forked from lug/matterbridge
		
	 6a3fc71397
			
		
	
	6a3fc71397
	
	
	
		
			
			* Update dependencies and go1.18 * Exclude unnecessary linters and update build to go1.18
		
			
				
	
	
		
			421 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			421 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2017 The Go Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| // Package field implements fast arithmetic modulo 2^255-19.
 | ||
| package field
 | ||
| 
 | ||
| import (
 | ||
| 	"crypto/subtle"
 | ||
| 	"encoding/binary"
 | ||
| 	"errors"
 | ||
| 	"math/bits"
 | ||
| )
 | ||
| 
 | ||
| // Element represents an element of the field GF(2^255-19). Note that this
 | ||
| // is not a cryptographically secure group, and should only be used to interact
 | ||
| // with edwards25519.Point coordinates.
 | ||
| //
 | ||
| // This type works similarly to math/big.Int, and all arguments and receivers
 | ||
| // are allowed to alias.
 | ||
| //
 | ||
| // The zero value is a valid zero element.
 | ||
| type Element struct {
 | ||
| 	// An element t represents the integer
 | ||
| 	//     t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
 | ||
| 	//
 | ||
| 	// Between operations, all limbs are expected to be lower than 2^52.
 | ||
| 	l0 uint64
 | ||
| 	l1 uint64
 | ||
| 	l2 uint64
 | ||
| 	l3 uint64
 | ||
| 	l4 uint64
 | ||
| }
 | ||
| 
 | ||
| const maskLow51Bits uint64 = (1 << 51) - 1
 | ||
| 
 | ||
| var feZero = &Element{0, 0, 0, 0, 0}
 | ||
| 
 | ||
| // Zero sets v = 0, and returns v.
 | ||
| func (v *Element) Zero() *Element {
 | ||
| 	*v = *feZero
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| var feOne = &Element{1, 0, 0, 0, 0}
 | ||
| 
 | ||
| // One sets v = 1, and returns v.
 | ||
| func (v *Element) One() *Element {
 | ||
| 	*v = *feOne
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // reduce reduces v modulo 2^255 - 19 and returns it.
 | ||
| func (v *Element) reduce() *Element {
 | ||
| 	v.carryPropagate()
 | ||
| 
 | ||
| 	// After the light reduction we now have a field element representation
 | ||
| 	// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
 | ||
| 
 | ||
| 	// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
 | ||
| 	// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
 | ||
| 	c := (v.l0 + 19) >> 51
 | ||
| 	c = (v.l1 + c) >> 51
 | ||
| 	c = (v.l2 + c) >> 51
 | ||
| 	c = (v.l3 + c) >> 51
 | ||
| 	c = (v.l4 + c) >> 51
 | ||
| 
 | ||
| 	// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
 | ||
| 	// effectively applying the reduction identity to the carry.
 | ||
| 	v.l0 += 19 * c
 | ||
| 
 | ||
| 	v.l1 += v.l0 >> 51
 | ||
| 	v.l0 = v.l0 & maskLow51Bits
 | ||
| 	v.l2 += v.l1 >> 51
 | ||
| 	v.l1 = v.l1 & maskLow51Bits
 | ||
| 	v.l3 += v.l2 >> 51
 | ||
| 	v.l2 = v.l2 & maskLow51Bits
 | ||
| 	v.l4 += v.l3 >> 51
 | ||
| 	v.l3 = v.l3 & maskLow51Bits
 | ||
| 	// no additional carry
 | ||
| 	v.l4 = v.l4 & maskLow51Bits
 | ||
| 
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // Add sets v = a + b, and returns v.
 | ||
| func (v *Element) Add(a, b *Element) *Element {
 | ||
| 	v.l0 = a.l0 + b.l0
 | ||
| 	v.l1 = a.l1 + b.l1
 | ||
| 	v.l2 = a.l2 + b.l2
 | ||
| 	v.l3 = a.l3 + b.l3
 | ||
| 	v.l4 = a.l4 + b.l4
 | ||
| 	// Using the generic implementation here is actually faster than the
 | ||
| 	// assembly. Probably because the body of this function is so simple that
 | ||
| 	// the compiler can figure out better optimizations by inlining the carry
 | ||
| 	// propagation.
 | ||
| 	return v.carryPropagateGeneric()
 | ||
| }
 | ||
| 
 | ||
| // Subtract sets v = a - b, and returns v.
 | ||
| func (v *Element) Subtract(a, b *Element) *Element {
 | ||
| 	// We first add 2 * p, to guarantee the subtraction won't underflow, and
 | ||
| 	// then subtract b (which can be up to 2^255 + 2^13 * 19).
 | ||
| 	v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
 | ||
| 	v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
 | ||
| 	v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
 | ||
| 	v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
 | ||
| 	v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
 | ||
| 	return v.carryPropagate()
 | ||
| }
 | ||
| 
 | ||
| // Negate sets v = -a, and returns v.
 | ||
| func (v *Element) Negate(a *Element) *Element {
 | ||
| 	return v.Subtract(feZero, a)
 | ||
| }
 | ||
| 
 | ||
| // Invert sets v = 1/z mod p, and returns v.
 | ||
| //
 | ||
| // If z == 0, Invert returns v = 0.
 | ||
| func (v *Element) Invert(z *Element) *Element {
 | ||
| 	// Inversion is implemented as exponentiation with exponent p − 2. It uses the
 | ||
| 	// same sequence of 255 squarings and 11 multiplications as [Curve25519].
 | ||
| 	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
 | ||
| 
 | ||
| 	z2.Square(z)             // 2
 | ||
| 	t.Square(&z2)            // 4
 | ||
| 	t.Square(&t)             // 8
 | ||
| 	z9.Multiply(&t, z)       // 9
 | ||
| 	z11.Multiply(&z9, &z2)   // 11
 | ||
| 	t.Square(&z11)           // 22
 | ||
| 	z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
 | ||
| 
 | ||
| 	t.Square(&z2_5_0) // 2^6 - 2^1
 | ||
| 	for i := 0; i < 4; i++ {
 | ||
| 		t.Square(&t) // 2^10 - 2^5
 | ||
| 	}
 | ||
| 	z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
 | ||
| 
 | ||
| 	t.Square(&z2_10_0) // 2^11 - 2^1
 | ||
| 	for i := 0; i < 9; i++ {
 | ||
| 		t.Square(&t) // 2^20 - 2^10
 | ||
| 	}
 | ||
| 	z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
 | ||
| 
 | ||
| 	t.Square(&z2_20_0) // 2^21 - 2^1
 | ||
| 	for i := 0; i < 19; i++ {
 | ||
| 		t.Square(&t) // 2^40 - 2^20
 | ||
| 	}
 | ||
| 	t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
 | ||
| 
 | ||
| 	t.Square(&t) // 2^41 - 2^1
 | ||
| 	for i := 0; i < 9; i++ {
 | ||
| 		t.Square(&t) // 2^50 - 2^10
 | ||
| 	}
 | ||
| 	z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
 | ||
| 
 | ||
| 	t.Square(&z2_50_0) // 2^51 - 2^1
 | ||
| 	for i := 0; i < 49; i++ {
 | ||
| 		t.Square(&t) // 2^100 - 2^50
 | ||
| 	}
 | ||
| 	z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
 | ||
| 
 | ||
| 	t.Square(&z2_100_0) // 2^101 - 2^1
 | ||
| 	for i := 0; i < 99; i++ {
 | ||
| 		t.Square(&t) // 2^200 - 2^100
 | ||
| 	}
 | ||
| 	t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
 | ||
| 
 | ||
| 	t.Square(&t) // 2^201 - 2^1
 | ||
| 	for i := 0; i < 49; i++ {
 | ||
| 		t.Square(&t) // 2^250 - 2^50
 | ||
| 	}
 | ||
| 	t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
 | ||
| 
 | ||
| 	t.Square(&t) // 2^251 - 2^1
 | ||
| 	t.Square(&t) // 2^252 - 2^2
 | ||
| 	t.Square(&t) // 2^253 - 2^3
 | ||
| 	t.Square(&t) // 2^254 - 2^4
 | ||
| 	t.Square(&t) // 2^255 - 2^5
 | ||
| 
 | ||
| 	return v.Multiply(&t, &z11) // 2^255 - 21
 | ||
| }
 | ||
| 
 | ||
| // Set sets v = a, and returns v.
 | ||
| func (v *Element) Set(a *Element) *Element {
 | ||
| 	*v = *a
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is
 | ||
| // not of the right length, SetBytes returns nil and an error, and the
 | ||
| // receiver is unchanged.
 | ||
| //
 | ||
| // Consistent with RFC 7748, the most significant bit (the high bit of the
 | ||
| // last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
 | ||
| // are accepted. Note that this is laxer than specified by RFC 8032, but
 | ||
| // consistent with most Ed25519 implementations.
 | ||
| func (v *Element) SetBytes(x []byte) (*Element, error) {
 | ||
| 	if len(x) != 32 {
 | ||
| 		return nil, errors.New("edwards25519: invalid field element input size")
 | ||
| 	}
 | ||
| 
 | ||
| 	// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
 | ||
| 	v.l0 = binary.LittleEndian.Uint64(x[0:8])
 | ||
| 	v.l0 &= maskLow51Bits
 | ||
| 	// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
 | ||
| 	v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
 | ||
| 	v.l1 &= maskLow51Bits
 | ||
| 	// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
 | ||
| 	v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
 | ||
| 	v.l2 &= maskLow51Bits
 | ||
| 	// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
 | ||
| 	v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
 | ||
| 	v.l3 &= maskLow51Bits
 | ||
| 	// Bits 204:255 (bytes 24:32, bits 192:256, shift 12, mask 51).
 | ||
| 	// Note: not bytes 25:33, shift 4, to avoid overread.
 | ||
| 	v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
 | ||
| 	v.l4 &= maskLow51Bits
 | ||
| 
 | ||
| 	return v, nil
 | ||
| }
 | ||
| 
 | ||
| // Bytes returns the canonical 32-byte little-endian encoding of v.
 | ||
| func (v *Element) Bytes() []byte {
 | ||
| 	// This function is outlined to make the allocations inline in the caller
 | ||
| 	// rather than happen on the heap.
 | ||
| 	var out [32]byte
 | ||
| 	return v.bytes(&out)
 | ||
| }
 | ||
| 
 | ||
| func (v *Element) bytes(out *[32]byte) []byte {
 | ||
| 	t := *v
 | ||
| 	t.reduce()
 | ||
| 
 | ||
| 	var buf [8]byte
 | ||
| 	for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
 | ||
| 		bitsOffset := i * 51
 | ||
| 		binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
 | ||
| 		for i, bb := range buf {
 | ||
| 			off := bitsOffset/8 + i
 | ||
| 			if off >= len(out) {
 | ||
| 				break
 | ||
| 			}
 | ||
| 			out[off] |= bb
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return out[:]
 | ||
| }
 | ||
| 
 | ||
| // Equal returns 1 if v and u are equal, and 0 otherwise.
 | ||
| func (v *Element) Equal(u *Element) int {
 | ||
| 	sa, sv := u.Bytes(), v.Bytes()
 | ||
| 	return subtle.ConstantTimeCompare(sa, sv)
 | ||
| }
 | ||
| 
 | ||
| // mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
 | ||
| func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
 | ||
| 
 | ||
| // Select sets v to a if cond == 1, and to b if cond == 0.
 | ||
| func (v *Element) Select(a, b *Element, cond int) *Element {
 | ||
| 	m := mask64Bits(cond)
 | ||
| 	v.l0 = (m & a.l0) | (^m & b.l0)
 | ||
| 	v.l1 = (m & a.l1) | (^m & b.l1)
 | ||
| 	v.l2 = (m & a.l2) | (^m & b.l2)
 | ||
| 	v.l3 = (m & a.l3) | (^m & b.l3)
 | ||
| 	v.l4 = (m & a.l4) | (^m & b.l4)
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
 | ||
| func (v *Element) Swap(u *Element, cond int) {
 | ||
| 	m := mask64Bits(cond)
 | ||
| 	t := m & (v.l0 ^ u.l0)
 | ||
| 	v.l0 ^= t
 | ||
| 	u.l0 ^= t
 | ||
| 	t = m & (v.l1 ^ u.l1)
 | ||
| 	v.l1 ^= t
 | ||
| 	u.l1 ^= t
 | ||
| 	t = m & (v.l2 ^ u.l2)
 | ||
| 	v.l2 ^= t
 | ||
| 	u.l2 ^= t
 | ||
| 	t = m & (v.l3 ^ u.l3)
 | ||
| 	v.l3 ^= t
 | ||
| 	u.l3 ^= t
 | ||
| 	t = m & (v.l4 ^ u.l4)
 | ||
| 	v.l4 ^= t
 | ||
| 	u.l4 ^= t
 | ||
| }
 | ||
| 
 | ||
| // IsNegative returns 1 if v is negative, and 0 otherwise.
 | ||
| func (v *Element) IsNegative() int {
 | ||
| 	return int(v.Bytes()[0] & 1)
 | ||
| }
 | ||
| 
 | ||
| // Absolute sets v to |u|, and returns v.
 | ||
| func (v *Element) Absolute(u *Element) *Element {
 | ||
| 	return v.Select(new(Element).Negate(u), u, u.IsNegative())
 | ||
| }
 | ||
| 
 | ||
| // Multiply sets v = x * y, and returns v.
 | ||
| func (v *Element) Multiply(x, y *Element) *Element {
 | ||
| 	feMul(v, x, y)
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // Square sets v = x * x, and returns v.
 | ||
| func (v *Element) Square(x *Element) *Element {
 | ||
| 	feSquare(v, x)
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // Mult32 sets v = x * y, and returns v.
 | ||
| func (v *Element) Mult32(x *Element, y uint32) *Element {
 | ||
| 	x0lo, x0hi := mul51(x.l0, y)
 | ||
| 	x1lo, x1hi := mul51(x.l1, y)
 | ||
| 	x2lo, x2hi := mul51(x.l2, y)
 | ||
| 	x3lo, x3hi := mul51(x.l3, y)
 | ||
| 	x4lo, x4hi := mul51(x.l4, y)
 | ||
| 	v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
 | ||
| 	v.l1 = x1lo + x0hi
 | ||
| 	v.l2 = x2lo + x1hi
 | ||
| 	v.l3 = x3lo + x2hi
 | ||
| 	v.l4 = x4lo + x3hi
 | ||
| 	// The hi portions are going to be only 32 bits, plus any previous excess,
 | ||
| 	// so we can skip the carry propagation.
 | ||
| 	return v
 | ||
| }
 | ||
| 
 | ||
| // mul51 returns lo + hi * 2⁵¹ = a * b.
 | ||
| func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
 | ||
| 	mh, ml := bits.Mul64(a, uint64(b))
 | ||
| 	lo = ml & maskLow51Bits
 | ||
| 	hi = (mh << 13) | (ml >> 51)
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| // Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
 | ||
| func (v *Element) Pow22523(x *Element) *Element {
 | ||
| 	var t0, t1, t2 Element
 | ||
| 
 | ||
| 	t0.Square(x)             // x^2
 | ||
| 	t1.Square(&t0)           // x^4
 | ||
| 	t1.Square(&t1)           // x^8
 | ||
| 	t1.Multiply(x, &t1)      // x^9
 | ||
| 	t0.Multiply(&t0, &t1)    // x^11
 | ||
| 	t0.Square(&t0)           // x^22
 | ||
| 	t0.Multiply(&t1, &t0)    // x^31
 | ||
| 	t1.Square(&t0)           // x^62
 | ||
| 	for i := 1; i < 5; i++ { // x^992
 | ||
| 		t1.Square(&t1)
 | ||
| 	}
 | ||
| 	t0.Multiply(&t1, &t0)     // x^1023 -> 1023 = 2^10 - 1
 | ||
| 	t1.Square(&t0)            // 2^11 - 2
 | ||
| 	for i := 1; i < 10; i++ { // 2^20 - 2^10
 | ||
| 		t1.Square(&t1)
 | ||
| 	}
 | ||
| 	t1.Multiply(&t1, &t0)     // 2^20 - 1
 | ||
| 	t2.Square(&t1)            // 2^21 - 2
 | ||
| 	for i := 1; i < 20; i++ { // 2^40 - 2^20
 | ||
| 		t2.Square(&t2)
 | ||
| 	}
 | ||
| 	t1.Multiply(&t2, &t1)     // 2^40 - 1
 | ||
| 	t1.Square(&t1)            // 2^41 - 2
 | ||
| 	for i := 1; i < 10; i++ { // 2^50 - 2^10
 | ||
| 		t1.Square(&t1)
 | ||
| 	}
 | ||
| 	t0.Multiply(&t1, &t0)     // 2^50 - 1
 | ||
| 	t1.Square(&t0)            // 2^51 - 2
 | ||
| 	for i := 1; i < 50; i++ { // 2^100 - 2^50
 | ||
| 		t1.Square(&t1)
 | ||
| 	}
 | ||
| 	t1.Multiply(&t1, &t0)      // 2^100 - 1
 | ||
| 	t2.Square(&t1)             // 2^101 - 2
 | ||
| 	for i := 1; i < 100; i++ { // 2^200 - 2^100
 | ||
| 		t2.Square(&t2)
 | ||
| 	}
 | ||
| 	t1.Multiply(&t2, &t1)     // 2^200 - 1
 | ||
| 	t1.Square(&t1)            // 2^201 - 2
 | ||
| 	for i := 1; i < 50; i++ { // 2^250 - 2^50
 | ||
| 		t1.Square(&t1)
 | ||
| 	}
 | ||
| 	t0.Multiply(&t1, &t0)     // 2^250 - 1
 | ||
| 	t0.Square(&t0)            // 2^251 - 2
 | ||
| 	t0.Square(&t0)            // 2^252 - 4
 | ||
| 	return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
 | ||
| }
 | ||
| 
 | ||
| // sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
 | ||
| var sqrtM1 = &Element{1718705420411056, 234908883556509,
 | ||
| 	2233514472574048, 2117202627021982, 765476049583133}
 | ||
| 
 | ||
| // SqrtRatio sets r to the non-negative square root of the ratio of u and v.
 | ||
| //
 | ||
| // If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
 | ||
| // sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
 | ||
| // and returns r and 0.
 | ||
| func (r *Element) SqrtRatio(u, v *Element) (R *Element, wasSquare int) {
 | ||
| 	t0 := new(Element)
 | ||
| 
 | ||
| 	// r = (u * v3) * (u * v7)^((p-5)/8)
 | ||
| 	v2 := new(Element).Square(v)
 | ||
| 	uv3 := new(Element).Multiply(u, t0.Multiply(v2, v))
 | ||
| 	uv7 := new(Element).Multiply(uv3, t0.Square(v2))
 | ||
| 	rr := new(Element).Multiply(uv3, t0.Pow22523(uv7))
 | ||
| 
 | ||
| 	check := new(Element).Multiply(v, t0.Square(rr)) // check = v * r^2
 | ||
| 
 | ||
| 	uNeg := new(Element).Negate(u)
 | ||
| 	correctSignSqrt := check.Equal(u)
 | ||
| 	flippedSignSqrt := check.Equal(uNeg)
 | ||
| 	flippedSignSqrtI := check.Equal(t0.Multiply(uNeg, sqrtM1))
 | ||
| 
 | ||
| 	rPrime := new(Element).Multiply(rr, sqrtM1) // r_prime = SQRT_M1 * r
 | ||
| 	// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
 | ||
| 	rr.Select(rPrime, rr, flippedSignSqrt|flippedSignSqrtI)
 | ||
| 
 | ||
| 	r.Absolute(rr) // Choose the nonnegative square root.
 | ||
| 	return r, correctSignSqrt | flippedSignSqrt
 | ||
| }
 |