
return r
}
return n.IdentifierList.Position()
}
func (p *parser) varSpec() Node {
var (
identifierList *IdentifierListNode
typeNode Type
assignTok Token
expressionList *ExpressionListNode
)
// ebnf.Sequence IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) ctx [IDENT]
{
ix := p.ix
// *ebnf.Name IdentifierList ctx [IDENT]
if identifierList = p.identifierList(); identifierList == nil {
p.back(ix)
return nil
}
// *ebnf.Group ( Type [ "=" ExpressionList ] | "=" ExpressionList ) ctx []
// ebnf.Alternative Type [ "=" ExpressionList ] | "=" ExpressionList ctx [ARROW, ASSIGN, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
switch p.c() {
case ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT: // 0
// ebnf.Sequence Type [ "=" ExpressionList ] ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
{
ix := p.ix
// *ebnf.Name Type ctx [ARROW, CHAN, FUNC, IDENT, INTERFACE, LBRACK, LPAREN, MAP, MUL, STRUCT]
if typeNode = p.type1(); typeNode == nil {
p.back(ix)
goto _0
}
// *ebnf.Option [ "=" ExpressionList ] ctx []
switch p.c() {
case ASSIGN:
// ebnf.Sequence "=" ExpressionList ctx [ASSIGN]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _2
}
ix := p.ix
// *ebnf.Token "=" ctx [ASSIGN]
assignTok = p.expect(ASSIGN)
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _2
}
}
}
goto _3
_2:
assignTok = Token{}
expressionList = nil
_3:
}
break
_0:
assignTok = Token{}
expressionList = nil
typeNode = nil
p.back(ix)
return nil
case ASSIGN: // 1
// ebnf.Sequence "=" ExpressionList ctx [ASSIGN]
{
switch p.peek(1) {
case ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR:
default:
goto _4
}
ix := p.ix
// *ebnf.Token "=" ctx [ASSIGN]
assignTok = p.expect(ASSIGN)
// *ebnf.Name ExpressionList ctx [ADD, AND, ARROW, CHAN, CHAR, FLOAT, FUNC, IDENT, IMAG, INT, INTERFACE, LBRACK, LPAREN, MAP, MUL, NOT, STRING, STRUCT, SUB, XOR]
if expressionList = p.expressionList(false); expressionList == nil {
p.back(ix)
goto _4
}
}
break
_4:
assignTok = Token{}
expressionList = nil
p.back(ix)
return nil
default:
p.back(ix)
return nil
}
}
sc := p.sc
if identifierList.Len() == 1 {
r := &VarSpecNode{
lexicalScoper: newLexicalScoper(sc),
IDENT: identifierList.IDENT,
TypeNode: typeNode,
ASSIGN: assignTok,
ExpressionList: expressionList,
}
visible := int32(p.ix)
p.declare(sc, r.IDENT, r, visible, false)
return r
}
r := &VarSpec2Node{
lexicalScoper: newLexicalScoper(sc),
IdentifierList: identifierList,
TypeNode: typeNode,
ASSIGN: assignTok,
ExpressionList: expressionList,
}
visible := int32(p.ix)
for l := r.IdentifierList; l != nil; l = l.List {
p.declare(sc, l.IDENT, r, visible, false)
}
return r
}
const (
balanceZero = iota
balanceTuple
balanceEqual
balanceExtraRhs
balanceExtraLhs
)
func checkBalance(lhs, rhs int) int {
switch {
case lhs == rhs:
return balanceEqual
case lhs > 1 && rhs == 1:
return balanceTuple
case lhs > rhs:
return balanceExtraLhs
case lhs < rhs:
return balanceExtraRhs
default:
panic(todo("", lhs, rhs))
}
}