lipsync/Boare.Lib.AppUtil/CubicSpline.cs
2024-05-20 00:17:44 +00:00

278 lines
12 KiB
C#
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#if !JAVA
/*
* CubicSpline.cs
* Copyright (c) 2008-2009 kbinani
*
* This file is part of Boare.Lib.AppUtil.
*
* Boare.Lib.AppUtil is free software; you can redistribute it and/or
* modify it under the terms of the BSD License.
*
* Boare.Lib.AppUtil is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
using System;
namespace Boare.Lib.AppUtil {
public class CubicSpline : ICloneable, IDisposable {
int m_num_key;
public double[] m_key, m_sp3_a, m_sp3_b, m_sp3_c, m_sp3_d;
double m_default;
public void Dispose() {
m_key = null;
m_sp3_a = null;
m_sp3_b = null;
m_sp3_c = null;
m_sp3_d = null;
GC.Collect();
m_num_key = 0;
}
public object Clone() {
CubicSpline ret = new CubicSpline( m_key, m_sp3_d );
ret.DefaultValue = m_default;
return ret;
}
public double DefaultValue {
get {
return m_default;
}
set {
m_default = value;
}
}
public double GetValue( double x ) {
int status;
double a, b, c, d, xx;
int i, index;
status = 0;
if ( this.m_num_key == -1 ) {
status = -2;
return 0.0;
}
if ( x < this.m_key[0] || this.m_key[this.m_num_key] < x ) {
status = -1;
return 0.0;
}//end if
index = -1;
for ( i = 0; i < this.m_num_key; i++ ) {// do i = 0, sp3%noOfKey - 1
if ( this.m_key[i] <= x && x <= this.m_key[i + 1] ) {// if(sp3%key(i) <= x .and. x <= sp3%key(i + 1))then
index = i;
break;// exit
}//end if
}//end do
xx = x - this.m_key[index];// xx = x - sp3%key(index)
a = this.m_sp3_a[index];// a = sp3%a(index)
b = this.m_sp3_b[index];// b = sp3%b(index)
c = this.m_sp3_c[index];// c = sp3%c(index)
d = this.m_sp3_d[index];// d = sp3%d(index)
return ((a * xx + b) * xx + c) * xx + d;// ans = ((a * xx + b) * xx + c) * xx + d
}//end subroutine spline3_val
/// <summary>配列の形で与えられるデータ点から3次のスプライン補間で用いる各区域のxの多項式の係数を計算します</summary>
/// <param name="x">データ点のx座標を格納した配列</param>
/// <param name="y">データ点のy座標を格納した配列</param>
public CubicSpline( double[] x, double[] y ) {
//integer, intent(in) :: n
//real(8), intent(in) :: x(0:n), y(0:n)
//integer, intent(out) :: status
int n = x.Length - 1;
int status;
m_num_key = -1;
m_default = 0.0;
double[] h, v, a, b, c, u, tmp, xx, yy;//real(8), allocatable :: h(:), v(:), a(:), b(:), c(:), u(:), tmp(:), xx(:), yy(:)
double buff1, buff2;//real(8) buff1, buff2
int i, iostatus, nn, j;//integer i, iostatus, nn, j
status = 0;
nn = n;
xx = new double[n + 1];
yy = new double[n + 1];//allocate(xx(0:n), yy(0:n))
xx = x;
yy = y;//yy(0:n) = y(0:n)
//nullify(sp3%a)
//nullify(sp3%b)
//nullify(sp3%c)
//nullify(sp3%d)
//nullify(sp3%key)
while ( true ) {//do
iostatus = 0;
for ( i = 1; i <= nn - 1; i++ ) {// do i = 1, nn - 1
if ( xx[i + 1] - x[i] == 0.0 ) {// if(xx(i + 1) - xx(i) == 0.0d0)then
for ( j = i; j <= nn - 2; j++ ) {// do j = i, nn - 2
xx[j] = xx[j + 1];// xx(j) = xx(j + 1)
yy[j] = yy[j + 1];// yy(j) = yy(j + 1)
}// end do
iostatus = -1;
// create the copy of xx
//if(allocated(tmp))then
//deallocate(tmp)
//end if
tmp = new double[nn];// allocate(tmp(0:nn - 1))
for ( int k = 0; k < nn; k++ ) {
tmp[k] = xx[k];
}// tmp(0:nn - 1) = xx(0:nn - 1)
// deallocate(xx)
xx = new double[nn];// allocate(xx(0:nn - 1))
for ( int k = 0; k < nn; k++ ) {
xx[k] = tmp[k];
}// xx(0:nn - 1) = tmp(0:nn - 1)
// create the copy of yy
for ( int k = 0; k < nn; k++ ) {
tmp[k] = yy[k];
}// tmp(0:nn - 1) = yy(0:nn - 1)
//deallocate(yy)
yy = new double[nn];// allocate(yy(0:nn - 1))
for ( int k = 0; k < nn; k++ ) {
yy[k] = tmp[k];
}// yy(0:nn - 1) = tmp(0:nn - 1)
break;// exit
}//end if
}//end do
if ( iostatus == 0 ) {// if(iostatus == 0)then
break;// exit
} else {// else
nn = nn - 1;// nn = nn - 1
}// end if
}// end do
//allocate(h(0:nn - 1), v(1:nn - 1), a(1:nn - 1), b(1:nn - 1), c(1:nn - 1), u(1:nn - 1))
h = new double[nn];
v = new double[nn - 1];
a = new double[nn - 1];
b = new double[nn - 1];
c = new double[nn - 1];
u = new double[nn - 1];
// executed in debug mode ******************************************************************************************************
//if(spline_debug_flag == 1)then ! **
//open(unit = 26, file = 'spline_debug.txt') ! **
//end if ! **
// *****************************************************************************************************************************
// calculate h_j
for ( i = 0; i < nn; i++ ) {// do i = 0, nn - 1
h[i] = xx[i + 1] - xx[i];// h(i) = xx(i + 1) - xx(i)
if ( h[i] <= 0.0 ) {// if(h(i) <= 0.0d0)then
this.m_key = new double[1];
this.m_sp3_a = new double[1];
this.m_sp3_b = new double[1];
this.m_sp3_c = new double[1];
this.m_sp3_d = new double[1];
return;
}
}
// calculate v_j
for ( i = 1; i < nn; i++ ) {// do i = 1, nn - 1
buff1 = yy[i + 1] - yy[i];// buff1 = yy(i + 1) - yy(i)
buff2 = yy[i] - y[i - 1];// buff2 = yy(i) - yy(i - 1)
if ( buff1 == 0.0 ) {// if(buff1 == 0.0d0)then
if ( buff2 == 0.0 ) {// if(buff2 == 0.0d0)then
v[i - 1] = 0;// v(i) = 0.0d0
} else {// else
v[i - 1] = 6.0 * (-(yy[i] - yy[i - 1]) / h[i - 1]);// v(i) = 6.0d0 * (- (yy(i) - yy(i - 1)) / h(i - 1))
}// end if
} else {// else
if ( buff2 == 0.0 ) {// if(buff2 == 0.0d0)then
v[i - 1] = 6.0 * ((yy[i + 1] - yy[i]) / h[i]);// v(i) = 6.0d0 * ((yy(i + 1) - yy(i)) / h(i))
} else {// else
v[i - 1] = 6.0 * ((yy[i + 1] - yy[i]) / h[i] - (yy[i] - yy[i - 1]) / h[i - 1]);// v(i) = 6.0d0 * ((yy(i + 1) - yy(i)) / h(i) - (yy(i) - yy(i - 1)) / h(i - 1))
}// end if
}// end if
}//end do
for ( i = 1; i < nn; i++ ) {// do i = 1, nn - 1
a[i - 1] = 2.0 * (h[i - 1] + h[i]);// a(i) = 2.0d0 * (h(i - 1) + h(i))
b[i - 1] = h[i - 1];// b(i) = h(i - 1)
c[i - 1] = h[i];// c(i) = h(i)
}// end do
LUDecTDM( nn - 1, a, b, c, v, out u );// call LUDecTDM(nn - 1, a, b, c, v, u)
m_num_key = nn;// sp3%noOfKey = nn
this.m_sp3_a = new double[nn];// allocate(sp3%a(0:nn - 1))
this.m_sp3_b = new double[nn];// allocate(sp3%b(0:nn - 1))
this.m_sp3_c = new double[nn];// allocate(sp3%c(0:nn - 1))
this.m_sp3_d = new double[nn];// allocate(sp3%d(0:nn - 1))
this.m_key = new double[nn + 1];// allocate(sp3%key(0:nn))
this.m_sp3_a[0] = u[0] / (6.0 * h[0]);// sp3%a(0) = u(1) / (6.0d0 * h(0))
this.m_sp3_b[0] = 0.0;// sp3%b(0) = 0.0d0
this.m_sp3_c[0] = (yy[1] - yy[0]) / h[0] - h[0] * u[0] / 6.0;// sp3%c(0) = (yy(1) - yy(0)) / h(0) - h(0) * u(1) / 6.0d0
this.m_sp3_a[nn - 1] = -u[nn - 2] / (6.0 * h[nn - 1]);// sp3%a(nn - 1) = -u(nn - 1) / (6.0d0 * h(nn - 1))
this.m_sp3_b[nn - 1] = u[nn - 2] * 0.5;// sp3%b(nn - 1) = u(nn - 1) * 0.5d0
this.m_sp3_c[nn - 1] = (yy[nn] - yy[nn - 1]) / h[nn - 1] - h[nn - 1] * u[nn - 2] / 3.0;// sp3%c(nn - 1) = (yy(nn) - yy(nn - 1)) / h(nn - 1) - h(nn - 1) * u(nn - 1) / 3.0d0
for ( i = 1; i <= nn - 2; i++ ) {// do i = 1, nn - 2
this.m_sp3_a[i] = (u[i] - u[i - 1]) / (6.0 * h[i]);// sp3%a(i) = (u(i + 1) - u(i)) / (6.0d0 * h(i))
this.m_sp3_b[i] = u[i - 1] * 0.5;// sp3%b(i) = u(i) * 0.5d0
this.m_sp3_c[i] = (yy[i + 1] - yy[i]) / h[i] - h[i] * (2.0 * u[i - 1] + u[i]) / 6.0;// sp3%c(i) = (yy(i + 1) - yy(i)) / h(i) - h(i) * (2.0d0 * u(i) + u(i + 1)) / 6.0d0
}//end do
this.m_key = xx;
// sp3%key(0:nn) = xx(0:nn)
for ( int k = 0; k < nn; k++ ) {
this.m_sp3_d[k] = yy[k];
}// sp3%d(0:nn - 1) = yy(0:nn - 1)
}
/// <summary>
/// This subroutine solves system of linear equation(only for
/// tridiagonal matrix system) by LU decompression method.
/// Meanings of variables are defined below.
/// ( a1 c1 0 ) ( x1 ) ( y1 )
/// ( b2 a2 c2 ) ( x2 ) ( y2 )
/// ( b3 a3 c3 ) ( x3 ) ( y3 )
/// ( ... ) ( ...) = ( ...)
/// ( bN-1 aN-1 cN-1 ) (xN-1) (yN-1)
/// ( 0 bN aN ) ( xN ) ( yN )
/// </summary>
/// <param name="N"></param>
/// <param name="a"></param>
/// <param name="b"></param>
/// <param name="c"></param>
/// <param name="y"></param>
/// <param name="x"></param>
private static void LUDecTDM( int N, double[] a, double[] b, double[] c, double[] y, out double[] x ) {
double[] d = new double[N];
double[] z = new double[N];
double[] l = new double[N];
int i;
x = new double[N];
d[0] = a[0];// d(1) = a(1)
for ( i = 1; i < N; i++ ) {// do i = 2, N
l[i] = b[i] / d[i - 1];// l(i) = b(i) / d(i - 1)
d[i] = a[i] - l[i] * c[i - 1];// d(i) = a(i) - l(i) * c(i - 1)
}// end do
z[0] = y[0];// z(1) = y(1)
for ( i = 1; i < N; i++ ) {// do i = 2, N
z[i] = y[i] - l[i] * z[i - 1];// z(i) = y(i) - l(i) * z(i - 1)
}// end do
x[N - 1] = z[N - 1] / d[N - 1];// x(N) = z(N) / d(N)
for ( i = N - 2; i >= 0; i-- ) {// do i = N - 1, 1, -1
x[i] = (z[i] - c[i] * x[i + 1]) / d[i];// x(i) = (z(i) - c(i) * x(i + 1)) / d(i)
}// end do
}
}
}
#endif