mirror of
https://github.com/42wim/matterbridge.git
synced 2024-11-24 03:32:02 -08:00
1024 lines
30 KiB
Go
1024 lines
30 KiB
Go
|
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
|
|||
|
|
|||
|
// Package cpuid provides information about the CPU running the current program.
|
|||
|
//
|
|||
|
// CPU features are detected on startup, and kept for fast access through the life of the application.
|
|||
|
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
|
|||
|
//
|
|||
|
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
|
|||
|
//
|
|||
|
// Package home: https://github.com/klauspost/cpuid
|
|||
|
package cpuid
|
|||
|
|
|||
|
import (
|
|||
|
"flag"
|
|||
|
"fmt"
|
|||
|
"math"
|
|||
|
"os"
|
|||
|
"runtime"
|
|||
|
"strings"
|
|||
|
)
|
|||
|
|
|||
|
// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
|
|||
|
// and Processor Programming Reference (PPR)
|
|||
|
|
|||
|
// Vendor is a representation of a CPU vendor.
|
|||
|
type Vendor int
|
|||
|
|
|||
|
const (
|
|||
|
VendorUnknown Vendor = iota
|
|||
|
Intel
|
|||
|
AMD
|
|||
|
VIA
|
|||
|
Transmeta
|
|||
|
NSC
|
|||
|
KVM // Kernel-based Virtual Machine
|
|||
|
MSVM // Microsoft Hyper-V or Windows Virtual PC
|
|||
|
VMware
|
|||
|
XenHVM
|
|||
|
Bhyve
|
|||
|
Hygon
|
|||
|
SiS
|
|||
|
RDC
|
|||
|
|
|||
|
Ampere
|
|||
|
ARM
|
|||
|
Broadcom
|
|||
|
Cavium
|
|||
|
DEC
|
|||
|
Fujitsu
|
|||
|
Infineon
|
|||
|
Motorola
|
|||
|
NVIDIA
|
|||
|
AMCC
|
|||
|
Qualcomm
|
|||
|
Marvell
|
|||
|
|
|||
|
lastVendor
|
|||
|
)
|
|||
|
|
|||
|
//go:generate stringer -type=FeatureID,Vendor
|
|||
|
|
|||
|
// FeatureID is the ID of a specific cpu feature.
|
|||
|
type FeatureID int
|
|||
|
|
|||
|
const (
|
|||
|
// Keep index -1 as unknown
|
|||
|
UNKNOWN = -1
|
|||
|
|
|||
|
// Add features
|
|||
|
ADX FeatureID = iota // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
|||
|
AESNI // Advanced Encryption Standard New Instructions
|
|||
|
AMD3DNOW // AMD 3DNOW
|
|||
|
AMD3DNOWEXT // AMD 3DNowExt
|
|||
|
AMXBF16 // Tile computational operations on BFLOAT16 numbers
|
|||
|
AMXINT8 // Tile computational operations on 8-bit integers
|
|||
|
AMXTILE // Tile architecture
|
|||
|
AVX // AVX functions
|
|||
|
AVX2 // AVX2 functions
|
|||
|
AVX512BF16 // AVX-512 BFLOAT16 Instructions
|
|||
|
AVX512BITALG // AVX-512 Bit Algorithms
|
|||
|
AVX512BW // AVX-512 Byte and Word Instructions
|
|||
|
AVX512CD // AVX-512 Conflict Detection Instructions
|
|||
|
AVX512DQ // AVX-512 Doubleword and Quadword Instructions
|
|||
|
AVX512ER // AVX-512 Exponential and Reciprocal Instructions
|
|||
|
AVX512F // AVX-512 Foundation
|
|||
|
AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
|
|||
|
AVX512PF // AVX-512 Prefetch Instructions
|
|||
|
AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
|
|||
|
AVX512VBMI2 // AVX-512 Vector Bit Manipulation Instructions, Version 2
|
|||
|
AVX512VL // AVX-512 Vector Length Extensions
|
|||
|
AVX512VNNI // AVX-512 Vector Neural Network Instructions
|
|||
|
AVX512VP2INTERSECT // AVX-512 Intersect for D/Q
|
|||
|
AVX512VPOPCNTDQ // AVX-512 Vector Population Count Doubleword and Quadword
|
|||
|
AVXSLOW // Indicates the CPU performs 2 128 bit operations instead of one.
|
|||
|
BMI1 // Bit Manipulation Instruction Set 1
|
|||
|
BMI2 // Bit Manipulation Instruction Set 2
|
|||
|
CLDEMOTE // Cache Line Demote
|
|||
|
CLMUL // Carry-less Multiplication
|
|||
|
CMOV // i686 CMOV
|
|||
|
CX16 // CMPXCHG16B Instruction
|
|||
|
ENQCMD // Enqueue Command
|
|||
|
ERMS // Enhanced REP MOVSB/STOSB
|
|||
|
F16C // Half-precision floating-point conversion
|
|||
|
FMA3 // Intel FMA 3. Does not imply AVX.
|
|||
|
FMA4 // Bulldozer FMA4 functions
|
|||
|
GFNI // Galois Field New Instructions
|
|||
|
HLE // Hardware Lock Elision
|
|||
|
HTT // Hyperthreading (enabled)
|
|||
|
HYPERVISOR // This bit has been reserved by Intel & AMD for use by hypervisors
|
|||
|
IBPB // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
|
|||
|
IBS // Instruction Based Sampling (AMD)
|
|||
|
IBSBRNTRGT // Instruction Based Sampling Feature (AMD)
|
|||
|
IBSFETCHSAM // Instruction Based Sampling Feature (AMD)
|
|||
|
IBSFFV // Instruction Based Sampling Feature (AMD)
|
|||
|
IBSOPCNT // Instruction Based Sampling Feature (AMD)
|
|||
|
IBSOPCNTEXT // Instruction Based Sampling Feature (AMD)
|
|||
|
IBSOPSAM // Instruction Based Sampling Feature (AMD)
|
|||
|
IBSRDWROPCNT // Instruction Based Sampling Feature (AMD)
|
|||
|
IBSRIPINVALIDCHK // Instruction Based Sampling Feature (AMD)
|
|||
|
LZCNT // LZCNT instruction
|
|||
|
MMX // standard MMX
|
|||
|
MMXEXT // SSE integer functions or AMD MMX ext
|
|||
|
MOVDIR64B // Move 64 Bytes as Direct Store
|
|||
|
MOVDIRI // Move Doubleword as Direct Store
|
|||
|
MPX // Intel MPX (Memory Protection Extensions)
|
|||
|
NX // NX (No-Execute) bit
|
|||
|
POPCNT // POPCNT instruction
|
|||
|
RDRAND // RDRAND instruction is available
|
|||
|
RDSEED // RDSEED instruction is available
|
|||
|
RDTSCP // RDTSCP Instruction
|
|||
|
RTM // Restricted Transactional Memory
|
|||
|
SERIALIZE // Serialize Instruction Execution
|
|||
|
SGX // Software Guard Extensions
|
|||
|
SGXLC // Software Guard Extensions Launch Control
|
|||
|
SHA // Intel SHA Extensions
|
|||
|
SSE // SSE functions
|
|||
|
SSE2 // P4 SSE functions
|
|||
|
SSE3 // Prescott SSE3 functions
|
|||
|
SSE4 // Penryn SSE4.1 functions
|
|||
|
SSE42 // Nehalem SSE4.2 functions
|
|||
|
SSE4A // AMD Barcelona microarchitecture SSE4a instructions
|
|||
|
SSSE3 // Conroe SSSE3 functions
|
|||
|
STIBP // Single Thread Indirect Branch Predictors
|
|||
|
TBM // AMD Trailing Bit Manipulation
|
|||
|
TSXLDTRK // Intel TSX Suspend Load Address Tracking
|
|||
|
VAES // Vector AES
|
|||
|
VMX // Virtual Machine Extensions
|
|||
|
VPCLMULQDQ // Carry-Less Multiplication Quadword
|
|||
|
WAITPKG // TPAUSE, UMONITOR, UMWAIT
|
|||
|
WBNOINVD // Write Back and Do Not Invalidate Cache
|
|||
|
XOP // Bulldozer XOP functions
|
|||
|
|
|||
|
// ARM features:
|
|||
|
AESARM // AES instructions
|
|||
|
ARMCPUID // Some CPU ID registers readable at user-level
|
|||
|
ASIMD // Advanced SIMD
|
|||
|
ASIMDDP // SIMD Dot Product
|
|||
|
ASIMDHP // Advanced SIMD half-precision floating point
|
|||
|
ASIMDRDM // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
|
|||
|
ATOMICS // Large System Extensions (LSE)
|
|||
|
CRC32 // CRC32/CRC32C instructions
|
|||
|
DCPOP // Data cache clean to Point of Persistence (DC CVAP)
|
|||
|
EVTSTRM // Generic timer
|
|||
|
FCMA // Floatin point complex number addition and multiplication
|
|||
|
FP // Single-precision and double-precision floating point
|
|||
|
FPHP // Half-precision floating point
|
|||
|
GPA // Generic Pointer Authentication
|
|||
|
JSCVT // Javascript-style double->int convert (FJCVTZS)
|
|||
|
LRCPC // Weaker release consistency (LDAPR, etc)
|
|||
|
PMULL // Polynomial Multiply instructions (PMULL/PMULL2)
|
|||
|
SHA1 // SHA-1 instructions (SHA1C, etc)
|
|||
|
SHA2 // SHA-2 instructions (SHA256H, etc)
|
|||
|
SHA3 // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
|
|||
|
SHA512 // SHA512 instructions
|
|||
|
SM3 // SM3 instructions
|
|||
|
SM4 // SM4 instructions
|
|||
|
SVE // Scalable Vector Extension
|
|||
|
|
|||
|
// Keep it last. It automatically defines the size of []flagSet
|
|||
|
lastID
|
|||
|
|
|||
|
firstID FeatureID = UNKNOWN + 1
|
|||
|
)
|
|||
|
|
|||
|
// CPUInfo contains information about the detected system CPU.
|
|||
|
type CPUInfo struct {
|
|||
|
BrandName string // Brand name reported by the CPU
|
|||
|
VendorID Vendor // Comparable CPU vendor ID
|
|||
|
VendorString string // Raw vendor string.
|
|||
|
featureSet flagSet // Features of the CPU
|
|||
|
PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
|
|||
|
ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
|
|||
|
LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
|
|||
|
Family int // CPU family number
|
|||
|
Model int // CPU model number
|
|||
|
CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
|
|||
|
Hz int64 // Clock speed, if known, 0 otherwise
|
|||
|
Cache struct {
|
|||
|
L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
|
|||
|
L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
|
|||
|
L2 int // L2 Cache (per core or shared). Will be -1 if undetected
|
|||
|
L3 int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
|
|||
|
}
|
|||
|
SGX SGXSupport
|
|||
|
maxFunc uint32
|
|||
|
maxExFunc uint32
|
|||
|
}
|
|||
|
|
|||
|
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
|
|||
|
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
|
|||
|
var xgetbv func(index uint32) (eax, edx uint32)
|
|||
|
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
|
|||
|
var darwinHasAVX512 = func() bool { return false }
|
|||
|
|
|||
|
// CPU contains information about the CPU as detected on startup,
|
|||
|
// or when Detect last was called.
|
|||
|
//
|
|||
|
// Use this as the primary entry point to you data.
|
|||
|
var CPU CPUInfo
|
|||
|
|
|||
|
func init() {
|
|||
|
initCPU()
|
|||
|
Detect()
|
|||
|
}
|
|||
|
|
|||
|
// Detect will re-detect current CPU info.
|
|||
|
// This will replace the content of the exported CPU variable.
|
|||
|
//
|
|||
|
// Unless you expect the CPU to change while you are running your program
|
|||
|
// you should not need to call this function.
|
|||
|
// If you call this, you must ensure that no other goroutine is accessing the
|
|||
|
// exported CPU variable.
|
|||
|
func Detect() {
|
|||
|
// Set defaults
|
|||
|
CPU.ThreadsPerCore = 1
|
|||
|
CPU.Cache.L1I = -1
|
|||
|
CPU.Cache.L1D = -1
|
|||
|
CPU.Cache.L2 = -1
|
|||
|
CPU.Cache.L3 = -1
|
|||
|
safe := true
|
|||
|
if detectArmFlag != nil {
|
|||
|
safe = !*detectArmFlag
|
|||
|
}
|
|||
|
addInfo(&CPU, safe)
|
|||
|
if displayFeats != nil && *displayFeats {
|
|||
|
fmt.Println("cpu features:", strings.Join(CPU.FeatureSet(), ","))
|
|||
|
// Exit with non-zero so tests will print value.
|
|||
|
os.Exit(1)
|
|||
|
}
|
|||
|
if disableFlag != nil {
|
|||
|
s := strings.Split(*disableFlag, ",")
|
|||
|
for _, feat := range s {
|
|||
|
feat := ParseFeature(strings.TrimSpace(feat))
|
|||
|
if feat != UNKNOWN {
|
|||
|
CPU.featureSet.unset(feat)
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// DetectARM will detect ARM64 features.
|
|||
|
// This is NOT done automatically since it can potentially crash
|
|||
|
// if the OS does not handle the command.
|
|||
|
// If in the future this can be done safely this function may not
|
|||
|
// do anything.
|
|||
|
func DetectARM() {
|
|||
|
addInfo(&CPU, false)
|
|||
|
}
|
|||
|
|
|||
|
var detectArmFlag *bool
|
|||
|
var displayFeats *bool
|
|||
|
var disableFlag *string
|
|||
|
|
|||
|
// Flags will enable flags.
|
|||
|
// This must be called *before* flag.Parse AND
|
|||
|
// Detect must be called after the flags have been parsed.
|
|||
|
// Note that this means that any detection used in init() functions
|
|||
|
// will not contain these flags.
|
|||
|
func Flags() {
|
|||
|
disableFlag = flag.String("cpu.disable", "", "disable cpu features; comma separated list")
|
|||
|
displayFeats = flag.Bool("cpu.features", false, "lists cpu features and exits")
|
|||
|
detectArmFlag = flag.Bool("cpu.arm", false, "allow ARM features to be detected; can potentially crash")
|
|||
|
}
|
|||
|
|
|||
|
// Supports returns whether the CPU supports all of the requested features.
|
|||
|
func (c CPUInfo) Supports(ids ...FeatureID) bool {
|
|||
|
for _, id := range ids {
|
|||
|
if !c.featureSet.inSet(id) {
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// Has allows for checking a single feature.
|
|||
|
// Should be inlined by the compiler.
|
|||
|
func (c CPUInfo) Has(id FeatureID) bool {
|
|||
|
return c.featureSet.inSet(id)
|
|||
|
}
|
|||
|
|
|||
|
// Disable will disable one or several features.
|
|||
|
func (c *CPUInfo) Disable(ids ...FeatureID) bool {
|
|||
|
for _, id := range ids {
|
|||
|
c.featureSet.unset(id)
|
|||
|
}
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// Enable will disable one or several features even if they were undetected.
|
|||
|
// This is of course not recommended for obvious reasons.
|
|||
|
func (c *CPUInfo) Enable(ids ...FeatureID) bool {
|
|||
|
for _, id := range ids {
|
|||
|
c.featureSet.set(id)
|
|||
|
}
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// IsVendor returns true if vendor is recognized as Intel
|
|||
|
func (c CPUInfo) IsVendor(v Vendor) bool {
|
|||
|
return c.VendorID == v
|
|||
|
}
|
|||
|
|
|||
|
func (c CPUInfo) FeatureSet() []string {
|
|||
|
s := make([]string, 0)
|
|||
|
for _, f := range c.featureSet.Strings() {
|
|||
|
s = append(s, f)
|
|||
|
}
|
|||
|
return s
|
|||
|
}
|
|||
|
|
|||
|
// RTCounter returns the 64-bit time-stamp counter
|
|||
|
// Uses the RDTSCP instruction. The value 0 is returned
|
|||
|
// if the CPU does not support the instruction.
|
|||
|
func (c CPUInfo) RTCounter() uint64 {
|
|||
|
if !c.Supports(RDTSCP) {
|
|||
|
return 0
|
|||
|
}
|
|||
|
a, _, _, d := rdtscpAsm()
|
|||
|
return uint64(a) | (uint64(d) << 32)
|
|||
|
}
|
|||
|
|
|||
|
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
|
|||
|
// This variable is OS dependent, but on Linux contains information
|
|||
|
// about the current cpu/core the code is running on.
|
|||
|
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
|
|||
|
func (c CPUInfo) Ia32TscAux() uint32 {
|
|||
|
if !c.Supports(RDTSCP) {
|
|||
|
return 0
|
|||
|
}
|
|||
|
_, _, ecx, _ := rdtscpAsm()
|
|||
|
return ecx
|
|||
|
}
|
|||
|
|
|||
|
// LogicalCPU will return the Logical CPU the code is currently executing on.
|
|||
|
// This is likely to change when the OS re-schedules the running thread
|
|||
|
// to another CPU.
|
|||
|
// If the current core cannot be detected, -1 will be returned.
|
|||
|
func (c CPUInfo) LogicalCPU() int {
|
|||
|
if c.maxFunc < 1 {
|
|||
|
return -1
|
|||
|
}
|
|||
|
_, ebx, _, _ := cpuid(1)
|
|||
|
return int(ebx >> 24)
|
|||
|
}
|
|||
|
|
|||
|
// hertz tries to compute the clock speed of the CPU. If leaf 15 is
|
|||
|
// supported, use it, otherwise parse the brand string. Yes, really.
|
|||
|
func hertz(model string) int64 {
|
|||
|
mfi := maxFunctionID()
|
|||
|
if mfi >= 0x15 {
|
|||
|
eax, ebx, ecx, _ := cpuid(0x15)
|
|||
|
if eax != 0 && ebx != 0 && ecx != 0 {
|
|||
|
return int64((int64(ecx) * int64(ebx)) / int64(eax))
|
|||
|
}
|
|||
|
}
|
|||
|
// computeHz determines the official rated speed of a CPU from its brand
|
|||
|
// string. This insanity is *actually the official documented way to do
|
|||
|
// this according to Intel*, prior to leaf 0x15 existing. The official
|
|||
|
// documentation only shows this working for exactly `x.xx` or `xxxx`
|
|||
|
// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
|
|||
|
// sizes.
|
|||
|
hz := strings.LastIndex(model, "Hz")
|
|||
|
if hz < 3 {
|
|||
|
return 0
|
|||
|
}
|
|||
|
var multiplier int64
|
|||
|
switch model[hz-1] {
|
|||
|
case 'M':
|
|||
|
multiplier = 1000 * 1000
|
|||
|
case 'G':
|
|||
|
multiplier = 1000 * 1000 * 1000
|
|||
|
case 'T':
|
|||
|
multiplier = 1000 * 1000 * 1000 * 1000
|
|||
|
}
|
|||
|
if multiplier == 0 {
|
|||
|
return 0
|
|||
|
}
|
|||
|
freq := int64(0)
|
|||
|
divisor := int64(0)
|
|||
|
decimalShift := int64(1)
|
|||
|
var i int
|
|||
|
for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
|
|||
|
if model[i] >= '0' && model[i] <= '9' {
|
|||
|
freq += int64(model[i]-'0') * decimalShift
|
|||
|
decimalShift *= 10
|
|||
|
} else if model[i] == '.' {
|
|||
|
if divisor != 0 {
|
|||
|
return 0
|
|||
|
}
|
|||
|
divisor = decimalShift
|
|||
|
} else {
|
|||
|
return 0
|
|||
|
}
|
|||
|
}
|
|||
|
// we didn't find a space
|
|||
|
if i < 0 {
|
|||
|
return 0
|
|||
|
}
|
|||
|
if divisor != 0 {
|
|||
|
return (freq * multiplier) / divisor
|
|||
|
}
|
|||
|
return freq * multiplier
|
|||
|
}
|
|||
|
|
|||
|
// VM Will return true if the cpu id indicates we are in
|
|||
|
// a virtual machine.
|
|||
|
func (c CPUInfo) VM() bool {
|
|||
|
return CPU.featureSet.inSet(HYPERVISOR)
|
|||
|
}
|
|||
|
|
|||
|
// flags contains detected cpu features and characteristics
|
|||
|
type flags uint64
|
|||
|
|
|||
|
// log2(bits_in_uint64)
|
|||
|
const flagBitsLog2 = 6
|
|||
|
const flagBits = 1 << flagBitsLog2
|
|||
|
const flagMask = flagBits - 1
|
|||
|
|
|||
|
// flagSet contains detected cpu features and characteristics in an array of flags
|
|||
|
type flagSet [(lastID + flagMask) / flagBits]flags
|
|||
|
|
|||
|
func (s flagSet) inSet(feat FeatureID) bool {
|
|||
|
return s[feat>>flagBitsLog2]&(1<<(feat&flagMask)) != 0
|
|||
|
}
|
|||
|
|
|||
|
func (s *flagSet) set(feat FeatureID) {
|
|||
|
s[feat>>flagBitsLog2] |= 1 << (feat & flagMask)
|
|||
|
}
|
|||
|
|
|||
|
// setIf will set a feature if boolean is true.
|
|||
|
func (s *flagSet) setIf(cond bool, features ...FeatureID) {
|
|||
|
if cond {
|
|||
|
for _, offset := range features {
|
|||
|
s[offset>>flagBitsLog2] |= 1 << (offset & flagMask)
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
func (s *flagSet) unset(offset FeatureID) {
|
|||
|
bit := flags(1 << (offset & flagMask))
|
|||
|
s[offset>>flagBitsLog2] = s[offset>>flagBitsLog2] & ^bit
|
|||
|
}
|
|||
|
|
|||
|
// or with another flagset.
|
|||
|
func (s *flagSet) or(other flagSet) {
|
|||
|
for i, v := range other[:] {
|
|||
|
s[i] |= v
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// ParseFeature will parse the string and return the ID of the matching feature.
|
|||
|
// Will return UNKNOWN if not found.
|
|||
|
func ParseFeature(s string) FeatureID {
|
|||
|
s = strings.ToUpper(s)
|
|||
|
for i := firstID; i < lastID; i++ {
|
|||
|
if i.String() == s {
|
|||
|
return i
|
|||
|
}
|
|||
|
}
|
|||
|
return UNKNOWN
|
|||
|
}
|
|||
|
|
|||
|
// Strings returns an array of the detected features for FlagsSet.
|
|||
|
func (s flagSet) Strings() []string {
|
|||
|
if len(s) == 0 {
|
|||
|
return []string{""}
|
|||
|
}
|
|||
|
r := make([]string, 0)
|
|||
|
for i := firstID; i < lastID; i++ {
|
|||
|
if s.inSet(i) {
|
|||
|
r = append(r, i.String())
|
|||
|
}
|
|||
|
}
|
|||
|
return r
|
|||
|
}
|
|||
|
|
|||
|
func maxExtendedFunction() uint32 {
|
|||
|
eax, _, _, _ := cpuid(0x80000000)
|
|||
|
return eax
|
|||
|
}
|
|||
|
|
|||
|
func maxFunctionID() uint32 {
|
|||
|
a, _, _, _ := cpuid(0)
|
|||
|
return a
|
|||
|
}
|
|||
|
|
|||
|
func brandName() string {
|
|||
|
if maxExtendedFunction() >= 0x80000004 {
|
|||
|
v := make([]uint32, 0, 48)
|
|||
|
for i := uint32(0); i < 3; i++ {
|
|||
|
a, b, c, d := cpuid(0x80000002 + i)
|
|||
|
v = append(v, a, b, c, d)
|
|||
|
}
|
|||
|
return strings.Trim(string(valAsString(v...)), " ")
|
|||
|
}
|
|||
|
return "unknown"
|
|||
|
}
|
|||
|
|
|||
|
func threadsPerCore() int {
|
|||
|
mfi := maxFunctionID()
|
|||
|
vend, _ := vendorID()
|
|||
|
|
|||
|
if mfi < 0x4 || (vend != Intel && vend != AMD) {
|
|||
|
return 1
|
|||
|
}
|
|||
|
|
|||
|
if mfi < 0xb {
|
|||
|
if vend != Intel {
|
|||
|
return 1
|
|||
|
}
|
|||
|
_, b, _, d := cpuid(1)
|
|||
|
if (d & (1 << 28)) != 0 {
|
|||
|
// v will contain logical core count
|
|||
|
v := (b >> 16) & 255
|
|||
|
if v > 1 {
|
|||
|
a4, _, _, _ := cpuid(4)
|
|||
|
// physical cores
|
|||
|
v2 := (a4 >> 26) + 1
|
|||
|
if v2 > 0 {
|
|||
|
return int(v) / int(v2)
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return 1
|
|||
|
}
|
|||
|
_, b, _, _ := cpuidex(0xb, 0)
|
|||
|
if b&0xffff == 0 {
|
|||
|
if vend == AMD {
|
|||
|
// Workaround for AMD returning 0, assume 2 if >= Zen 2
|
|||
|
// It will be more correct than not.
|
|||
|
fam, _ := familyModel()
|
|||
|
_, _, _, d := cpuid(1)
|
|||
|
if (d&(1<<28)) != 0 && fam >= 23 {
|
|||
|
return 2
|
|||
|
}
|
|||
|
}
|
|||
|
return 1
|
|||
|
}
|
|||
|
return int(b & 0xffff)
|
|||
|
}
|
|||
|
|
|||
|
func logicalCores() int {
|
|||
|
mfi := maxFunctionID()
|
|||
|
v, _ := vendorID()
|
|||
|
switch v {
|
|||
|
case Intel:
|
|||
|
// Use this on old Intel processors
|
|||
|
if mfi < 0xb {
|
|||
|
if mfi < 1 {
|
|||
|
return 0
|
|||
|
}
|
|||
|
// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
|
|||
|
// that can be assigned to logical processors in a physical package.
|
|||
|
// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
|
|||
|
_, ebx, _, _ := cpuid(1)
|
|||
|
logical := (ebx >> 16) & 0xff
|
|||
|
return int(logical)
|
|||
|
}
|
|||
|
_, b, _, _ := cpuidex(0xb, 1)
|
|||
|
return int(b & 0xffff)
|
|||
|
case AMD, Hygon:
|
|||
|
_, b, _, _ := cpuid(1)
|
|||
|
return int((b >> 16) & 0xff)
|
|||
|
default:
|
|||
|
return 0
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
func familyModel() (int, int) {
|
|||
|
if maxFunctionID() < 0x1 {
|
|||
|
return 0, 0
|
|||
|
}
|
|||
|
eax, _, _, _ := cpuid(1)
|
|||
|
family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
|
|||
|
model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
|
|||
|
return int(family), int(model)
|
|||
|
}
|
|||
|
|
|||
|
func physicalCores() int {
|
|||
|
v, _ := vendorID()
|
|||
|
switch v {
|
|||
|
case Intel:
|
|||
|
return logicalCores() / threadsPerCore()
|
|||
|
case AMD, Hygon:
|
|||
|
lc := logicalCores()
|
|||
|
tpc := threadsPerCore()
|
|||
|
if lc > 0 && tpc > 0 {
|
|||
|
return lc / tpc
|
|||
|
}
|
|||
|
|
|||
|
// The following is inaccurate on AMD EPYC 7742 64-Core Processor
|
|||
|
if maxExtendedFunction() >= 0x80000008 {
|
|||
|
_, _, c, _ := cpuid(0x80000008)
|
|||
|
if c&0xff > 0 {
|
|||
|
return int(c&0xff) + 1
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return 0
|
|||
|
}
|
|||
|
|
|||
|
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
|
|||
|
var vendorMapping = map[string]Vendor{
|
|||
|
"AMDisbetter!": AMD,
|
|||
|
"AuthenticAMD": AMD,
|
|||
|
"CentaurHauls": VIA,
|
|||
|
"GenuineIntel": Intel,
|
|||
|
"TransmetaCPU": Transmeta,
|
|||
|
"GenuineTMx86": Transmeta,
|
|||
|
"Geode by NSC": NSC,
|
|||
|
"VIA VIA VIA ": VIA,
|
|||
|
"KVMKVMKVMKVM": KVM,
|
|||
|
"Microsoft Hv": MSVM,
|
|||
|
"VMwareVMware": VMware,
|
|||
|
"XenVMMXenVMM": XenHVM,
|
|||
|
"bhyve bhyve ": Bhyve,
|
|||
|
"HygonGenuine": Hygon,
|
|||
|
"Vortex86 SoC": SiS,
|
|||
|
"SiS SiS SiS ": SiS,
|
|||
|
"RiseRiseRise": SiS,
|
|||
|
"Genuine RDC": RDC,
|
|||
|
}
|
|||
|
|
|||
|
func vendorID() (Vendor, string) {
|
|||
|
_, b, c, d := cpuid(0)
|
|||
|
v := string(valAsString(b, d, c))
|
|||
|
vend, ok := vendorMapping[v]
|
|||
|
if !ok {
|
|||
|
return VendorUnknown, v
|
|||
|
}
|
|||
|
return vend, v
|
|||
|
}
|
|||
|
|
|||
|
func cacheLine() int {
|
|||
|
if maxFunctionID() < 0x1 {
|
|||
|
return 0
|
|||
|
}
|
|||
|
|
|||
|
_, ebx, _, _ := cpuid(1)
|
|||
|
cache := (ebx & 0xff00) >> 5 // cflush size
|
|||
|
if cache == 0 && maxExtendedFunction() >= 0x80000006 {
|
|||
|
_, _, ecx, _ := cpuid(0x80000006)
|
|||
|
cache = ecx & 0xff // cacheline size
|
|||
|
}
|
|||
|
// TODO: Read from Cache and TLB Information
|
|||
|
return int(cache)
|
|||
|
}
|
|||
|
|
|||
|
func (c *CPUInfo) cacheSize() {
|
|||
|
c.Cache.L1D = -1
|
|||
|
c.Cache.L1I = -1
|
|||
|
c.Cache.L2 = -1
|
|||
|
c.Cache.L3 = -1
|
|||
|
vendor, _ := vendorID()
|
|||
|
switch vendor {
|
|||
|
case Intel:
|
|||
|
if maxFunctionID() < 4 {
|
|||
|
return
|
|||
|
}
|
|||
|
for i := uint32(0); ; i++ {
|
|||
|
eax, ebx, ecx, _ := cpuidex(4, i)
|
|||
|
cacheType := eax & 15
|
|||
|
if cacheType == 0 {
|
|||
|
break
|
|||
|
}
|
|||
|
cacheLevel := (eax >> 5) & 7
|
|||
|
coherency := int(ebx&0xfff) + 1
|
|||
|
partitions := int((ebx>>12)&0x3ff) + 1
|
|||
|
associativity := int((ebx>>22)&0x3ff) + 1
|
|||
|
sets := int(ecx) + 1
|
|||
|
size := associativity * partitions * coherency * sets
|
|||
|
switch cacheLevel {
|
|||
|
case 1:
|
|||
|
if cacheType == 1 {
|
|||
|
// 1 = Data Cache
|
|||
|
c.Cache.L1D = size
|
|||
|
} else if cacheType == 2 {
|
|||
|
// 2 = Instruction Cache
|
|||
|
c.Cache.L1I = size
|
|||
|
} else {
|
|||
|
if c.Cache.L1D < 0 {
|
|||
|
c.Cache.L1I = size
|
|||
|
}
|
|||
|
if c.Cache.L1I < 0 {
|
|||
|
c.Cache.L1I = size
|
|||
|
}
|
|||
|
}
|
|||
|
case 2:
|
|||
|
c.Cache.L2 = size
|
|||
|
case 3:
|
|||
|
c.Cache.L3 = size
|
|||
|
}
|
|||
|
}
|
|||
|
case AMD, Hygon:
|
|||
|
// Untested.
|
|||
|
if maxExtendedFunction() < 0x80000005 {
|
|||
|
return
|
|||
|
}
|
|||
|
_, _, ecx, edx := cpuid(0x80000005)
|
|||
|
c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
|
|||
|
c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
|
|||
|
|
|||
|
if maxExtendedFunction() < 0x80000006 {
|
|||
|
return
|
|||
|
}
|
|||
|
_, _, ecx, _ = cpuid(0x80000006)
|
|||
|
c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
|
|||
|
|
|||
|
// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
|
|||
|
if maxExtendedFunction() < 0x8000001D {
|
|||
|
return
|
|||
|
}
|
|||
|
for i := uint32(0); i < math.MaxUint32; i++ {
|
|||
|
eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
|
|||
|
|
|||
|
level := (eax >> 5) & 7
|
|||
|
cacheNumSets := ecx + 1
|
|||
|
cacheLineSize := 1 + (ebx & 2047)
|
|||
|
cachePhysPartitions := 1 + ((ebx >> 12) & 511)
|
|||
|
cacheNumWays := 1 + ((ebx >> 22) & 511)
|
|||
|
|
|||
|
typ := eax & 15
|
|||
|
size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
|
|||
|
if typ == 0 {
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
switch level {
|
|||
|
case 1:
|
|||
|
switch typ {
|
|||
|
case 1:
|
|||
|
// Data cache
|
|||
|
c.Cache.L1D = size
|
|||
|
case 2:
|
|||
|
// Inst cache
|
|||
|
c.Cache.L1I = size
|
|||
|
default:
|
|||
|
if c.Cache.L1D < 0 {
|
|||
|
c.Cache.L1I = size
|
|||
|
}
|
|||
|
if c.Cache.L1I < 0 {
|
|||
|
c.Cache.L1I = size
|
|||
|
}
|
|||
|
}
|
|||
|
case 2:
|
|||
|
c.Cache.L2 = size
|
|||
|
case 3:
|
|||
|
c.Cache.L3 = size
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
type SGXEPCSection struct {
|
|||
|
BaseAddress uint64
|
|||
|
EPCSize uint64
|
|||
|
}
|
|||
|
|
|||
|
type SGXSupport struct {
|
|||
|
Available bool
|
|||
|
LaunchControl bool
|
|||
|
SGX1Supported bool
|
|||
|
SGX2Supported bool
|
|||
|
MaxEnclaveSizeNot64 int64
|
|||
|
MaxEnclaveSize64 int64
|
|||
|
EPCSections []SGXEPCSection
|
|||
|
}
|
|||
|
|
|||
|
func hasSGX(available, lc bool) (rval SGXSupport) {
|
|||
|
rval.Available = available
|
|||
|
|
|||
|
if !available {
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
rval.LaunchControl = lc
|
|||
|
|
|||
|
a, _, _, d := cpuidex(0x12, 0)
|
|||
|
rval.SGX1Supported = a&0x01 != 0
|
|||
|
rval.SGX2Supported = a&0x02 != 0
|
|||
|
rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
|
|||
|
rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
|
|||
|
rval.EPCSections = make([]SGXEPCSection, 0)
|
|||
|
|
|||
|
for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
|
|||
|
eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
|
|||
|
leafType := eax & 0xf
|
|||
|
|
|||
|
if leafType == 0 {
|
|||
|
// Invalid subleaf, stop iterating
|
|||
|
break
|
|||
|
} else if leafType == 1 {
|
|||
|
// EPC Section subleaf
|
|||
|
baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
|
|||
|
size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
|
|||
|
|
|||
|
section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
|
|||
|
rval.EPCSections = append(rval.EPCSections, section)
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
func support() flagSet {
|
|||
|
var fs flagSet
|
|||
|
mfi := maxFunctionID()
|
|||
|
vend, _ := vendorID()
|
|||
|
if mfi < 0x1 {
|
|||
|
return fs
|
|||
|
}
|
|||
|
family, model := familyModel()
|
|||
|
|
|||
|
_, _, c, d := cpuid(1)
|
|||
|
fs.setIf((d&(1<<15)) != 0, CMOV)
|
|||
|
fs.setIf((d&(1<<23)) != 0, MMX)
|
|||
|
fs.setIf((d&(1<<25)) != 0, MMXEXT)
|
|||
|
fs.setIf((d&(1<<25)) != 0, SSE)
|
|||
|
fs.setIf((d&(1<<26)) != 0, SSE2)
|
|||
|
fs.setIf((c&1) != 0, SSE3)
|
|||
|
fs.setIf((c&(1<<5)) != 0, VMX)
|
|||
|
fs.setIf((c&0x00000200) != 0, SSSE3)
|
|||
|
fs.setIf((c&0x00080000) != 0, SSE4)
|
|||
|
fs.setIf((c&0x00100000) != 0, SSE42)
|
|||
|
fs.setIf((c&(1<<25)) != 0, AESNI)
|
|||
|
fs.setIf((c&(1<<1)) != 0, CLMUL)
|
|||
|
fs.setIf(c&(1<<23) != 0, POPCNT)
|
|||
|
fs.setIf(c&(1<<30) != 0, RDRAND)
|
|||
|
|
|||
|
// This bit has been reserved by Intel & AMD for use by hypervisors,
|
|||
|
// and indicates the presence of a hypervisor.
|
|||
|
fs.setIf(c&(1<<31) != 0, HYPERVISOR)
|
|||
|
fs.setIf(c&(1<<29) != 0, F16C)
|
|||
|
fs.setIf(c&(1<<13) != 0, CX16)
|
|||
|
|
|||
|
if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
|
|||
|
fs.setIf(threadsPerCore() > 1, HTT)
|
|||
|
}
|
|||
|
if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
|
|||
|
fs.setIf(threadsPerCore() > 1, HTT)
|
|||
|
}
|
|||
|
// Check XGETBV/XSAVE (26), OXSAVE (27) and AVX (28) bits
|
|||
|
const avxCheck = 1<<26 | 1<<27 | 1<<28
|
|||
|
if c&avxCheck == avxCheck {
|
|||
|
// Check for OS support
|
|||
|
eax, _ := xgetbv(0)
|
|||
|
if (eax & 0x6) == 0x6 {
|
|||
|
fs.set(AVX)
|
|||
|
switch vend {
|
|||
|
case Intel:
|
|||
|
// Older than Haswell.
|
|||
|
fs.setIf(family == 6 && model < 60, AVXSLOW)
|
|||
|
case AMD:
|
|||
|
// Older than Zen 2
|
|||
|
fs.setIf(family < 23 || (family == 23 && model < 49), AVXSLOW)
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
// FMA3 can be used with SSE registers, so no OS support is strictly needed.
|
|||
|
// fma3 and OSXSAVE needed.
|
|||
|
const fma3Check = 1<<12 | 1<<27
|
|||
|
fs.setIf(c&fma3Check == fma3Check, FMA3)
|
|||
|
|
|||
|
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
|
|||
|
if mfi >= 7 {
|
|||
|
_, ebx, ecx, edx := cpuidex(7, 0)
|
|||
|
eax1, _, _, _ := cpuidex(7, 1)
|
|||
|
if fs.inSet(AVX) && (ebx&0x00000020) != 0 {
|
|||
|
fs.set(AVX2)
|
|||
|
}
|
|||
|
// CPUID.(EAX=7, ECX=0).EBX
|
|||
|
if (ebx & 0x00000008) != 0 {
|
|||
|
fs.set(BMI1)
|
|||
|
fs.setIf((ebx&0x00000100) != 0, BMI2)
|
|||
|
}
|
|||
|
fs.setIf(ebx&(1<<2) != 0, SGX)
|
|||
|
fs.setIf(ebx&(1<<4) != 0, HLE)
|
|||
|
fs.setIf(ebx&(1<<9) != 0, ERMS)
|
|||
|
fs.setIf(ebx&(1<<11) != 0, RTM)
|
|||
|
fs.setIf(ebx&(1<<14) != 0, MPX)
|
|||
|
fs.setIf(ebx&(1<<18) != 0, RDSEED)
|
|||
|
fs.setIf(ebx&(1<<19) != 0, ADX)
|
|||
|
fs.setIf(ebx&(1<<29) != 0, SHA)
|
|||
|
// CPUID.(EAX=7, ECX=0).ECX
|
|||
|
fs.setIf(ecx&(1<<5) != 0, WAITPKG)
|
|||
|
fs.setIf(ecx&(1<<25) != 0, CLDEMOTE)
|
|||
|
fs.setIf(ecx&(1<<27) != 0, MOVDIRI)
|
|||
|
fs.setIf(ecx&(1<<28) != 0, MOVDIR64B)
|
|||
|
fs.setIf(ecx&(1<<29) != 0, ENQCMD)
|
|||
|
fs.setIf(ecx&(1<<30) != 0, SGXLC)
|
|||
|
// CPUID.(EAX=7, ECX=0).EDX
|
|||
|
fs.setIf(edx&(1<<14) != 0, SERIALIZE)
|
|||
|
fs.setIf(edx&(1<<16) != 0, TSXLDTRK)
|
|||
|
fs.setIf(edx&(1<<26) != 0, IBPB)
|
|||
|
fs.setIf(edx&(1<<27) != 0, STIBP)
|
|||
|
|
|||
|
// Only detect AVX-512 features if XGETBV is supported
|
|||
|
if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
|
|||
|
// Check for OS support
|
|||
|
eax, _ := xgetbv(0)
|
|||
|
|
|||
|
// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
|
|||
|
// ZMM16-ZMM31 state are enabled by OS)
|
|||
|
/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
|
|||
|
hasAVX512 := (eax>>5)&7 == 7 && (eax>>1)&3 == 3
|
|||
|
if runtime.GOOS == "darwin" {
|
|||
|
hasAVX512 = fs.inSet(AVX) && darwinHasAVX512()
|
|||
|
}
|
|||
|
if hasAVX512 {
|
|||
|
fs.setIf(ebx&(1<<16) != 0, AVX512F)
|
|||
|
fs.setIf(ebx&(1<<17) != 0, AVX512DQ)
|
|||
|
fs.setIf(ebx&(1<<21) != 0, AVX512IFMA)
|
|||
|
fs.setIf(ebx&(1<<26) != 0, AVX512PF)
|
|||
|
fs.setIf(ebx&(1<<27) != 0, AVX512ER)
|
|||
|
fs.setIf(ebx&(1<<28) != 0, AVX512CD)
|
|||
|
fs.setIf(ebx&(1<<30) != 0, AVX512BW)
|
|||
|
fs.setIf(ebx&(1<<31) != 0, AVX512VL)
|
|||
|
// ecx
|
|||
|
fs.setIf(ecx&(1<<1) != 0, AVX512VBMI)
|
|||
|
fs.setIf(ecx&(1<<6) != 0, AVX512VBMI2)
|
|||
|
fs.setIf(ecx&(1<<8) != 0, GFNI)
|
|||
|
fs.setIf(ecx&(1<<9) != 0, VAES)
|
|||
|
fs.setIf(ecx&(1<<10) != 0, VPCLMULQDQ)
|
|||
|
fs.setIf(ecx&(1<<11) != 0, AVX512VNNI)
|
|||
|
fs.setIf(ecx&(1<<12) != 0, AVX512BITALG)
|
|||
|
fs.setIf(ecx&(1<<14) != 0, AVX512VPOPCNTDQ)
|
|||
|
// edx
|
|||
|
fs.setIf(edx&(1<<8) != 0, AVX512VP2INTERSECT)
|
|||
|
fs.setIf(edx&(1<<22) != 0, AMXBF16)
|
|||
|
fs.setIf(edx&(1<<24) != 0, AMXTILE)
|
|||
|
fs.setIf(edx&(1<<25) != 0, AMXINT8)
|
|||
|
// eax1 = CPUID.(EAX=7, ECX=1).EAX
|
|||
|
fs.setIf(eax1&(1<<5) != 0, AVX512BF16)
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if maxExtendedFunction() >= 0x80000001 {
|
|||
|
_, _, c, d := cpuid(0x80000001)
|
|||
|
if (c & (1 << 5)) != 0 {
|
|||
|
fs.set(LZCNT)
|
|||
|
fs.set(POPCNT)
|
|||
|
}
|
|||
|
fs.setIf((c&(1<<10)) != 0, IBS)
|
|||
|
fs.setIf((d&(1<<31)) != 0, AMD3DNOW)
|
|||
|
fs.setIf((d&(1<<30)) != 0, AMD3DNOWEXT)
|
|||
|
fs.setIf((d&(1<<23)) != 0, MMX)
|
|||
|
fs.setIf((d&(1<<22)) != 0, MMXEXT)
|
|||
|
fs.setIf((c&(1<<6)) != 0, SSE4A)
|
|||
|
fs.setIf(d&(1<<20) != 0, NX)
|
|||
|
fs.setIf(d&(1<<27) != 0, RDTSCP)
|
|||
|
|
|||
|
/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
|
|||
|
* used unless the OS has AVX support. */
|
|||
|
if fs.inSet(AVX) {
|
|||
|
fs.setIf((c&0x00000800) != 0, XOP)
|
|||
|
fs.setIf((c&0x00010000) != 0, FMA4)
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
if maxExtendedFunction() >= 0x80000008 {
|
|||
|
_, b, _, _ := cpuid(0x80000008)
|
|||
|
fs.setIf((b&(1<<9)) != 0, WBNOINVD)
|
|||
|
}
|
|||
|
|
|||
|
if maxExtendedFunction() >= 0x8000001b && fs.inSet(IBS) {
|
|||
|
eax, _, _, _ := cpuid(0x8000001b)
|
|||
|
fs.setIf((eax>>0)&1 == 1, IBSFFV)
|
|||
|
fs.setIf((eax>>1)&1 == 1, IBSFETCHSAM)
|
|||
|
fs.setIf((eax>>2)&1 == 1, IBSOPSAM)
|
|||
|
fs.setIf((eax>>3)&1 == 1, IBSRDWROPCNT)
|
|||
|
fs.setIf((eax>>4)&1 == 1, IBSOPCNT)
|
|||
|
fs.setIf((eax>>5)&1 == 1, IBSBRNTRGT)
|
|||
|
fs.setIf((eax>>6)&1 == 1, IBSOPCNTEXT)
|
|||
|
fs.setIf((eax>>7)&1 == 1, IBSRIPINVALIDCHK)
|
|||
|
}
|
|||
|
|
|||
|
return fs
|
|||
|
}
|
|||
|
|
|||
|
func valAsString(values ...uint32) []byte {
|
|||
|
r := make([]byte, 4*len(values))
|
|||
|
for i, v := range values {
|
|||
|
dst := r[i*4:]
|
|||
|
dst[0] = byte(v & 0xff)
|
|||
|
dst[1] = byte((v >> 8) & 0xff)
|
|||
|
dst[2] = byte((v >> 16) & 0xff)
|
|||
|
dst[3] = byte((v >> 24) & 0xff)
|
|||
|
switch {
|
|||
|
case dst[0] == 0:
|
|||
|
return r[:i*4]
|
|||
|
case dst[1] == 0:
|
|||
|
return r[:i*4+1]
|
|||
|
case dst[2] == 0:
|
|||
|
return r[:i*4+2]
|
|||
|
case dst[3] == 0:
|
|||
|
return r[:i*4+3]
|
|||
|
}
|
|||
|
}
|
|||
|
return r
|
|||
|
}
|